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Suppression of inhomogeneous broadening using the ac Stark shift
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We analyze a general approach for suppressing inhomogeneous broadening of atomic transitions and thereby
increasing the strength of the interaction between the atomic system and near-resonant light. The key idea is to
compensate for the frequency shift due to the broadening process by using an intense laser to produce an equal
and opposite Stark shift.
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Inhomogeneous broadening is ubiquitous in light-matter
interactions [1]. When a laser beam interacts with a gas, the
dominant broadening is typically due to the Doppler effect,
which causes atoms to experience different laser frequencies
depending on their velocities. For atoms embedded in crystals,
the inhomogeneous broadening is a result of the shifts in the
energy levels due to local variations in the crystal field [2].
Inhomogeneous broadening is not necessarily an undesired
effect; many physical processes require an inhomogeneously
broadened atomic ensemble. For example, by using an
appropriate sequence of excitation pulses, photon echoes
utilize the rephasing of different oscillation frequencies in an
inhomogeneously broadened ensemble. Optical memories that
use spectral hole burning rely on choosing a particular subset
of a broadened ensemble using various frequency-selective
spectroscopic techniques. The ratio of the inhomogeneous
linewidth to the homogeneous linewidth determines the ca-
pacity of such memory, and this ratio is typically referred to
as the figure of merit for such devices [3].

There are also many physical effects where inhomogeneous
broadening is quite detrimental. For example, the magnitudes
of the linear and nonlinear susceptibilities of an atomic
medium typically scale as the inverse of the total linewidth
of a given transition. Thus, if the inhomogeneous linewidth
is larger, then the ensemble-averaged optical response is
weaker. In the simplest case of a laser beam interacting with
a two-level atomic system, the inhomogeneous broadening
reduces the optical depth and the maximum refractive index
that can be achieved. In experiments that rely on quantum
interference, such as electromagnetically induced transparency
(EIT), inhomogeneous broadening puts stringent constraints
on the collinearity of the interacting lasers, severely limiting
the nonlinearities that can be obtained at single-photon
energies [4,5]. In quantum computing, Doppler broadening
is a key limitation on the speed and fidelity of single- and
two-qubit gates [6,7].

About three decades ago, Cohen-Tannoudji and colleagues
discussed and experimentally demonstrated how Doppler
broadening can be suppressed by the appropriate use of the
light (Stark) shift, in the emission spectrum of an excited level
[8–10]. The key idea is to compensate the frequency shifts due
to Doppler effect by using an intense laser to provide an equal
and opposite Stark shift. In this paper, we extend this idea to
the excitation processes from the ground level. We investigate
the feasibility of this approach by performing numerical
simulations of the density matrix under realistic experimental
conditions. Our results show almost complete suppression of

Doppler broadening and, as a result, this approach may provide
a powerful tool in a wide range of experiments ranging from
nonlinear optics to quantum computing.

Before proceeding, we cite other related prior work.
Agarwal and colleagues discussed sub-Doppler line shapes
in inhomogeneously broadened media under the conditions of
EIT [11]. Popov et al. investigated suppression of inhomo-
geneous broadening using coherent fields for enhanced four-
wave mixing [12]. Kaplan and co-workers demonstrated the
suppression of inhomogeneous broadening in rf spectroscopy
of optically trapped atoms using a compensating laser beam
[13]. We also would like to clearly differentiate our approach
from sublinewidth spectroscopic techniques such as spectral
hole burning and saturated absorption spectroscopy. These
techniques rely on selecting a particular class of atoms in
an inhomogeneously broadened ensemble. For example, in
saturated absorption spectroscopy, an intense saturating beam
is used to select a particular velocity class of atoms and
saturate the transition of this smaller group. Only the atoms in
the specific velocity class contribute to the optical response.
In contrast, the approach that we discuss below eliminates
inhomogeneous broadening and forces all the atoms in the
ensemble to respond in a similar way. This is achieved with the
use of an appropriately tuned Stark-shift laser so that Doppler
shift is canceled by the Stark shift. Because the Doppler shift
is effectively absent, all the atoms in the ensemble respond
to the probe laser as if they are at zero velocity. Thus, in
terms of their response to the probe laser beam, the atoms
in a hot vapor cell act as though they were an ultracold
ensemble.

For concreteness, we will focus on the specific example
of Doppler broadening, although this idea can be extended
to other inhomogeneous processes. Following Ref. [8] and as
shown in Fig. 1, we consider the interaction of a four-level
atomic system with two laser beams, a weak probe laser (EP )
and an intense beam that is used to Stark shift the ground level
(ES). The probe laser is tuned close to the |1〉 → |2〉 transition.
Due to atomic motion, this transition is Doppler broadened,
and we will be interested in the limit where the Doppler width is
much larger than the homogeneous linewidth of the transition.
To suppress this broadening, we will utilize the Stark-shift
laser, which couples the ground level to two other excited
levels, |3〉 and |4〉 [14]. We define the Rabi frequencies of the
Stark-shift beam for the |1〉 → |3〉 and |1〉 → |4〉 transitions
to be �13 ≡ ESμ13/� and �14 ≡ ESμ14/�, respectively. Here
the quantities μ13 and μ14 are the dipole matrix elements of the
respective transitions. With these definitions, the Stark shift of
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FIG. 1. (Color online) The energy level scheme for suppressing
Doppler broadening of the |1〉 → |2〉 transition. For an atom at
rest, the Stark-shift laser is tuned exactly to the middle of the
two transitions, �13 = −�14 ≡ (ω4 − ω3)/2. For an atom moving
at velocity v in the direction of laser propagation, the frequencies of
the probe (EP ) and the Stark-shift (ES) lasers are Doppler shifted by
kP v and kSv, respectively. Due to the Doppler shift of ES , the two
detunings, �13 and �14, are modified, which in turn changes the Stark
shift of the ground level |1〉. If the change in the Stark shift of the
ground level exactly compensates for the Doppler shift of the probe
laser beam, then Doppler broadening is suppressed.

the ground level |1〉 is

δStark shift = |�13|2
4�13

+ |�14|2
4�14

, (1)

where the detunings from the respective transitions are
defined as �13 ≡ ωS − (ω3 − ω1) and �14 ≡ ωS − (ω4 − ω1).
Equation (1) is valid in the perturbative limit in which most of
the population remains in the ground level |1〉. For simplicity,
in the remainder of this paper, we will take the dipole matrix
elements of the |1〉 → |3〉 and |1〉 → |4〉 transitions to be the
same, μ13 = μ14, and therefore take the Rabi frequencies to
be equal, �13 = �14 ≡ �S . We will choose the frequency of
the Stark-shift laser such that for an atom at rest, this laser
is tuned exactly to the middle of the two transitions, �13 =
−�14 ≡ �S . As a result, for an atom at rest, the Stark shifts of
the ground level due to the |1〉 → |3〉 and |1〉 → |4〉 transitions
are equal in magnitude and opposite in direction, which results
in δStark shift = 0. For an atom moving at a velocity v along the
propagation direction of the probe laser, the frequency of the
probe beam will be Doppler shifted by kP v, where kP = ωP /c.
The goal is to compensate for this frequency shift by using the
Stark shift of the ground level. This eliminates inhomogeneous
broadening by ensuring that the probe laser detuning from the
|1〉 → |2〉 transition, δ12 ≡ ωP − (ω2 − ω1), does not depend
on the velocity of the atom. We take the propagation direction
of the Stark-shift laser beam to be the same as the probe beam
(copropagating). For an atom with velocity v, the Doppler shift
of ES is kSv, which modifies the detunings �13 → �S + kSv

and �14 → −�S + kSv. As a result of the change in the
detunings, the Stark shift of the ground level is

δStark shift = |�S |2
4(�S + kSv)

+ |�S |2
4(−�S + kSv)

≈ −|�S |2
2�2

S

kSv, (2)

where in the second line we have assumed |kSv| � �S . If
the Stark shift exactly compensates for the Doppler shift
δStark shift = −kP v, then the detuning of the probe laser beam
from the |1〉 → |2〉 transition δ12 remains unchanged. As a
result, regardless of the velocity of the atom, the interaction
of the atom with the probe laser would remain the same.
Appropriate compensation requires that

kP

kS

= |�S |2
2�2

S

. (3)

Equation (3) shows that for an appropriately chosen Stark-shift
beam, the Doppler shift of the probe laser can be exactly
compensated for by the Stark shift of the ground level. As
mentioned above, Eq. (3) is valid in the ideal perturbative
limit in which most of the population is assumed to remain in
the ground level |1〉. A realistic evaluation of this approach
requires numerical calculations due to two key reasons:
(i) From Eq. (3), for kP ∼ kS , we would require �S ∼ �S . As a
result, there would be substantial population transfer to levels
|3〉 and |4〉 and the perturbative approximation would break
down. (ii) The analytical treatment above neglects many effects
such as the power broadening of the |1〉 → |2〉 transition due
to the intense Stark-shift laser.

We next proceed with numerical calculations in which we
solve the density matrix for the four-level atomic system
of Fig. 1 interacting with EP and ES . Within the rotating-
wave approximation and using the interaction picture, the
Hamiltonian that describes the atom-light interaction is

Ĥ = −�

2

⎡
⎢⎢⎢⎣

0 �P �13 �14

�∗
P 2δ12 0 0

�∗
13 0 2�13 0

�∗
14 0 0 2�14

⎤
⎥⎥⎥⎦ . (4)

Here �P is the Rabi frequency of the probe laser beam and
all the detunings are defined to be positive when the laser
is tuned above the respective transition frequency. Using the
Hamiltonian of Eq. (4), we form the evolution equations for
the 4 × 4 density matrix using i�(dρ̂/dt + 1

2 {�̂,ρ̂}) = [Ĥ ,ρ̂].
In our numerical simulations, we consider parameters similar
to D line excitations in alkali-metal atoms. For simplicity, we
take the decay rates of the three excited levels to be equal,
�2 = �3 = �4 ≡ �, and we take � = 2π × 5 MHz. We take
the Rabi frequency of the probe laser beam to be �P = �/100.
With these parameters, we numerically integrate the density
matrix equations with the initial condition that all atoms
are in the ground state, ρ11(t = 0) = 1. The inset in Fig. 2
shows the coherence of the |1〉 → |2〉 transition |ρ12| as the
frequency of the probe laser is scanned across the resonance,
in the absence of any inhomogeneous broadening and with the
Stark-shift beam turned off (�S = 0). This coherence would
result in the linear susceptibility of the medium and would
cause absorption and phase shift (refractive index) of the probe
laser. As expected, a Lorentzian line shape with a width of �

and a peak (on-resonance) value of �P /� = 0.01 is formed.
We next introduce an inhomogeneous broadening to the

system by assuming Doppler broadening with a width of
�ωDoppler = 2π × 250 MHz, which is much larger than the
homogeneous linewidth of � = 2π × 5 MHz. The dashed blue
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FIG. 2. (Color online) The Doppler-averaged coherence
|〈ρ12〉Doppler| as the frequency of the probe laser is scanned across the
resonance, with (solid red line) and without (dashed blue line) the
Stark-shift laser. Without the Stark-shift laser, the line is Doppler
broadened with a peak (on-resonance) coherence of 1.25 × 10−4.
With the Stark-shift laser, the line shape is almost restored to its
original homogeneous width with a peak coherence of 4.1 × 10−3.
For comparison, the inset shows the homogeneous Lorentzian line
shape with the Stark-shift laser turned off (�S = 0).

line in Fig. 2 shows the calculated Doppler-averaged line shape
|〈ρ12〉Doppler|, again with the Stark-shift beam turned off. As
expected, the line shape is about two orders of magnitude
broader and the on-resonance value of the coherence is reduced
to 1.25 × 10−4.

We next investigate the suppression of the Doppler broad-
ening using the Stark-shift laser. We take kS = 4kP , which
corresponds to the wavelength of the Stark-shift laser being
four times smaller than the wavelength of the probe beam. We
take the detuning of the Stark-shift laser from levels |3〉 and |4〉
to be �S = 1000�. From Eq. (3), ideal suppression requires
�S = �S/

√
2 = 707�. However, we numerically find that we

get the best suppression for �S = 810�. This discrepancy
(�S = 810� vs �S = 707�) is likely due to the breakdown
of the perturbative approximation. With these parameters, we
numerically integrate the density matrix equations for atoms in
different velocity classes and calculate the Doppler-averaged
coherence. The solid red line in Fig. 2 shows the line shape
in the presence of the Stark-shift beam as the frequency of
the probe laser is scanned across the resonance. The inhomo-
geneous broadening is mostly suppressed with the coherence
reaching an on-resonance value of 4.1 × 10−3, only a factor
of 2.5 lower than the peak value of the homogeneous line.

Figure 3 shows the numerically calculated peak (on-
resonance) value of the Doppler-averaged coherence, as the
Rabi frequency of the Stark-shift beam is increased. The largest
suppression, and therefore the highest coherence, is obtained
for �S = 810�, which was the Rabi frequency used in the
numerical simulation of Fig. 2. For �S < 810�, the Stark
shift of the ground level only partially compensates for the
Doppler shift of the probe laser, resulting in less effective
suppression. For �S > 810�, the Stark shift overcompensates

FIG. 3. (Color online) The peak (on-resonance) value of the
Doppler-averaged coherence as the Rabi frequency of the Stark-shift
laser is increased. The largest suppression and therefore the highest
coherence is obtained for �S = 810�. For comparison, the peak
coherence of the homogeneous line (the inset in Fig. 2) is 10−2.

for the Doppler shift, which again results in reduced values of
the established coherence. As shown in the inset of Fig. 2, the
on-resonance value of the coherence for the homogeneous line
is 10−2.

As mentioned above, the numerical simulations of Figs. 2
and 3 assume kS = 4kP . In Fig. 4, we investigate the
effectiveness of our scheme as the ratio kS/kP is varied.
Here, for each value of kS/kP , we numerically find the
optimal value for the Stark-shift laser Rabi frequency �S that
results in the most effective suppression. We then numerically
calculate the Doppler-broadened line shape and record the
peak (on-resonance) value of the Doppler-averaged coherence.
For small values of kS/kP , satisfying Eq. (3) requires a very
high laser intensity which causes large population transfer
from the ground level. As a result, the suppression of Doppler
broadening is not very effective, resulting in a low value of
Doppler-averaged coherence. However, for kS/kP > 3, the
scheme works effectively, resulting in an on-resonance value
of ≈4 × 10−3.

For experimental demonstration of our approach, a number
of technical challenges will have to be met: (i) The atomic
system must have appropriate transitions with sufficiently
strong dipole matrix elements. Strong dipole matrix elements
are required in order to keep the power requirements of the

FIG. 4. (Color online) The peak (on-resonance) value of the
Doppler-averaged coherence as the ratio kS/kP is varied.
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Stark-shift laser reasonable. (ii) As shown in Fig. 4, the tran-
sitions must be such that kS/kP > 3 for effective suppression,
i.e., the Stark-shift laser frequency must be at least about three
times larger than the probe laser frequency. We have found that
these requirements can be satisfied in a number of experimental
systems. For example, in metastable helium, we have identified
the following level structure: 1s2s 3S1 (ground level |1〉),
1s2p 3P0 (level |2〉), 1s3p 3P2 (level |3〉), and 1s3p 3P0 (level
|4〉). For this scheme, the probe and the Stark-shift lasers are
at wavelengths of 1082.9 and 388.9 nm, respectively. The
frequency spacing between levels |3〉 and 4〉 is 8.8 GHz, which
is very similar to what we have assumed in the numerical
simulations of Figs. 2–4. A detailed numerical study of our
approach in various experimental systems, including atomic
gases and rare-earth doped crystals, will be among our future
investigations.

We next discuss a number of technical requirements on
the laser beams. (i) Collinearity: For the scheme to work
effectively, the angular spread of the k vectors must be small
compared to the ratio of the homogeneous linewidth to the
Doppler linewidth. For the numerical calculations of Figs. 2
and 3, this translates into a beam divergence angle of less than
10 mrad, which would correspond to beam sizes larger than
100 μm if the probe and Stark-shift lasers are in the visible
to near-infrared regions of the spectrum. (ii) Stark-shift laser
power: If we assume a matrix element of 1 atomic unit, the
numerical simulation of Fig. 2 would require a Stark-shift
laser intensity of 15 kW/cm2. Since the beam size must be
larger than about 100 μm, these intensities would require a
laser with a power exceeding 1.5 W. This number depends
critically on the frequency separation of levels |3〉 and |4〉.

For the numerical calculations of Figs. 2–4, this separation
is assumed to be 2�S = 2000� = 2π × 10 GHz. Larger
separations would translate into a higher-power requirement
for the Stark-shift laser. (iii) Intensity stability of the Stark-shift
laser: In our scheme, the fluctuations in the Stark shift of the
ground level must be small compared to the homogeneous
linewidth. For the numerical calculations of Figs. 2–4, this
translates into a fractional intensity stability of better than 2%
for the Stark-shift beam.

We note that there are many experiments that would
benefit from the suppression of broadening. For the numerical
calculation of Fig. 2, the peak value of the coherence is
increased by a factor of 33 using the suppression of the
Stark-shift beam. As a result, the optical depth of the atomic
medium and the corresponding refractive index would increase
by a factor of 33. Recently, there has been substantial
interest in achieving a high or negative refractive index
in atomic systems, both in vapors and in rare-earth-doped
crystals [15,16]. Suppressing the inhomogeneous broadening
in these systems would considerably relax atomic density
requirements. Furthermore, any nonlinear optical process
that utilizes the probe beam would also benefit from the
suppression of the inhomogeneous broadening. As a result, we
expect possible applications in achieving high nonlinearities at
the single-photon level and in photonic quantum computation
[17,18].
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