
ar
X

iv
:1

51
1.

06
33

6v
1 

 [
qu

an
t-

ph
] 

 1
9 

N
ov

 2
01

5

Large Sample Superradiance and Fault-Tolerant Quantum Computation

D. D. Yavuz and B. Lemberger

Department of Physics, 1150 University Avenue, University of Wisconsin at Madison, Madison,

WI, 53706

Abstract: We quantitatively analyze superradiance (collective emission) in a three-dimensional
array of qubits without imposing any restrictions on the size of the sample. We show that even
when the spacing between the qubits become arbitrarily large, superradiance produces an error rate
on each qubit that scales with the total number of qubits. This is because the sum of the norms
of the effective Hamiltonians that decoheres each qubit scales with the total number of qubits and
is, therefore, unbounded. In three spatial dimensions, the sum of the norms scales as N2/3 where
N is the total number of qubits in the computer. Because the sum of the Hamiltonian norms are
unbounded, the introduced errors are outside the applicability of the threshold theorem.
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Quantum computers utilize the exponentially large Hilbert space of identical two-level systems
(qubits) and quantum entanglement to possibly solve certain problems much faster than any fore-
seeable classical computer [1–6]. It is now well-understood that scalable computation requires error
correction and fault tolerance, and quantum computers are no exception. Similar to classical com-
puters, future quantum computers will almost certainly employ codes to detect and correct errors
at various stages of the computation. It is not a priori obvious that traditional error correction ideas
would extend to quantum computers. Over the last two decades, a growing body of literature has
shown that error correction and fault-tolerant operation is indeed possible for quantum computers
[7–9]. One of the most important achievements in the field has been the discovery of the threshold
theorem [10–13]. This theorem argues that if the quantum gates are constructed with a fidelity
better than a certain threshold, then arbitrarily long quantum operations are, in principle, possible.
The error threshold is typically established to be η ∼ 10−4, but can be as high as η ∼ 10−2 for
surface codes [14]. The threshold theorem has been a main driving force in the field. Many exper-
imental implementations of quantum computing have been aiming to demonstrate gate fidelities
better than the mentioned threshold, in order to demonstrate the feasibility of their approach.

Although the threshold theorem is a remarkable achievement, it has a number of weaknesses.
The theorem works under certain assumptions regarding the properties of the noise that affects the
quantum computer. One of the key requirements is that sum of the norms of the Hamiltonians that
couples each qubit to the bath must be bounded. It is now well-understood that this assumption
is not valid for certain models of environment-qubit coupling, especially when the bath is bosonic
in nature. In such cases, it has been discussed that the threshold theorem becomes extremely
sensitive to the high frequency spectrum of the bath operators [12]. A number of authors have also
criticized the threshold theorem using more general arguments [15–18]. Despite these weaknesses,
the threshold theorem has generally been regarded to cover all reasonable models of noise sources. In
this letter, we extend our recent result [19] to large samples and discuss a clear physical mechanism
which produces errors on the qubits that are beyond the applicability of the threshold theorem. We
analyze superradiant emission between the qubit levels resulting from the interaction of the qubits
with a common radiation bath in free space. We show that the sum of the norms of the effective
Hamiltonians that decoheres each qubit scales with the total number of qubits and is, therefore,
unbounded. As a result, there is an error rate on each qubit that scales with the total number of
qubits in the computer. Because the error rate scales with the total number of qubits, it cannot
be assumed lower than a certain threshold; this is precisely how the assumptions of the threshold
theorem are violated. To our knowledge, this is the first time a clear physical noise source is
identified that produces errors beyond the applicability of the threshold theorem. Below we discuss
radiatively coupled qubits in free space, so our results are particularly relevant for neutral atom-
[20, 21] and trapped-ion-based [22, 23] quantum computation. However, our results will likely be
applicable to other physical systems, since a source of collective emission can be found in most
situations, for example, phonons for solid-state-based approaches [24, 25].

Since the seminal paper by Dicke [26], the superradiance problem has been analyzed by a large
number of authors and this problem continues to be relevant for a wide range of physical systems
[27–30]. As shown in Fig. 1, we consider N two-level atoms, each with levels |0〉 and |1〉, in a
three dimensional cube geometry. We will denote each individual qubit with the index j. We
will consider a continuum of radiation modes with annihilation and creation operators âkǫ and â

†
kǫ

respectively. These operators act on the mode of the field with wave-vector k and polarization ǫ.
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Figure 1: We analyze an N qubit quantum computer in a three dimensional geometry without any re-
strictions on the total size of the sample: i.e, the spacing between the qubits may be much larger than the
radiation wavelength, d >> λa.

The total Hamiltonian for the system is:

Ĥtotal =
∑

k,ǫ

h̄νkǫ

(

â†kǫâkǫ +
1

2

)

+
∑

j

Ĥj , (1)

where

Ĥj =
1

2
h̄ωaσ̂

j
z −

∑

k,ǫ

h̄gkǫ
[

âkǫ exp (i~k · ~rj)σ̂
j
+ + â†kǫ exp (−i

~k · ~rj)σ̂
j
−

]

,

σ̂jz = |1〉j j〈1| − |0〉j j〈0| ,

σ̂j+ = |1〉j j〈0| ,

σ̂j− = |0〉j j〈1| . (2)

Here, ~rj is the position of the j’th atom. The energies of the qubit states |0〉 and |1〉 are taken to
be −1

2 h̄ωa and 1
2 h̄ωa, respectively. We take the initial state of the atomic system to be an arbitrary

(in general entangled) superposition state and assume zero photons in each field mode kǫ. The
initial state of the combined atom-radiation field system can be written as:

|ψ(t = 0)〉 =
2N−1
∑

q=0

cq|q〉 ⊗ |0〉 . (3)

Here, the index q sums over all 2N possibilities for the collective atomic states and 0 refers to
having zero photons in all radiation modes. Using the total Hamiltonian of Eqs. (1) and (2), and
the initial state of Eq. (3), we study the problem in the Schrödinger picture. Superradiance in
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large samples is known to be difficult to analyze quantitatively. Motivated by the ideas that are
discussed in Ref. [27], we have developed a model that takes into account the collective Lamb shift
and also light propagation effects between different regions of the sample. In this model, we view
the problem as a convolution of the single-atom radiative decay (which is the well-known Wigner-
Weisskopf theory [31]) and the atom distribution diffraction function. The details of this model
will be discussed in a future publication [32]. The end result is a set of coupled integro-differential
equations for the probability amplitudes of Eq. (3):

dcq
dt

= −

(

3

8π

)

Γ

2

∑

q′

(1− cos2 θjj′)

∫ t

0
exp [iωa(t− τ)]G(t− τ)cq′(τ)dτ . (4)

where

G(t− τ) ≡
2π

(rjj′/c)
Box

[

t− τ

(rjj′/c)

]

− i
2

(rjj′/c)
ln

[

(rjj′/c) + (t− τ)

|(rjj′/c) − (t− τ)|

]

. (5)

Here, the quantity Γ is the single-atom decay rate and the summation
∑

q′ is over all states |q′〉
that either equals |q〉 or differs from |q〉 only in the states of two atoms. The indices of these two
atoms are labeled by j and j′. One of these atoms has changed its internal state from |1〉 to |0〉
whereas the other one has changed it from |0〉 to |1〉. rjj′ is the distance between the two atoms
and the quantity θjj′ is the angle between the atomic dipole moment vector and the separation
vector ~rjj′. In Eq. (5), the Box function equals one when its argument is between 0 and 1, and
equals zero otherwise. Eqs. (4) are a set of coupled integro-differential equations for 2N coefficients
and are in general very difficult to solve. We next simplify the problem by employing the Markov
approximation, assume cq′(τ) ≈ cq′(t), and take this quantity outside the integral. We have verified
that this is a very good approximation at the initial stages of decay, by exactly solving Eqs. (4)
in a small subset of the Hilbert space. With this approximation, Eqs. (4) reduce to a linear set
of equations and can be described by a time-dependent effective Hamiltonian, Ĥeff . In frequency
units, this effective Hamiltonian is:

i
dcq
dt

=
∑

q′

Ĥeff
qq′ (t)cq′ , (6)

and has the following matrix elements

Ĥeff
qq′ (t) = −i

(

3

8π

)

Γ

2
(1− cos2 θjj′)

∫ t

0
exp [iωa(t− τ)]G(t− τ)dτ , (7)

when |q〉 differs from |q′〉 by raising one qubit and lowering another (j and j′ label these raised and

lowered qubits and j = j′ if |q〉 = |q′〉). Ĥeff
qq′ = 0 if |q〉 and |q′〉 do not have this relationship. We

note that Ĥeff is not Hermitian since it incorporates radiative decay as well as the collective Lamb
shift. We next discuss the error rate on each qubit and how the effective Hamiltonian of Eq. (7)
violates the threshold theorem. An important observation is that, Ĥeff can be written as a sum
of two qubit interactions only:

Ĥeff =
∑

j

∑

j′

Ĥjj′ . (8)
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Here the sum is over all pairs of qubits and operators Ĥjj′ act nontrivially only on the qubits with
indices j and j′. The matrix elements of Ĥjj′ can be found by using the elements of the effective
Hamiltonian of Eq. (7). For each qubit j, the threshold theorem requires [11–13]

∑

j′

||Ĥjj′ ||t0 < η, (9)
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Figure 2: The sum of the Hamiltonian norms,
∑

j′ ||Ĥ
jj′ ||, as the total number of qubits is varied from

8 to 8000. The diamond data points are calculated by evaluating the effective Hamiltonian of Eq. (7) at
long time scales, t >> rjj′/c. The triangles are calculated using the Kurizki-Molmer (KM) Hamiltonian of
Eq. (10). The agreement between our model and the KM model is reasonable. Both models fit very well to
N2/3 power law (solid lines).

where ||Ĥjj′ || denotes the sup operator norm, t0 is the time required for a quantum gate, and η is the
error threshold. Equation (9) requires the sum of operator norms to be bounded,

∑

j′ ||Ĥ
jj′ || <∞.

In Fig. 2, we numerically calculate
∑

j′ ||Ĥ
jj′ || as the total number of qubits is varied from 8

(an array of 2 × 2 × 2) to 8000 (20 × 20 × 20). Here, to calculate the norms, we evaluate the
matrix elements of Eq. (7) at long time scales, after full correlations have built-up in the system,
t >> rjj′/c. In this numerical example we take the wavelength of the radiation to be λa = 9 cm and
the spacing between the atoms to be d = 20 cm. We assume the direction of the atomic dipoles to
be aligned with one of the axis of the cube (we have checked that the results remain very similar for
any direction of the atomic dipole). The numerical data points fit very well to an N2/3 power law
which demonstrates

∑

j′ ||Ĥ
jj′ || to be unbounded. Physically, the reason for the N2/3 dependence

is that the interaction between the qubits due to superradiance decays slowly as a function of the
distance, only as ∼ 1/r. In the three-dimensional cube geometry of Fig. 1, the distance between
the qubits scale as r ∼ N1/3d. There are N terms in the sum of operator norms,

∑

j′ ||Ĥ
jj′||,

resulting in the N2/3 dependence. As the qubit separation, d, is further increased, the sum of the
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norms plotted in Fig. 2 would drop as ∼ 1/d. However, the N2/3 scaling with the total number of
qubits would remain for arbitrarily large d. In a two-dimensional geometry for the qubit array, the
scaling would be N1/2. We will discuss our two-dimensional simulations in detail elsewhere [32].
The calculation of Fig. 2 is performed for an atom at the corner of the cube; all of the other atoms
in the array show a very similar behavior.

We have also performed this calculation using the large-sample superradiance model which has
recently been discussed by Kurizki et al. [33] and Molmer and colleagues [34] [we will refer to
this model as Kurizki-Molmer (KM) model]. This model ignores collective Lamb shift and makes
approximations that are very similar to the single-atom Wigner-Weisskopf theory. In this model,
the matrix elements of the effective Hamiltonian are given by:

Ĥeff,KM
qq′ = −i

(

3

8π

)

Γ

2

[

4π(1− cos2 θjj′)
sin karjj′

karjj′
+ 4π(1− 3 cos2 θjj′)

(

cos karjj′

(karjj′)2
−

sin karjj′

(karjj′)3

)]

.(10)

Similar to Eq. (7), Eq. (10) holds when |q〉 and |q′〉 differ only in two qubits and Ĥeff,KM
qq′ = 0

otherwise. The KM model is easier to calculate numerically since each matrix element can be
algebraically evaluated (instead of computing an integral). As shown in Fig. 2, the agreement
between the two models is reasonable and both models show a clear N2/3 dependence of the sum
of the norms.

We note that the decomposition of Ĥeff as a sum of two-qubit interactions [Eq. (8)] is the most
physical one, but mathematically speaking this decomposition is not unique. Ĥeff can be written
as a sum of 1, 2, ..., k qubit interaction terms where k ≤ N . We have proven that, regardless of the

choice of decomposition, either for some value of k, η
(k)
1 (as defined in Ref. [13] - in the notation of

Ref. [13] , the η in Eq. (9) corresponds to η
(2)
1 ) diverges, or else the η

(k)
1 do not decay exponentially

with k. Either conclusion renders the threshold theorem inapplicable. We will discuss this proof in
detail elsewhere [32].

To get physical insight into these results, we next discuss superradiance for states that have only
one atom in the excited level |1〉. For these single-atom excited states, the dimension of the Hilbert
space is N×N and the eigenvalues and eigenvectors of Ĥeff can be numerically evaluated. Figure 3
shows the histograms for the imaginary parts of the eigenvalues, which are the collective decay rates,
as the number of qubits is varied from N = 27 (3×3×3) to N = 1000 (10×10×10). The histograms
are calculated for parameters identical to those of Fig. 2 with λ = 9 cm and d = 20 cm. In these
histograms, we subtract the single atom decay rate of Γ/2 from the eigenvalues so that collective
rates that are greater than zero correspond to superradiant states. From these histograms, we
observe that there are states whose collective decay rates grow with N . The distributions remain
roughly symmetric around zero, which means that about half of the states are superradiant whereas
the other half are subradiant. The width of the distributions also grow with N , but very slowly. In
these calculations, we could not locate a state with an eigenvalue of exactly zero, which means that
there is not a state that does not decohere. This is consistent with the recent results of Whaley and
colleagues who discussed that decoherence free subspaces do not exist for extended systems [35].

In Fig. 4, we plot the largest collective rate (i.e., the eigenvalue with the highest imaginary value
from the histograms of Fig. 3) as the number of qubits in the computer is varied from N = 8 to
N = 1000. We perform these calculations for two different inter-qubit spacings, (a) d = 15 cm and
(b) d = 20 cm (the wavelength remains λa = 9 cm), both using the effective Hamiltonian of Eq. (7)
(diamonds) and also using the KM model of Eq. (10) (triangles). We again observe reasonable
agreement between the two models. The solid lines are power-law fits to the data. For these two
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Figure 3: The histograms for the imaginary parts of the eigenvalues (i.e, the collective decay rates) for
single atom excited states as the total number of qubits is varied from N = 27 to N = 1000. The histograms
clearly show that there are states whose collective decay rates scale with the total number of qubits in the
computer.

calculations, the best fits to our model give N0.41 (d = 15 cm) and N0.48 (d = 20 cm) dependence
of the largest collective rate on the number of qubits. We have performed this calculation for a
wide range of parameters and have observed this dependence to vary between N0.35 to N0.5. These
calculations show that even for single-atom excited states, there are states whose collective rates
scale with the number of qubits. As a result, when the system is in one of these states, the errors
introduced would also scale with the total number of qubits.

In conclusion, we have discussed superradiance as a noise source which produces errors outside
the applicability of the threshold theorem. There are many open questions and possible future
directions: (i) Can noise due to superradiance be suppressed by modifying the vacuum modes, for
example using a high-finesse cavity? (ii) Is scalable quantum computing possible while the system
remains in subradiant states only, i.e, in the lower half of the histograms of Fig. 3? (iii) Can the
threshold theorem be extended to cover the superradiance noise that is discussed in this letter? If
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Figure 4: The largest collective rate for single-atom excited states as the number of qubits is varied from
N = 8 to N = 1000 for (a) d = 15 cm and (b) d = 20 cm (the wavelength is λa = 9 cm). The diamond
data points are calculated using the effective Hamiltonian of Eq. (7) and the triangles are calculated using
the KM model of Eq. (10). The solid lines are power-law fits to the data demonstrating N0.41 scaling for (a)
and N0.48 for (b), for the diamond data points.

not, then what are the implications for scalable quantum computing?
We thank Mark Saffman and Thad Walker for many helpful discussions and acknowledge sup-

port from the University of Wisconsin-Madison.
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