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Negative refraction using Raman transitions and chirality

D. E. Sikes and D. D. Yavuz
Department of Physics, 1150 University Avenue, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA

(Received 22 August 2011; published 17 November 2011)

We present a scheme that achieves negative refraction with low absorption in far-off resonant atomic systems.
The scheme utilizes Raman resonances and does not require the simultaneous presence of an electric-dipole
transition and a magnetic-dipole transition near the same wavelength. We show that two interfering Raman tran-
sitions coupled to a magnetic-dipole transition can achieve a negative index of refraction with low absorption
through magnetoelectric cross-coupling. We confirm the validity of the analytical results with exact numerical
simulations of the density matrix. We also discuss possible experimental implementations of the scheme in
rare-earth metal atomic systems.

DOI: 10.1103/PhysRevA.84.053836 PACS number(s): 42.50.Gy, 42.65.An, 42.50.Nn, 42.65.Dr

The concept of negative refraction, which was first pre-
dicted by Veselago [1] more than four decades ago, has
recently emerged as a very exciting field of science. In
his seminal paper, Veselago argued that materials with si-
multaneously negative permittivity and permeability would
acquire a negative index of refraction, n < 0 [1]. These
materials exhibit many seemingly strange properties such as
the electromagnetic vectors forming a left-handed triad (hence
the term left-handed materials) and the Poynting vector being
antiparallel to the k vector. Although the interest in these
materials remained only a scientific curiosity for a long time, it
is now understood that negative refraction may have important
and far-reaching practical consequences. The key potential
application for these materials was discovered in the year 2000
when Pendry predicted that a slab with a negative index of
refraction, known as a perfect lens, can image objects with, in
principle, unlimited resolution [2]. If experimentally demon-
strated, perfect lenses may provide a unique technique for
imaging nanoscale objects and may therefore have significant
implications for a number of research areas. Since Pendry’s
suggestion, the interest in negative refraction has been con-
tinuously growing, and there have been a large number of
exciting theoretical developments and experimental advances
[3–20], including the observation of electromagnetic cloaking
[21,22].

Materials with a negative index of refraction do not exist
naturally, and thus they need to be artificially constructed. One
approach is to artificially engineer periodic metal-dielectric
structures with appropriate electric and magnetic resonances.
These structures, termed metamaterials, typically have a
characteristic periodicity scale smaller than the wavelength
so that a nearly uniform electromagnetic response is obtained.
Initial experiments have demonstrated negative refraction in
the microwave region of the spectrum using metamaterials
constructed from metal wires and split-ring resonators [5–9].
Recently, utilizing advances in nanolithography techniques,
several groups have reported a negative index of refraction
at optical frequencies in metal-dielectric nanostructures and
photonic crystals [10–20]. A key difficulty of these experi-
ments that is particularly pronounced in the optical domain
is the large absorption that accompanies negative refraction.
For all experiments that have been performed in the optical
region of the spectrum, the imaginary part of the refractive

index is almost as large as the real part. This is a key
limitation for many potential applications since light is largely
absorbed within a few wavelengths of propagation inside the
material.

In this paper, we focus on atomic systems that are driven
with lasers in their internal states so that negative refraction
for a weak probe wave is achieved. The key advantages of
using driven atomic systems as opposed to metamaterials are
(i) using interference principles, one can obtain a negative
index of refraction with negligible absorption; (ii) atomic
systems are uniquely suited for achieving negative refraction
at shorter and shorter wavelengths, particularly in the visible
and ultraviolet regions of the spectrum; (iii) since negative
refraction is achieved through manipulation of internal states,
the properties of the material can be dynamically modified,
opening an array of exciting applications including perfect-
lens switches. Despite these advantages, achieving negative
refraction in atomic systems is a very challenging problem that
has not yet been experimentally demonstrated due to several
difficulties. All recent proposals require a strong electric-
dipole transition and a strong magnetic-dipole transition at
almost exactly the same wavelength. It is difficult to satisfy
this condition in real atomic systems. Furthermore, achiev-
ing negative permittivity and permeability simultaneously
requires atomic densities greater than 1018 cm−3, which is
impractical.

We have recently suggested an approach that overcomes
some of these difficulties [23]. In this paper, we give a
more detailed description of our approach, provide numer-
ical calculations that confirm the validity of the analytical
predictions, and present a preliminary assessment of possible
experimental implementations in real atomic systems. As we
detail below, our technique relies on the interference of two
Raman transitions combined with magnetoelectric coupling
(chirality). The key advantage of our approach is that it does
not require the simultaneous presence of an electric-dipole
transition and a magnetic-dipole transition near the same
wavelength. This gives considerable flexibility in the energy-
level structure and allows our technique to be implemented
with a number of different atomic species. Furthermore,
because of the chiral response, negative refraction does not
require negative permeability and can be achieved at much
lower atomic densities compared to nonchiral schemes.
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I. BACKGROUND AND RELATION TO PREVIOUS WORK

As mentioned above, Veselago’s original proposal for
achieving a negative index of refraction requires ε < 0 and
μ < 0 simultaneously. Using this idea, Oktel and Mustecapli-
oglu [24] and Thommen and Mandel [25] were the first to
study the possibility of negative refraction in driven atomic
systems. In the optical region of the spectrum the chief
difficulty of this approach is the weakness of the magnetic
response. Since typical magnetic-dipole moments are weaker
than electric-dipole moments, achieving negative permeability
requires impractically large atomic densities. To alleviate this
problem, a chiral route to negative refraction has recently been
suggested [26,27]. Here, the key idea is to use a magnetoelec-
tric cross-coupling where the medium’s electric polarization
is coupled to the magnetic field of the wave and the medium’s
magnetization is coupled to the electric field. As we discuss
below, under such conditions, negative refraction can be
achieved without requiring a negative permeability. Building
on this idea, Walsworth and colleagues have recently suggested
a promising scheme that achieves negative refraction with
low absorption using quantum interference [28,29]. Their
scheme utilizes the dark state of electromagnetically induced
transparency (EIT) to reduce absorption while enhancing the
chiral response. This scheme appears to be the most promising
of the previously suggested approaches and achieves negative
refraction with low loss at a density of about 5 × 1016 cm−3.

All of the recent suggestions mentioned above require a
strong magnetic-dipole transition and a strong electric-dipole
transition at almost exactly the same wavelength. This require-
ment puts a stringent constraint on the energy-level structure
of systems in which negative refraction can be achieved.
Our approach [23] overcomes this constraint and furthermore
achieves negative refraction with more conservative atomic
system parameters (including atomic density and linewidth)
compared to previous suggestions. We achieve these benefits
at the expense of requiring two intense control lasers. Together
with the probe laser, these control lasers induce two Raman
transitions: one absorptive and one amplifying in nature.
The interference of these two transitions results in a strong
enhancement of the permittivity while minimizing absorption.
We then coherently couple to a magnetic-dipole transition to
obtain a chiral response and to achieve a negative index of
refraction through magnetoelectric cross-coupling.

Our work should be viewed as part of a broad class of
techniques that focus on modifying the optical properties of
an atomic medium. Over the last two decades, there have been
exciting advances in this field. It is now understood that, by
using EIT and similar techniques [30–33], one can obtain slow
light [34–38] and stopped light [39–43], and one can construct
optical nonlinearities that are large enough to be effective at
the single-photon level [44–54]. Observation of these effects
has opened up a number of exciting applications in various
research areas including photonic quantum computation and
all-optical data processing. The key difference of our work is
that our goal is to modify the value of the refractive index,
whereas EIT and similar techniques typically utilize the steep
dispersion (the slope) of the refractive index as a function of
frequency.

Before proceeding with a detailed description of our
suggestion, we summarize the chiral approach to negative

refraction. Consider a probe beam with electric-field and
magnetic-field components Ep and Bp, respectively. In a
material with magnetoelectric cross-coupling, the medium po-
larization, Pp, and the magnetization, Mp, are given by [28,29]

Pp = ε0χEEp + ξEB
cμ0

Bp,

(1)
Mp = ξBE

cμ0
Ep + χB

μ0
Bp,

where χE and χB are the electric and magnetic susceptibilities
and ξEB and ξBE are the complex magnetoelectric coupling
(chirality) coefficients, respectively. The index of refraction of
the medium for a plane wave of a particular circular polariza-
tion can be found by using Eqs. (1) and Maxwell’s equations:

n =
√

εμ − (ξEB + ξBE )2

4
+ i

2
(ξEB − ξBE ). (2)

Here, ε = 1 + χE and μ = 1 + χB are the relative permit-
tivity and permeability of the medium. As shown in Eq. (2), the
chirality coefficients result in additional contributions to the
index of refraction. The key idea behind the chiral approach
is that, in the optical region, one typically has the scaling
χB ∼ α2χE and (ξEB,ξBE ) ∼ αχE , where α ≈ 1/137 is the fine
structure constant. Since the values of the chirality coefficients
are smaller only by a factor of α instead of α2, negative
refraction can be achieved without the need for negative
permeability and at much smaller atomic densities compared to
nonchiral schemes. Negative refraction with chirality requires
appropriate phase control of the chirality coefficients which
can be achieved through coherent magnetoelectric coupling.
One typically chooses the phase such that the chirality
coefficients are imaginary, ξEB = −ξBE = iξ , and Eq. (2) reads
n = √

εμ − ξ . Achieving n < 0 then requires a sufficiently
large chiral response such that ξ >

√
εμ. Furthermore, to

reduce absorption, it is critical to keep the imaginary part of
the refractive index to be as low as possible. The performance
of negative index materials is typically characterized by the
figure of merit, FM = −Re(n)/|Im(n)|.

II. NEGATIVE REFRACTION USING RAMAN
TRANSITIONS WITH CROSS-COUPLING

We proceed with a detailed description of our suggestion.
Noting Fig. 1, we consider a six-level system interacting with
four laser beams. We wish to achieve a negative index of
refraction for the probe laser beam with field components Ep

and Bp, respectively. We take the atomic system to have a
strong magnetic transition with dipole-moment μgm near the
frequency of the probe laser beam. As mentioned above, the
system does not have a strong electric-dipole transition near the
probe laser frequency. The electric-dipole response is obtained
by using two-photon Raman transitions through the excited
states |a〉 and |b〉. At the heart of the scheme is the recently
predicted and experimentally demonstrated “refractive index
enhancement with vanishing absorption” technique [55–58].
This technique was motivated by the pioneering efforts of
Scully and others on index enhancement using quantum
coherence [59–63]. Starting with the ground state |g〉, we
induce two Raman transitions using the probe laser and two
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FIG. 1. (Color online) Schematic of the proposed scheme. Ep

and Bp are the electric-field and magnetic-field components of a
weak far-off resonant probe beam (thin blue arrow). |g〉 → |m〉 is a
magnetic-dipole transition induced by the probe magnetic field Bp .
Two strong control lasers (thick green arrow), EC1 and EC2, induce two
electric-dipole Raman transitions for the probe beam. The Raman
transitions can be far-detuned from the excited states |a〉 and |b〉.
Therefore, the system does not require the magnetic (|g〉 → |m〉)
and electric (|g〉 → |a〉 and |g〉 → |b〉) transitions to be near the
same frequency. �2m (red dashed arrow) induces magnetoelectric
cross-coupling (chirality).

intense control lasers with electric-field amplitudes EC1 and
EC2. Since the order at which the probe laser beam is involved
in each Raman transition is different, this scheme achieves two
resonances: one amplifying and one absorptive in nature. The
strength and position of these two resonances can be controlled
by varying the intensities and frequencies of the control laser
beams. It is the interference of these two resonances that results
in the control of the index of refraction while maintaining small
absorption. The magnetoelectric cross-coupling is achieved
through coherent coupling of states |2〉 and |m〉 with a separate
laser beam of Rabi frequency �2m. States |g〉, |1〉, |2〉, and
|m〉 have the same parity, which is opposite to the parity of
states |a〉 and |b〉. Since states |2〉 and |m〉 have the same
parity, the coherent coupling �2m cannot be electric-dipole, but
instead can be achieved through the magnetic field of a strong
laser or through a separate two-photon transition (not shown).
The two-photon detunings from the two Raman transitions are
defined as: δω1 = (ω1 − ωg) − (ωC1 − ωp) and δω2 = (ω2 −
ωg) − (ωp − ωC2). The quantity δωB = (ωm − ωg) − ωp is the
detuning of the probe laser beam from the |g〉 → |m〉 magnetic
transition.

Without loss of generality, we have chosen the probe
fields Ep and Bp to have σ+ polarization while the coupling
fields �2m, EC1, and EC2 have σ− polarization. These circular
polarized fields interact within the Zeeman sublevel structure
of the atom. For a system where the particular fields are
oppositely circular polarized, we would expect the terms in
Eq. (2) to interfere differently, which could lead to an enhanced
positive index of refraction. For a linear polarization of the
fields we would expect the medium to exhibit unusually high
optical rotation of the probe beam.

We start by expanding the total wave function for the atomic
system, |ψ〉, in the interaction picture:

|ψ〉 = cg exp(−iωgt)|g〉 + c1 exp(−iω1t)|1〉
+ c2 exp(−iω2t)|2〉 + cm exp(−iωmt)|m〉
+ ca exp(−iωat)|a〉 + cb exp(−iωbt)|b〉, (3)

where the quantities ci are the complex probability am-
plitudes of the respective levels. The total Hamiltonian of
the system can be written as Ĥtotal = Ĥ0 + Ĥint, where Ĥ0

is the unperturbed Hamiltonian and Ĥint is the interaction
Hamiltonian that includes the interactions of the atom with the
electric-field and magnetic-field components of the incident
waves:

Ĥ0 = h̄ωg|g〉〈g| + h̄ω1|1〉〈1| + h̄ω2|2〉〈2| + h̄ωm|m〉〈m|
+ h̄ωa|a〉〈a| + h̄ωb|b〉〈b|,

Ĥint = −dgaE |g〉〈a| − dgbE |g〉〈b| − d1aE |1〉〈a| − d2bE |2〉〈b|
−μgmB|g〉〈m| − μ2mB|2〉〈m| + H.c. (4)

Here, the quantities dij and μij are the electric-dipole and
magnetic-dipole transition matrix elements between respective
levels, E and B are the total electric and magnetic fields,
and H.c. refers to the Hermitian conjugate. The electric and
magnetic fields include contributions from all relevant laser
beams and they are

E = Re{Ep exp(−iωpt) + EC1 exp(−iωC1t)

+ EC2 exp(−iωC2t)}, (5)

B = Re{Bp exp(−iωpt) + B2m exp(−iω2mt)}.
In the above equations, for concreteness, we have taken

the magnetoelectric cross-coupling to be induced by a third
intense laser beam with magnetic field B2m. Using Eqs. (3)
and (4) and ignoring the dissipative processes for the moment,
we write the Schrödinger’s equation for the time evolution of
the probability amplitudes:

ċg = i

h̄
{dgaEca exp[i(ωg − ωa)t] + dgbEcb exp[i(ωg − ωb)t]

+μgmBcm exp[i(ωg − ωm)t]},
ċ1 = i

h̄
{d1aEca exp[i(ω1 − ωa)t]},

ċ2 = i

h̄
{d2bEcb exp[i(ω2−ωb)t]+μ2mBcm exp[i(ω2−ωm)t]},

ċm = i

h̄
{μ∗

gmBcg exp[i(ωm − ωg)t]

+μ∗
2mBc2 exp[i(ωm − ω2)t]},

ċa = i

h̄
{d∗

1aEc1 exp[i(ωa − ω1)t] + d∗
gaEcg exp[i(ωa − ωg)t]},

ċb = i

h̄
{d∗

2bEc2 exp[i(ωb−ω2)t]+d∗
gbEcg exp[i(ωb−ωg)t]}.

(6)

Throughout this work, we focus on the case where the
single-photon detunings from the excited electronic states are
much larger than the coupling rates. This allows adiabatic
elimination of the probability amplitudes of the excited
electronic levels |a〉 and |b〉. This is an important simplification
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for the analytical results since it reduces the problem to an
effective four-level system. We note, however, that we do not
make this simplification in the numerical results of the next
section and solve the density matrix for the full six levels. As
we discuss, the numerical results for the full system are in

reasonable agreement with the analytical solutions. We take
all the relevant detunings to be small compared to the absolute
laser frequencies and make the rotating wave approximation.
Integrating out the differential equations for ca and cb we
obtain

ca = d∗
1a

2h̄
c1

∑
q=p,C1,C2

Eq exp[i(ωa − ω1 − ωq)t]

ωa − ω1 − ωq

+ d∗
ga

2h̄
cg

∑
q=p,C1,C2

Eq exp[i(ωa − ωg − ωq)t]

ωa − ωg − ωq

,

cb = d∗
2b

2h̄
c2

∑
q=p,C1,C2

Eq exp[i(ωb − ω2 − ωq)t]

ωb − ω2 − ωq

+ d∗
gb

2h̄
cg

∑
q=p,C1,C2

Eq exp[i(ωb − ωg − ωq)t]

ωb − ωg − ωq

. (7)

Using the algebraic expressions for the probability amplitudes of Eq. (7), the Schrödinger’s equation for the simplified four
level system is

ċg + Im(A)

2
cg = i

B1

2
c1 + i

B2

2
c2 + i

�gm

2
cm, ċ1 + i

[
δω1 − Re(F1 − A)

2

]
c1 +

[
γ1 + Im(F1)

2

]
c1 = i

B∗
1

2
cg,

ċ2 + i

[
δω2 − Re(F2 − A)

2

]
c2 +

[
γ2 + Im(F2)

2

]
c2 = i

B∗
2

2
cg + i

�2m

2
cm,

ċm + i

[
δωB + Re(A)

2

]
cm + γmcm = i

�∗
gm

2
cg + i

�∗
2m

2
c2. (8)

Here, we have added the decay rates of the levels, γ1, γ2, and γm, phenomenologically. At this stage of the formalism, since we
are not using the density matrix, the decay processes are assumed to be to states outside the system. �gm = μgmB∗

p/h̄ is the Rabi
frequency due to magnetic field of the probe laser beam that couples states |g〉 and |m〉. �2m = μ2mB∗

2m/h̄ is the magnetoelectric
cross-coupling rate. The quantities that appear in Eq. (8), within the rotating wave approximation, are given by

A = ap|Ep|2 + aC1|EC1|2, B1 = b1EpE∗
C1, B2 = b2E∗

pEC2, F1 = f1,p|Ep|2, F2 = f2,C2|EC2|2,

ap = 1

2h̄2

[ |dgb|2
ωb − ωg − ωp − i�b

]
, aC1 = 1

2h̄2

[ |dga|2
ωa − ωg − ωC1 − i�a

]
, b1 = 1

2h̄2

[
dgad

∗
1a

ωa − ωg − ωC1 − i�a

]
,

b2 = 1

2h̄2

[
dgbd

∗
2b

ωb − ωg − ωp − i�b

]
, f1,p = 1

2h̄2

[ |d1a|2
ωa − ω1 − ωp − i�a

]
, f2,C2 = 1

2h̄2

[ |d2b|2
ωb − ω2 − ωC2 − i�b

]
. (9)

Here, the quantities �a and �b are the decay rates of the excited levels |a〉 and |b〉, respectively.

III. ANALYTICAL STEADY-STATE SOLUTIONS

We proceed with a perturbative, steady-state analytical solution for the system. For this purpose, we take the laser intensities to
be sufficiently weak such that most of the population stays in the ground atomic state, cg ≈ 1. For time scales that are long when
compared with the inverse of the decay rates, the steady-state solutions for the probability amplitudes of the relevant levels are

c1 ≈ B∗
1

2
[
δω1 − Re(F1−A)

2 − i
(
γ1 + Im(F1)

2

)] , c2 ≈ 2B∗
2

[
δωB + Re(A)

2 − iγm

] + �2m�∗
gm

4

[
δω2 − Re(F2−A)−i

(
γ2+ Im(F2)

2

)
2

] [
δωB + Re(A)

2 − iγm

] − |�2m|2
,

cm ≈ �∗
gm

2
[
δωB + Re(A)

2 − iγm

] + B∗
2 �∗

2m

4
[
δωB + Re(A)

2 − iγm

] [
δω2 − Re(F2−A)

2 − |�2m|2
4
(
δωB+ Re(A)

2 −iγm

) − i
(
γ2 + Im(F2)

2

)]

+ |�2m|2�∗
gm

8
[
δωB + Re(A)

2 − iγm

]2
[
δω2 − Re(F2−A)

2 − |�2m|2
4
(
δωB+ Re(A)

2 −iγm

) − i
(
γ2 + Im(F2)

2

)] . (10)

As we discuss in the next section, we verify the validity of this steady-state solution by using full numerical simulations of
the density matrix. With the analytical solutions for the probability amplitudes, we form coherences and calculate the medium’s
response at the probe laser frequency. The polarization and the magnetization of the medium are

Pp = 2h̄N (ap|cg|2Ep + b∗
1cgc

∗
1EC1 + b2c

∗
gc2EC2) ≡ N (αEEEp + αEBBp), Mp = 2Nc∗

gcmμgm ≡ N (αBEEp + αBBBp), (11)
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where N is the number of atoms per unit volume. In the expressions above, the quantities αEE , αBB, αEB, and αBE are the electric,
magnetic, and cross-coupling polarizabilities and they are given by

αEE = 2h̄ap + h̄|b1|2|EC1|2[
˜δω1 + i

(
γ1 + Im(F1)

2

)] + h̄|b2|2|EC2|2[
˜δω2 − |�2m|2

4( ˜δωB−iγm)
− i

(
γ2 + Im(F2)

2

)] , αBB = |μgm|2

h̄

[
( ˜δωB − iγm) − |�2m|2

4
[

˜δω2−i
(
γ2+ Im(F2)

2

)]
] ,

αEB = b2μ
∗
gmEC2�2m

2( ˜δωB − iγm)
[

˜δω2 − |�2m|2
4( ˜δωB−iγm)

− i
(
γ2 + Im(F2)

2

)] , αBE = b∗
2μgmE∗

C2�
∗
2m

2( ˜δωB − iγm)
[

˜δω2 − |�2m|2
4( ˜δωB−i�m)

− i
(
γ2 + Im(F2)

2

)] ,

(12)

where we have introduced a simplified notation for the
detunings that includes the ac Stark shifts:

˜δωB = δωB + Re(A)

2
, ˜δω1 = δω1 − Re(F1 − A)

2
,

˜δω2 = δω2 − Re(F2 − A)

2
. (13)

It is well-known that when the refractive index is strongly
modified, the microscopic local fields can be substantially
different than the averaged macroscopic fields. To calculate
the susceptibilities, the chirality coefficients, and the refractive
index, we include both electric and magnetic Clausius-
Mossotti-type local-field effects [64,65]. For electric and
magnetic fields, the relationships between microscopic local
fields and macroscopic quantities are

Emicro
p = Ep + 1

3ε0
Pp,

(14)
Bmicro

p = Bp + μ0

3
Mp.

Solving Eq. (11) together with the local-field corrections of
Eq. (14), we get the following expressions for the electric and
magnetic susceptibilities and the chirality coefficients:

χE = N
1

κε0

[
αEE + N

μ0

3
(αEBαBE − αEEαBB)

]
,

χB = N
μ0

κ

[
αBB + N

1

3ε0
(αEBαBE − αEEαBB)

]
, (15)

ξEB = N
μ0c

κ
αEB, ξBE = N

μ0c

κ
αBE ,

where the quantity κ largely determines the density-dependent
local-field enhancement and is

κ = 1 − N
1

3ε0
αEE − N

μ0

3
αBB

−N2 μ0

9ε0
[αEBαBE − αEEαBB]. (16)

Equations (11)–(16) represent the final results of this
section. Given a certain set of parameters for our system such
as matrix elements, laser intensities, and the atomic density,
we use these equations to calculate the susceptibilities and
the chirality coefficients. It is important to note that these
equations are valid in the perturbative limit which will break
down for sufficiently intense control laser beams. With the
susceptibilities and chirality coefficients known, we then use

Eq. (2) to calculate the real and imaginary parts of the refractive
index.

IV. RESULTS FOR A MODEL ATOMIC SYSTEM

In this section we present results for a model atomic
system. For this purpose, we consider a probe beam at a
wavelength of λp = 500 nm. We assume the ideal case of
pure radiative broadening for the excited electronic levels |a〉
and b〉 and take the radiative decay rates of these states to
be �a = �b = 2π × 14.3 MHz. The dipole matrix elements,
dia and dib are calculated using the Wigner-Weisskopf result
and assuming equal branching ratios, dia =

√
πε0�ah̄c3/ω3

p

and dib =
√

πε0�bh̄c3/ω3
p . We apply a similar procedure and

assume a radiative decay rate of α2�a for the magnetic level
|m〉 and calculate the corresponding magnetic-dipole matrix
element, μgm. To simulate a realistic system, we assume an
additional broadening mechanism (collisions, for example)
with a rate γc = 2π × 1 MHz and add this broadening to the
linewidths of states |1〉, |2〉, and |m〉. We take the wavelengths
of electric-dipole (|g〉 → |a〉,|b〉) and magnetic-dipole (|g〉 →
|m〉) transitions to be different by �λ = 0.1 nm. As we discuss
below, this difference can be larger at the expense of an
increase in the required control laser intensities. We take the
magnetoelectric coupling laser beam to be resonant with the
|2〉 → |m〉 transition and therefore take ˜δωB = ˜δω2.

Figure 2 shows the susceptibilities and the chirality coeffi-
cients, χE , χB, ξEB, and ξBE , without the local-field corrections
as the frequency of the probe laser beam is varied for an
atomic density of N = 5 × 1016 cm−3. Here, we assume
that the control laser frequencies are appropriately adjusted
such that the two Raman resonance frequencies coincide
as the probe laser frequency is scanned, ˜δω1 = − ˜δω2. We
take the intensities of the two control laser beams to be
IC1 = 0.27 MW/cm2 and IC2 = 1.00 MW/cm2 and assume
�2m = i2π × 1.36 MHz. The intensities of the control lasers
are adjusted to these values to have near cancellation of
absorption. As shown in Fig. 2, the magneto-electric coupling
causes an EIT-like level splitting for χE . The imaginary part
of χE becomes small near ˜δωB = 0 due to the interference
of the two Raman resonances. One of the key differences
of our approach compared to the scheme of Fleischhauer
et al. [28,29] is that since the electric-dipole response is
due to Raman transitions, its strength is controlled by the
intensity of the control laser beams. As a result, we do not
have the usual scaling χB ∼ α2χE and (ξEB,ξBE ) ∼ αχE , and
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FIG. 2. (Color online) The real (solid blue line) and imaginary (dotted red line) parts of the susceptibilities and the chirality coefficients
without the local-field corrections. See text for parameters. Since the electric-dipole response is due to Raman transitions, its strength is
controlled by the intensity of the control laser beams. As a result, compared to earlier suggested schemes, the magnitude of χE is more
comparable to the chirality coefficients in our approach.

the magnitude of χE can be made more comparable to the
chirality coefficients.

Noting Eqs. (15) and (16), there is a strong density-
dependent enhancement of both the electric and magnetic
susceptibilities and the chirality coefficients. For sufficiently
high densities, the local-field effects cause an enhancement
of a susceptibility resonance and a shift of its frequency
position [65]. Figure 3 shows the real and imaginary parts
of the refractive index as the probe frequency is scanned for
the parameters of Fig. 2. In this figure we observe a very
large off-resonant peak which has a density-dependent position
arising from the local-field effects. This large off-resonant peak
is a characteristic of the enhanced electric susceptibility, which
overshadows the contributions of the other susceptibilities
when seen in this broad frequency scan of the refractive
index. At the densities of interest, the magnetic susceptibility
and chirality coefficients are amplified but have negligible
frequency shifts since the quantity κ is dominated by the
electric polarizability. The inset in Fig. 3 shows a zoomed in
view of the refractive index at the original Raman and magnetic
resonance frequencies. The enhancement of the chirality terms
in Eq. (2) within this region causes the refractive index of the
medium to sharply decrease, becoming negative, and this is
accompanied by a flattening of the absorption approaching
0. For these parameters the refractive index reaches n = −1
with FM > 20. It should be noted that in our technique
it is necessary to have very low absorption in the electric
susceptibility such that the local-field effects can optimally
enhance the negative refraction of the medium.

To show the critical dependence on atomic density, Fig. 4
shows the refractive index for N = 2 × 1016 cm−3 and N =
1 × 1017 cm−3 with parameters otherwise identical to those
of Fig. 3. For N = 1 × 1017 cm−3, we obtain an index of
refraction of n = −2.77 with low absorption. For n = −1 the
FM ≈ 40.

Figure 5 shows the FM achieved at the point Re(n) = −1
and the maximum FM of the medium as the atomic density is
varied with parameters otherwise identical to those in Figs. 2–
4. For these parameters, the threshold density for a negative
refractive index is N = 6 × 1015 cm−3.

As mentioned above, for Figs. 2–5, the wavelengths for the
electric-dipole (|g〉 → |a〉,|b〉) and magnetic-dipole (|g〉 →
|m〉) transitions are assumed to be different by �λ = 0.1 nm.
This wavelength separation can be larger at the expense of
an increase in the required control laser intensities. Figure 6
demonstrates this result. Here we plot the control laser intensity
that is required to obtain results comparable to those of Figs. 2–
5 as the wavelength separation between the transitions, �λ,
is varied. The transition wavelengths may be different by as
much as �λ = 10 nm and the scheme will still work with
intensities that can be achieved with continuous-wave (cw)
lasers (10 W laser beam focused down to about 1 μm). This
increases the flexibility on the energy-level structure and, as
we discuss below, may allow experimental implementation in
a real atomic system.

We next discuss the sensitivity of our technique to various
system parameters. As mentioned before, in our technique,
it is critical to have vanishing absorption by appropriately
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FIG. 3. (Color online) The real (solid blue) and imaginary (dotted
red) parts of the index of refraction for an atomic density of N =
5 × 1016 cm−3. The top plot shows a wide frequency scan of the
resonant behavior and shows that at far-off resonance the medium
returns to n = 1. The bottom plot shows the detailed features that
occur at the Raman and magnetic resonances. The index of refraction
becomes negative and reaches a value of n = −1 with a figure of
merit FM > 20.

interfering the two Raman transitions. We have varied parame-
ters of the first control laser, which takes part in the gain Raman
transition, to simulate fluctuations that would lead to imperfect
interference of the Raman resonances. The solid lines in Fig. 7
show the real and imaginary parts of the refractive index for
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FIG. 5. (Color online) The figure of merit, FM =
−Re(n)/|Im(n)|, characterizes the performance of a negative
index material. The solid blue line plots the FM at the frequency
position where Re(n) = −1 as the density of atoms is varied. The
dashed red line plots the FM at the frequency position where the FM

is maximized. The maximum FM increases with increasing atomic
density; however, at higher densities the maximum FM occurs at
frequencies where Re(n) < −1.

parameters identical to those of Fig. 3 (N = 5 × 1016 cm−3).
For the dashed lines, the intensity of the first control laser is
decreased by 1%, whereas for the dotted lines it is decreased
to 2% of the optimized value (Ic1 = 0.27 MW/cm2). We still
observe n ≈ −1 with a reasonably good FM . Similarly, to
address frequency jitter sensitivity, the solid lines in Fig. 8
show the real and imaginary parts of the refractive index for
parameters identical to those in Fig. 3. For the the dashed lines,
the frequency of the first control laser is shifted off resonance
by 0.25 MHz, whereas for the dotted lines it is shifted by
−0.25 MHz. We observe qualitatively similar behavior of
negative refraction with reduced absorption.

V. NUMERICAL SIMULATIONS

In this section, we present exact numerical simulations to
verify the predictions of the analytical results. For this purpose,
we use the density-matrix formalism and numerically solve the
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FIG. 4. (Color online) The real (solid blue) and imaginary (dotted red) parts of the index of refraction for an atomic density of N =
2 × 1016 cm−3 (left) and N = 1 × 1017 cm−3 (right). The other parameters are identical to those used in Fig. 3. For N = 1 × 1017 cm−3, we
obtain an index of refraction of n = −1 with a FM ≈ 40.
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FIG. 6. (Color online) The control laser intensity, IC2, required to
obtain results comparable to those in Figs. 2–5 as a function of the
wavelength separation between the transitions, �λ. The control laser
intensity, IC1, follows a similar behavior (not shown).

evolution of the density-matrix elements, ρij ≡ cic
∗
j , for the

full six-level system. The equations that describe the evolution
of the 6 × 6 density matrix are shown in the Appendix. For
a given set of system parameters, we numerically integrate
these equations with the initial condition that the atoms start
in the ground state, ρgg = 1, and the lasers fields are off and
gradually turned on to full power in ≈400 ns. We use fourth-
order Runge-Kutta as our numerical integration algorithm with
a typical time grid spacing of ≈1 ps.

For the intensity values used in Figs. 2–5, using Eq. (13),
the ac stark shifts calculated in our analytical formalism are
on the order of 1 GHz, which is significantly higher than
the linewidth of the resonances. Since the magnetic and two
Raman resonances each experience a different ac Stark shift,
we include adjustments to the tunings of the control lasers
to ensure that all three resonances are aligned at the same
frequency position. Initially we applied these analytical shift
offsets in our numerical simulations, but we observed that
frequency positions of the resonances could be misaligned
by as much as 30 MHz. This is because of the breakdown
of the perturbative approximation and therefore the analytical
estimates of the Stark shifts are underestimated. To compensate

for this effect, we empirically applied additional shifts to the
control laser frequencies such that all the resonances were
aligned at the same frequency.

Figure 9 shows the numerically calculated coherences, ρg1,
ρg2, and ρgm, for the parameters of Figs 2–5. For comparison,
the coherences calculated through the analytical steady-state
solutions of Eq. (10) are also plotted. As expected, the system
quickly reaches steady state on time scales on the order of
1/γ1 ≈ 100 ns. Once the system reaches steady-state, there
is reasonable agreement between the numerical calculations
and the analytical solutions. The discrepancy between the
numerical and analytical solutions is due to effects that are
related to the high intensity of the lasers, such as depopulation
of the ground state and the breakdown of the perturbative
approximation. We have checked that in the case of low-
intensity laser fields there is very close agreement between the
numerically and analytically calculated coherences. However
these lower-intensity values are not sufficient to attain negative
refraction.

Using the equations of the density matrix we numerically
integrated the coherences as a function of time for a given
frequency position until they reached a steady-state value. We
then repeated this integration procedure for each frequency
value in an array of equally spaced points to see the frequency
dependence of the coherences as the probe beam is scanned
across the resonance. The agreement between the numerical
and analytical solutions can also be seen in Fig. 10, which
plots the numerically solved values of the coherences and the
analytical solutions as the probe frequency is scanned across
the resonance.

There remained a discrepancy between the resulting coher-
ences of our numerical simulation and our analytical results
with the same parameters seen in Figs. 2–5. The strengths
of the two Raman resonances were not properly balanced so
as to lead to vanishing absorption. As mentioned earlier in
Sec. IV, the local-field effects that result in negative refraction
with minimal absorption are correlated with the vanishing
absorption of the Raman resonances. To resolve this, we
adjusted the strength of the gain Raman resonance from IC1 =
0.27 to 0.485 MW/cm2 in our numerical simulations. Using
this adjusted intensity, we were able to numerically calculate

FIG. 7. (Color online) The real (left) and imaginary (right) parts of the index of refraction where the intensity of laser field EC1 is at 100%
(solid blue line), 99% (red dotted line), and 98% (green dash-dotted line) of the optimized value of IC1 = 0.27 MW/cm2 used in Figs. 2–4. The
laser field EC1 interacts in the gain Raman resonance, which leads to reduced absorption.
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FIG. 8. (Color online) The real (left) and imaginary (right) parts of the index of refraction where the frequency of laser field EC1 is tuned on
resonance (solid blue line) and off resonance by 0.25 MHz (red dotted line) and by −0.25 MHz (green dash-dotted line). As expected when the
laser field is tuned off resonance the performance of the system as a negative index material decreases, but the features of negative refraction
and reduced absorption remain qualitatively unchanged.

a refractive index that closely resembled our analytical results
as seen in Fig. 11.

To gain insight into the discrepancies between the numerical
and analytical results we considered the breakdown of the per-
turbative approximation in our analytical approach. Figure 12
shows the evolution of the population of the ground state,
ρgg . Although the system initially starts in the ground state
(ρgg = 1), the population of this state drops to ρgg = 0.814
as the laser fields are applied. The system, therefore, remains
reasonably within the perturbative approximation since only
about 18.6% of the population is moved from the ground state.

VI. EXPERIMENTAL IMPLEMENTATION IN
RARE-EARTH METALS

In this section, we discuss possible experimental imple-
mentations of our technique in two rare-earth atomic species:
erbium (Er) and dysprosium (Dy). By using Cowan’s atomic
structure code [66], we have found suitable transitions from
the ground level in both of these atomic species. Further
research may identify different atomic species and transitions
that are better suited to our technique. However, we feel
the two schemes in Er and Dy serve as a good starting
point and also demonstrate the flexibility of our scheme.
Figure 13 details the transitions in Er where we consider
the 4f 12(3H6)6s2 3H6(J = 6) → 4f 12(1I6)6s2 1I6(J ′ = 6)
magnetic-dipole transition and the 4f 12(3H6)6s2 3H6(J =
6) → 4f 12(1G4)6s6p(1P o

1 ) 1Ho
5 (J ′ = 5) electric-dipole tran-

sition. The wavelengths of these two transitions are in the
ultraviolet, and they differ by only 2.2 nm (335.3 nm for
the magnetic-dipole transition and 337.5 nm for the electric-
dipole transition). The 167Er isotope has a nuclear spin of
I = 7/2 and occurs with a natural abundance of 23%. The
resulting hyperfine levels [67,68] can be used to induce
Raman transitions with the probe and the control lasers. By
using Cowan’s code we have calculated the magnetic-dipole
reduced matrix element to be 〈J ||μ̂||J ′〉 = 0.1μB (μB , Bohr
magneton) and the electric-dipole reduced matrix element to
be 〈J ||d̂||J ′〉 = 0.2ea0 (e, electron charge; a0, Bohr radius),
both of which are reasonably strong.

For dysprosium, we consider the 161Dy isotope (nat-
ural abundance of 19%, nuclear spin of I = 5/2)
with a level structure similar to that of Fig. 13.
We have identified the 4f 10(5I8)6s2 5I8(J = 8) →
4f 10(3K7)6s2 3K7(J ′ = 7) and the 4f 10(5I8)6s2 5I8(J = 8)
→ 4f 9(2Mo

17/2)5d3/26s2 5Ko
7 (J ′ = 7) magnetic and electric-

dipole transitions as suitable candidates for our technique.
The wavelengths of these two transitions are 484 nm for the
magnetic-dipole transition and 484.8 nm for the electric-dipole
transition. The calculated reduced matrix elements for the
two transitions are 〈J ||μ̂||J ′〉 = 0.06μB and 〈J ||d̂||J ′〉 =
0.19ea0, respectively. Although these matrix elements are
slightly weaker than those of erbium, 161Dy has the key
advantage that the electric and magnetic transition wavelengths
are closer. The hyperfine splitting of the ground level for 161Dy
is about 1 GHz [69].

Obtaining negative refraction with the parameters of
Figs. 2–5 (densities exceeding 1016 cm−3 with optical tran-
sition linewidths at the MHz level) will undoubtedly be
a very challenging experiment, and there are many open
questions. For experimental implementation of our approach
with rare-earth atoms, three types of atomic systems may be
utilized: (i) atomic beams moving orthogonal to the laser
propagation direction to allow for Doppler-free interaction
[70], (ii) laser-cooled and trapped high-density ultracold
atomic clouds [71–74], or (iii) magnetically trapped atom
clouds cooled through buffer gas cooling [75]. A detailed
theoretical modeling to investigate negative refraction with
these three different atomic systems will be among our future
investigations. The modeling will need to go beyond what
we have discussed in the previous section and will include
effects such as the collisional broadening of the magnetic
transition, dipole-dipole interactions, and various inelastic
and elastic collision processes. The collisional broadening
and dipole-dipole interactions will determine the magnetic
transition and Raman linewidths and will have a direct effect
on the magnitude of the refractive index that can be achieved.
We note that, since the laser beams are far-detuned from the
electric-dipole transition, our scheme is less sensitive to the
broadening of the excited electronic states |a〉 and |b〉. The
inelastic and elastic collision processes will determine the
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FIG. 9. (Color online) The numerically solved values (solid blue
lines) of the coherences ρg1, ρg2, and ρgm (in arbitrary units) as
they evolve in time with the intensity of the laser beams gradually
applied. The coherences approach a steady-state value in a little under
2 μs. The analytical formalism steady-state solutions (red dotted
lines) of the coherences are shown for comparison. The frequency of
the probe beam is taken to be on the Raman and magnetic resonances.

largest achievable densities in the trap. The cross sections for
most of these processes are not known, but some progress
has been made experimentally [76]. Furthermore, it may
be possible to calculate some of these cross sections using
ab initio methods [66].

Below, we briefly discuss the advantages and disadvantages
of each of the experimental approaches. We also detail the
preliminary experimental steps that can be pursued before
negative refraction is achieved.

A. Atomic beams

It is well-known that atomic beams with a small transverse
velocity spread can be produced using relatively simple
experimental methods. Typical rare-earth atomic beam ex-
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FIG. 10. (Color online) The real (solid blue line) and imaginary
(solid red line) parts of the numerically solved steady-state values of
the coherences ρg1, ρg2, and ρgm (in arbitrary units) as they are scanned
across resonance. These are compared to the real (dotted green
line) and imaginary (dotted magenta line) parts of the coherences
calculated using the analytical steady-state solutions with the same
parameters.

periments start with vapors inside resistively heated ovens
at temperatures exceeding 1000 ◦C. Several spatial apertures
are then used to produce a well-collimated beam. For atomic
beams, the Doppler interaction can be greatly reduced using
geometries where the beam direction is orthogonal to the laser
propagation direction. The spectroscopy of optical lines at
the MHz level can be performed using these techniques [70].
The key challenges of using atomic beams are the following.
(i) There is a trade-off between the achieved density and the
collimation and transverse temperature of the beam. It remains
to be seen whether sufficiently high densities with sufficiently
good beam quality can be achieved using this approach. (ii) The
interaction time of the atoms with the laser beams is limited
by the transit time, which produces an undesirable additional
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IC1 = 0.27 MW/cm2, which was used in the analytical result.

broadening mechanism. We plan to carefully evaluate these
issues and to explore the feasibility of these systems for
achieving negative refraction.

B. Cooling and trapping

Both Er and Dy have been laser cooled and trapped recently
with trapped atom numbers as high as half a billion and atomic
temperatures at the μK level [71–74]. Although the structure
of these atoms is highly complex, laser cooling is possible
because of the large magnetic moment of these atoms. The
metastable states are trapped in a quadrupole magnetic field
and laser cooling is achieved without any repumping lasers,
the so-called “repumperless” MOT (magneto-optical trap).

It is well-known that MOTs are not suitable for achieving
very high atomic densities due to effects such as radiation
trapping. To obtain high-density atomic clouds, one approach
is to construct an optical dipole trap. Such dipole traps can
be formed by focusing an intense very-far-detuned laser beam
overlapping with the MOT cloud. Recently, ultracold atomic
densities approaching 1015 cm−3 have been demonstrated in
atomic ytterbium (Yb) [77]. By using evaporative cooling in
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FIG. 12. (Color online) The ground-state population of the
system in our numerical simulation initially starts at 100% and
decreases in time as the laser fields are gradually turned on, eventually
reaching a steady-state value of 81.4%.

the optical trap, such clouds can be cooled to quantum de-
generacy and the formation of a Yb Bose-Einstein condensate
(BEC) has been recently achieved [78–81]. These are very
exciting developments, and we feel that high-density clouds
in optical dipole traps show considerable promise for the
study of negative refraction. In addition to studies of negative
refraction, such traps will likely have significant implications
for other research areas including precision spectroscopy and
dipolar physics [74].

An alternative approach to laser cooling is buffer gas
cooling and magnetic trapping [75]. Although buffer gas
cooling only achieves mK level temperatures, the trapped
atom numbers are significantly higher. Using this approach,
Doyle and colleagues have demonstrated trapping of about
1012 atoms in many of the rare-earth species, including Er and
Dy [75]. Due to the large initial trapped atom number, buffer
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FIG. 13. (Color online) The proposed experimental scheme in
atomic 167Er. The hyperfine structure of the ground level is used to
induce Raman transitions with the probe beam and the control lasers.
For simplicity, the hyperfine structure of the excited levels is not
shown. A similar level scheme can also be found for atomic 161Dy
(see text for details). The central wavelength for 161Dy is 484.8 nm
and the difference of the two transition wavelengths is �λ = 0.8 nm.
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gas cooling and magnetic trapping may serve as an excellent
starting point for producing high-density clouds. By using
evaporative cooling in the magnetic trap, or by transferring
atoms to a dipole trap and then performing evaporative
cooling, it will likely be possible to achieve densities exceeding
1015 cm−3 using this approach.

C. Spectroscopy of electric-dipole and magnetic-dipole
transitions

For a given atomic system, a first goal would be to per-
form spectroscopic measurements of the predicted magnetic-
dipole and electric-dipole transitions. These measurements
are needed to verify the hyperfine structure and to confirm
linewidths and transition matrix elements. One also needs to
demonstrate the ability to perform optical pumping to a specific
ground hyperfine level. Such hyperfine-level initialization is
critical to performing Raman transitions within the ground-
level manifold. To understand the density limitations, the
electric-dipole and magnetic-dipole transition line shapes at
different densities can be measured. This will allow the density
broadening and dipole-dipole interaction coefficients to be
deduced.

D. Stimulated Raman transitions

As mentioned before, Raman transitions between the
hyperfine levels in the ground-level manifold can be utilized.
The hyperfine-level spacing in rare-earth atoms is typically in
the 100 MHz to 1 GHz range. This allows the probe beam, Ep,
and the two control lasers, EC1 and EC2, to be obtained from
the same laser system by using high-frequency acousto-optic
modulators. Both the absorption (or gain) and the phase shift
due to the Raman transitions (the real and imaginary parts
of the Raman line shapes) can be measured with techniques
similar to the ones used in Ref. [57].

E. Magnetoelectric coupling (chirality)

The next goal would be to demonstrate magnetoelectric
(chiral) response. Chiral response may be achieved at low
densities and a basic form of chirality has already been demon-
strated in Rb vapor [82]. As discussed in previous sections, the
magnetoelectric coupling results in large contributions to the
refractive index. One approach would, therefore, be to study
the real and imaginary parts of the refractive index (absorption
and phase shift) for the probe wave, as the strength or the phase
of the cross-coupling rate, �2m, is varied. With �2m = 0 (no
cross-coupling), the system reduces to three resonances (two
electric-dipole Raman resonances and a magnetic resonance).
As a starting point, these three resonances can be studied
independently. As �2m increases, the interference and the
cross-coupling of these resonances will be observable.

F. Rare-earth-doped crystals

We conclude this section by noting that crystals that are
doped with rare-earth atoms are an alternative route for
the study of negative refraction with atomic systems. These
systems are somewhat different than the atomic gases that
we have focused on so far and pose different types of

challenges. It is well known that at cryogenic temperatures the
homogeneous linewidths can be at the MHz level and many
quantum coherence effects such as EIT have been observed
in these crystals [83–88]. The key difficulty with these
systems is the large inhomogeneous broadening which is many
orders of magnitude larger than the homogeneous linewidth.
Typical EIT experiments use spectral hole burning techniques
and frequency-selective optical pumping to overcome this
difficulty. However, such techniques result in a decrease in the
effective atomic density and therefore will have a detrimental
effect on negative refraction experiments. We plan to put
significant theoretical effort into investigating these issues
and exploring the feasibility of these systems for achieving
negative refraction.

VII. CONCLUSIONS

To summarize, we have outlined a Raman-based approach
for achieving a negative index of refraction with low absorption
in the optical region of the spectrum. Differing from the
metamaterial approach, our technique utilizes atomic systems
that are driven with lasers in their internal states. The
key advantage of our approach is that our technique does
not require the simultaneous presence of an electric-dipole
transition and a magnetic-dipole transition near the same
wavelength. This gives large flexibility in the requirements
for the energy-level structure, and we have identified Er and
Dy as possible candidates for experimental implementation.

There are many open questions that yet need to be
addressed. One future direction would be to perform detailed
theoretical modeling to identify the most suitable atomic
species and experimental system for observing negative re-
fraction. As discussed above, each experimental approach has
various advantages and drawbacks, and a careful evaluation
of the achievable atomic densities and the linewidths is
needed. If achieved, negative refraction in atomic systems
may have significant implications for a number of research
areas. As mentioned above, one key practical application is
in optical imaging science. As the frontiers of science and
engineering approach the nanoscale, it becomes ever more
important to devise optical imaging techniques with nanometer
resolution. In recent years, overcoming the diffraction barrier
has been the subject of intense theoretical and experimental
research [89–96]. Perfect lenses constructed from negative
index materials may provide a unique approach for resolving
nanoscale objects and may therefore have far-reaching practi-
cal implications. These devices may also be used to reduce the
smallest feature size of a lithographic mask. This is particularly
important since lithographic resolution currently determines
the size and the processing power of every semiconductor
integrated circuit.
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APPENDIX: DENSITY MATRIX EQUATIONS

In this section, we present the equations for the density-
matrix elements that were used for the numerical simulations
of Sec. V. We define the Rabi coupling rate between respective
levels |i〉 and |j 〉 to be �ij ≡ dijEk/h̄ for electric-dipole
transitions and �ij ≡ μijBk/h̄ for magnetic-dipole transitions,

where Ek and Bk are the relevant field terms coupling the states
as seen in Fig. 1. We also define the one-photon detunings
δωa ≡ ωa − ωg − ωC1 and δωb ≡ ωb − ωg − ωp. Using the
evolution equations for the probability amplitudes of Eq. (4),
the density-matrix elements ρij ≡ cic

∗
j evolve according

to

ρ̇gg = −γgρgg + �a

3
ρaa + �b

3
ρbb + γ1ρ11 + γ2ρ22 + γmρmm + i

2
(ρ∗

gm�gm + ρ∗
ga�ga + ρ∗

gb�gb − H.c.),

ρ̇g1 = i2δω1 − (γ1 + γg)

2
ρg1 + i

2
(−ρgm�∗

1m − ρga�
∗
1a + ρ∗

1m�gm + ρ∗
1a�ga + ρ∗

1b�gb),

ρ̇g2 = i2δω2 − (γ2 + γg)

2
ρg2 + i

2
(−ρgm�∗

2m − ρgb�
∗
2b + ρ∗

2m�gm + ρ∗
2a�ga + ρ∗

2b�gb),

ρ̇gm = i2δωB − (γm + γg)

2
ρgm + i

2
[−ρg1�1m − ρg2�2m + (ρmm − ρgg)�gm + ρ∗

ma�ga + ρ∗
mb�gb],

ρ̇ga = i2δωa − (�a + γg)

2
ρga + i

2
[−ρg1�1a + ρma�gm + (ρaa − ρgg)�ga + ρ∗

ab�gb],

ρ̇gb = i2δωb − (�b + γg)

2
ρgb + i

2
[−ρg2�2b + ρmb�gm + (ρbb − ρgg)�gb + ρab�ga],

ρ̇11 = −γ1ρ11 + �a

3
ρaa + �b

3
ρbb + i

2
(ρ∗

1m�1m + ρ∗
1a�1a − H.c.),

ρ̇12 = i2(δω2 − δω1) − (γ1 + γ2)

2
ρ12 − i

2
(−ρ∗

2m�1m − ρ∗
2a�1a + ρ1m�∗

2m + ρ1b�
∗
2b),

ρ̇1m = i2(δωB − δω1) − (γ1 + γm)

2
ρ1m + i

2
[(ρmm − ρ11)�1m + ρ∗

ma�1a − ρ12�2m − ρ∗
g1�gm],

ρ̇1a = i2(δωa − δω1) − (γ1 + �a)

2
ρ1a + i

2
[(ρaa − ρ11)�1a + ρma�1m − ρ∗

g1�ga],

ρ̇1b = i2(δωb − δω1) − (γ1 + �b)

2
ρ1b + i

2
(ρmb�1m + ρab�1a − ρ12�2b − ρ∗

g1�gb),

ρ̇22 = −γ2ρ22 + �a

3
ρaa + �b

3
ρbb + i

2
(ρ∗

2m�2m + ρ∗
2b�2b − H.c.),

ρ̇2m = i2(δωB − δω2) − (γ2 + γm)

2
ρ2m + i

2
[(ρmm − ρ22)�2m − ρ∗

12�1m + ρ∗
mb�2b − ρ∗

g2�gm],

ρ̇2a = i2(δωa − δω2) − (γ2 + �a)

2
ρ2a + i

2
(−ρ∗

12�1a + ρma�2m + ρ∗
ab�2b − ρ∗

g2�ga),

ρ̇2b = i2(δωb − δω2) − (γ2 + �b)

2
ρ2b + i

2
[(ρbb − ρ22)�2b + ρmb�2m − ρ∗

g2�gb],

ρ̇mm = −γmρmm + i

2
(ρ1m�∗

1m + ρ2m�∗
2m + ρgm�∗

gm − H.c.),

ρ̇ma = i2(δωa − δωB) − (γm + �a)

2
ρma − i

2
(−ρ1a�

∗
1m + ρ∗

1m�1a − ρ2a�
∗
2m − ρga�

∗
gm + ρ∗

gm�ga),

ρ̇mb = i2(δωb − δωB) − (γm + �b)

2
ρmb − i

2
(−ρ1b�

∗
1m + ρ∗

2m�2b − ρ2b�
∗
2m − ρgb�

∗
gm + ρ∗

gm�gb),

ρ̇aa = −�aρaa + i

2
(ρ1a�

∗
1a + ρga�

∗
ga − H.c.),

ρ̇ab = i2(δωb − δωa) − (�a + �b)

2
ρab − i

2
(−ρ1b�

∗
1a + ρ∗

2a�2b − ρgb�
∗
ga + ρ∗

ga�gb),

ρ̇bb = −�bρbb + i

2
(ρ2b�

∗
2b + ρgb�

∗
gb − H.c.). (A1)

The remaining elements of the 6 × 6 density matrix can be found using ρij = ρ∗
ji .
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