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Elimination of Feshbach loss in a Bose–Einstein condensate
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Abstract

We suggest a technique to eliminate inelastic losses in an atomic condensate when tuned close to a Feshbach res-

onance. The key idea is to couple the quasi-bound molecular state to a bound molecular state with an electromagnetic

field. Such coupling forces the population of the Feshbach state to zero, thereby eliminating all of the losses associated

with this state.

� 2004 Elsevier B.V. All rights reserved.

PACS: 34.50.)s; 32.80.Qk; 32.80.Pj
In recent experiments on Bose–Einstein con-

densates large loss rates were observed when a

quasi-bound molecular state was tuned slowly

close to a Feshbach resonance with an atomic

condensate [1,2]. Although the precise mechanism

for this loss is not understood, it is likely that the

loss is associated with the population of the quasi-
bound molecular state. As suggested by Yurovsky

et al. [3], one mechanism which causes loss is three

body recombination.

In this work we extend the suggestion of Harris

[4] to coupled, zero-temperature, atomic and mo-

lecular condensates, and demonstrate a technique

to eliminate Feshbach loss. The key idea is to
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couple the quasi-bound molecular state to a bound

molecular state with an electromagnetic field. Due

to destructive interference, the quasi-bound mo-

lecular state accumulates no population and all of

the losses associated with this state are eliminated.

The nature of this interference has strong similar-

ities with electromagnetically induced transpar-
ency (EIT) for light fields, where an incident

optical beam tuned to what was previously line

center has near zero absorption [5].

A schematic of the system to be studied is

shown in Fig. 1. The energy of the atomic con-

densate is magnetically tuned close to a Feshbach

resonance with the quasi-bound diatomic mole-

cules. We assume that the quasi-bound molecules
decay with a rate C1. The quantity X in Fig. 1 is the

Rabi frequency of the electromagnetic field that

couples the quasi-bound and bound molecular

states. In symmetric molecules this transition is

dipole forbidden and X is the effective two-photon
ed.
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Fig. 1. Energy-level schematic for the studied system. The

atomic condensate is magnetically tuned close to a Feshbach

resonance with the quasi-bound diatomic molecules. The cou-

pling field with the Rabi frequency, X, couples the bound and

quasi-bound molecular states.
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Rabi frequency. Without the coupling field, the

atoms form quasi-bound molecules and, due to the

large decay rate of these molecules, the atomic

condensate experiences loss. With the coupling

field, there is destructive interference in two

quantum paths that form the quasi-bound mole-
cules. In analogy with EIT for light fields, perfect

interference is obtained only for the ideal case of

C2 ¼ 0. The atomic condensate experiences no loss

on the exact Feshbach resonance and the band-

width of the transparency is determined by the

intensity of the coupling field.

Pertinent prior work includes general formal-

isms that describe laser-assisted, electron–atom
scattering [6] and cold-atom collisions in the

presence of one or more resonant photoassocia-

tion lasers [7,8]. Van Abeleen and Verhaar [9] have

suggested a possible loss mechanism when a

Feshbach resonance is crossed rapidly with high

ramp speed of the magnetic field. The schematic of

Fig. 1 has been suggested by several authors as an

efficient way to convert an atomic condensate to a
molecular condensate [10,11]. Drummond et al.

[12] has shown how stimulated Raman adiabatic

passage (STIRAP) can be used to form a molec-

ular condensate by Raman-coupling the free

atomic state to a bound molecular state. Dynamics
between coupled atomic and molecular conden-

sates have been discussed by Heinzen et al. [13]

and Holland and Kokkelmans [14]. Coherent os-

cillations between atomic and molecular conden-

sates have been observed by the Wieman group

[15]. The formation of a molecular BEC has been
recently demonstrated [16,17].

We proceed by using the mean field approach

[18–20]. Following Fig. 1, the coupled, Gross-Pi-

taevskii equations for the atomic condensate field,

wa, the molecular condensate field for the quasi-

bound state, w1, and the molecular condensate

field for the bound state, w2, are:
i�h
owa

ot
¼ Vawa þ

X
i

gaijwij
2

 !
wa þ 2a��hw1w

�
a;

ð1aÞ

i�h
ow1

ot
þ i�h

C1

2
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X
i

g1ijwij
2
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X
i

g2ijwij
2

 !
w2 þ �hXw1:
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Here, to simplify what follows, we assume all

mean-field amplitudes to be spatially uniform. The

quantities C1 and C2 are the decay rates, Vi are the
uniform potentials (including the magnetic field

contributions and resonance detunings for zero

magnetic field) seen by each specie, X is the Rabi
frequency of the coupling field that couples

molecular states, and the coupling coefficient a
describes the process that converts atoms to quasi-

bound molecules (Feshbach process). gij are the

self- and cross-interaction constants between the

ith and jth specie and are related to background

scattering length through the relation gij ¼
4p�h2aij=m. These equations have been used by
many authors to describe coherent atomic and

molecular condensate dynamics [3,10,11]. Work-

ing in interaction picture, we expand mean-field

quantities as: waðtÞ ¼ /aðtÞe�ixat; w1ðtÞ ¼ /1ðtÞe�iDxt

e�ix1t; and w2ðtÞ ¼ /2ðtÞe�iDxte�ix2t. The energies of

the states are defined as: �hxa ¼ Va þ
P

i gaij/ið0Þj
2
,



Fig. 2. The normalized density of the atomic condensate, j/aj
2
,

vs. time for X ¼ 0 and X=2p ¼ 1 MHz. With the coupling field

on, the decay of the atomic condensate is eliminated.
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�hx1 ¼ V1 þ
P

i g1ij/ið0Þj
2
, and �hx2 ¼ V2 þ

P
i g2i

j/ið0Þj
2
; Dx ¼ ð2xa � x1Þ is the detuning from the

Feshbach resonance. With these definitions, the

coupled equations are:
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In the above equations, we have taken the

coupling field to be on exact resonance with the

molecular states and used the rotating-wave ap-
proximation. For simplicity, we have taken C1 to

be a constant, and neglected the density dependent

decay of the atomic and molecular condensates

due to atom–molecule and molecule–molecule

collisions. The inclusion of these decay terms do

not change our results significantly. From Eqs. (2),

with C1 ¼ C2 ¼ 0, we obtain the conservation

condition for the total atom number:
o
ot ðj/aj

2 þ 2j/1j
2 þ 2j/2j

2Þ ¼ 0.

We proceed by numerically solving Eqs. (2)

with the parameters of an MIT experiment [2,3].

We consider the 907 G Feshbach resonance in a

Na atomic condensate with j/að0Þj
2 ¼ 5� 1014/

cm3, aaa ¼ 3:4 nm, and a ¼ 4:11� 10�5 (mks). We

take C2 ¼ 0:01 Hz [11], consider an on-resonance

excitation (Dx ¼ 0), and take C1=2p ¼ 0:3 MHz.
The choice of C1 is consistent within an order of

magnitude to the estimated rates of van Abeleen et

al. [9], Yurovsky et al. [3] and Timmermans et al.

[19]. We also assume /1ð0Þ ¼ /2ð0Þ ¼ 0. Although

the atom-molecule and molecule–molecule inter-

action constants are not known, our results are
insensitive to their exact values. In Fig. 2, the

normalized density of the atomic condensate,

j/aj
2
, is plotted vs. time for X ¼ 0 and X=2p ¼ 1

MHz, respectively. Without the coupling field, the

condensate decays very rapidly; the loss is due to

the formation of the quasi-bound molecules within
the condensate, followed by the inelastic decay of

these molecules. With the coupling field on, due to

destructive interference, the loss to the atomic

condensate is eliminated. The initial decrease in

the density is due to the production of bound

molecules, which is essential for creating interfer-

ence. This phenomenon is in the spirit of the

preparation energy for EIT with light fields [21].
The last terms on the right-hand side of Eqs. (2)

are a density-dependent frequency shift of the

mean-field amplitudes. We now proceed with the

analytical interpretations of the numerical results

of Fig. 2 and neglect the frequency shifts in Eqs.

(2). We assume o/1

ot � C1/1 and
o/2

ot � jXj2
2C1

/2 in Eqs.

(2b) and (2c) to obtain expressions for the molec-

ular field amplitudes:

/1 ¼
2að2Dxþ iC2Þ

ð2Dxþ iC1Þð2Dxþ iC2Þ � jXj2
/2

a; ð3aÞ

/2 ¼
2aX�

ð2Dxþ iC1Þð2Dxþ iC2Þ � jXj2
/2

a: ð3bÞ

With these expressions, the differential equation

for the atomic mean field amplitude (Eq. (2a)) is:
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i
o/a

ot
¼ 4jaj2ð2Dxþ iC2Þ

ð2Dxþ iC1Þð2Dxþ iC2Þ � jXj2
j/aj

2/a

� 4p�h
m

aðDxÞj/aj
2/a; ð4Þ

where aðDxÞ is the complex scattering length for

the atomic condensate (without the background

contribution). The imaginary part of aðDxÞ de-

termines the loss to the condensate and is plotted

vs. frequency in Fig. 3(a) for the parameters of the

numerical simulation of Fig. 2. With the coupling

field, the loss profile is double-peaked and is zero

on the exact Feshbach resonance (previous maxi-
mum). By choosing the intensity of the coupling

field, the interference profile may be either nar-

rower or wider than the decay width, C1. The real

part of aðDxÞ is the change in the atom–atom in-

teraction energy due to the Feshbach interaction

and is plotted versus frequency in Fig. 3(b) [22].

As seen from Fig. 3(a), perfect transparency is

only obtained on exact Feshbach resonance. Due
to the nonlinear frequency shifts of Eqs. (2), an
Fig. 3. (a) The normalized imaginary part of the scattering

length. With the coupling field on, there is no loss on exact

Feshbach resonance. (b) The real part of the scattering length

normalized to its background value.
atomic condensate which is initially tuned to the

exact Feshbach resonance will go in and out of

the resonance during coherent interactions and the

transparency will be degraded. One way to elimi-

nate these shifts is to bound the minimum intensity

of the coupling field thereby limiting the number
of generated molecules. From Eqs. (3), this mini-

mum intensity bound is:

jXj2 � 4jaj2j/aj
2
: ð5Þ

This restriction might be overcome by tracking

the resonance using a time varying magnetic field

or a frequency-chirped coupling laser.

As noted above, throughout this paper, for

simplicity, we have taken C1 to be constant and

neglected density dependent decay of the atomic

and molecular condensates due to atom–molecule
collisions. With the inclusion of these decay terms,

Eqs. (2) read:
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where c is the atom–molecule state changing col-

lision rate [3,19]. In Eq. (6), C1 represents any
other unknown loss mechanism of the fragile

quasi-bound state. Numerically solving Eq. (6),

with c � 10�9–10�10 cm3/s [3,19], and with all the

other parameters identical, we find that the results

of Fig. 2 practically remain unchanged.

In our formalism, for simplicity, we have not

included an upper electronic molecular state,

which is necessary for two-photon coupling the
quasi-bound and bound molecular states in sym-

metric molecules. For the numerical simulations of
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Fig. 2, the inclusion of such a state doesn�t change
the results significantly as long as the detuning

from this state is larger than 10 times the decay

width of this state. Strong Raman coupling for

these conditions require laser power densities of

about 10 kW/cm2. Tuning closer to the upper
electronic state reduces the laser intensity re-

quirement, however degrades transparency. The

amount of degradation can be found by adiabati-

cally eliminating the mean-field amplitude of the

upper electronic state and substituting the relevant

quantities in Eq. (4) with their effective values.

These substitutions are: X ! X1X
�
2=ð2dxþ iC3Þ,

C1 ! C1 � Imag½jX1j2=ð2dxþ iC3Þ�, and C2 !
C2� Imag½jX2j2=ð2dxþ iC3Þ�. Here X1 and X2 are

the Rabi frequencies of the two driving lasers, dx
is the detuning from upper state, and C3 is the

decay width of this state.

Several recent papers discuss the importance of

the noncondensate modes in the coupled con-

densate dynamics [14,23–25]. We believe that the

inclusion of these modes will not change the re-
sults of this letter significantly since the quasi-

bound state does not accumulate significant

population.

In summary, we have suggested a technique to

eliminate losses to an atomic condensate near a

Feshbach resonance. The predictions of this letter

can be realized within current experimental con-

ditions. By coupling the quasi-bound state, the
double-peaked interference profile of Fig. 3(a)

should be readily observable. The atomic con-

densate experiences dispersion of the scattering

length at the point of zero loss. Such a unique

dispersive feature may find possible applications in

nonlinear matter–wave interactions.
Acknowledgements

I would like to thank Steve Harris for suggest-

ing the problem and for many fruitful discussions

and Zachary Dutton for an early suggestion. This

work was supported by the OSD Multidisciplinary

University Research Initiative Program (MURI),

the US Army Research Office, the US Office of
Naval Research, and the US Air Force Office of

Scientific Research.
References

[1] S. Inouye, M.R. Andrews, J. Stenger, H.-J. Miesner, D.M.

Stamper-Kurn, W. Ketterle, Nature (London) 392 (1998)

151.

[2] J. Stenger, S. Inouye, M.R. Andrews, H.-J. Miesner, D.M.

Stamper-Kurn, W. Ketterle, Phys. Rev. Lett. 82 (1999)

2422.

[3] V.A. Yurovsky, A. Ben-Reuven, P.S. Julienne, C.J.

Williams, Phys. Rev. A. 60 (1999) R765.

[4] S.E. Harris, Phys. Rev. A 66 (2002) 010701.

[5] K.-J. Boller, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66

(1991) 2593;

M.O. Scully, M.S. Zubairy, Quantum Optics, Cambridge

University Press, Cambridge, England, 1997.

[6] N.J. Kylstra, C.J. Joachain, Europhys. Lett. 36 (1996)

657;

N.J. Kylstra, C.J. Joachain, Phys. Rev. A 57 (1998)

412.

[7] P.O. Fedichev, Y. Kagan, G.V. Shlyapnikov, T.M. Wal-

raven, Phys. Rev. Lett. 77 (1996) 2913.

[8] J.L. Bohn, P.S. Julienne, Phys. Rev. A 56 (1997) 1486;

J.L. Bohn, P.S. Julienne, Phys. Rev. A 60 (1999) 414.

[9] F.A. van Abeleen, B.J. Verhaar, Phys. Rev. Lett. 83 (1999)

1550.

[10] M. Mackie, R. Kowalski, J. Javanainen, Phys. Rev. Lett.

84 (2000) 3803;

M. Mackie, Phys. Rev. A 66 (2002) 043613.

[11] S.J.J.M.F. Kokkelmans, H.M.J. Vissers, B.J. Verhaar,

Phys. Rev. A 63 (2001) 031601.

[12] P.D. Drummond, K.V. Kheruntsyan, D.J. Heinzen, R.H.

Wynar, Phys. Rev. A 65 (2002) 063619.

[13] D.J. Heinzen, R. Wynar, P.D. Drummond, K.V. Khe-

runtsyan, Phys. Rev. Lett. 84 (2000) 5029.

[14] S.J.J.M.F. Kokkelmans, M.J. Holland, Phys. Rev. Lett 89

(2002) 180401.

[15] E.A. Donley, N.R. Claussen, S.T. Thompson, C.E. Wi-

eman, Nature (London) 417 (2002) 529.

[16] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S.

Riedl, C. Chin, J.H. Denschlag, R. Grimm, Science 302

(2003) 2101.

[17] M. Greiner, C.A. Regal, D.S. Jin, Nature 426 (2003) 537.

[18] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev.

Mod. Phys. 71 (1999) 463.

[19] E. Timmermans, P. Tommasini, M. Hussein, A. Kerman,

Phys. Rep. 315 (1999) 199.

[20] E. Timmermans, P. Tommasini, R. Cote, M. Hussein, A.

Kerman, e-print cond-mat/9805323.

[21] S.E. Harris, Z.F. Luo, Phys. Rev. A 52 (1995) 929.

[22] The expression for the scattering length is identical to that

obtained in Ref. [4].

[23] M. Mackie, K. Suominen, J. Javanainen, Phys. Rev. Lett.

89 (2002) 180403.

[24] V.A. Yurovsky, A. Ben-Reuven, Phys. Rev. A 67 (2003)

043611.

[25] T. Kohler, T. Gasenzer, K. Burnett, Phys. Rev. A 67 (2003)

013601.


	Elimination of Feshbach loss in a Bose-Einstein condensate
	Acknowledgements
	References


