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Effect of correlated decay on fault-tolerant quantum computation
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We analyze noise in the circuit model of quantum computers when the qubits are coupled to a common bosonic
bath and discuss the possible failure of scalability of quantum computation. Specifically, we investigate correlated
(super-radiant) decay between the qubit energy levels from a two- or three-dimensional array of qubits without
imposing any restrictions on the size of the sample. We first show that regardless of how the spacing between the
qubits compares with the emission wavelength, correlated decay produces errors outside the applicability of the
threshold theorem. This is because the sum of the norms of the two-body interaction Hamiltonians (which can
be viewed as the upper bound on the single-qubit error) that decoheres each qubit scales with the total number
of qubits and is unbounded. We then discuss two related results: (1) We show that the actual error (instead of
the upper bound) on each qubit scales with the number of qubits. As a result, in the limit of large number of
qubits in the computer, N → ∞, correlated decay causes each qubit in the computer to decohere in ever shorter
time scales. (2) We find the complete eigenvalue spectrum of the exchange Hamiltonian that causes correlated
decay in the same limit. We show that the spread of the eigenvalue distribution grows faster with N compared
to the spectrum of the unperturbed system Hamiltonian. As a result, as N → ∞, quantum evolution becomes
completely dominated by the noise due to correlated decay. These results argue that scalable quantum computing
may not be possible in the circuit model in a two- or three- dimensional geometry when the qubits are coupled
to a common bosonic bath.
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I. INTRODUCTION

Over the past two decades, quantum computing and
quantum information processing have emerged as exciting
fields of science because of the possibility of solving certain
problems much more quickly than any foreseeable classical
computer [1–4]. It has been predicted that, in addition to
factoring [5,6], quantum algorithms can be used for solving a
variety of problems including efficient data search and finding
the eigenvalues and eigenvectors of large matrices [7,8]. The
most widely utilized model for quantum computing, which
is often referred to as the circuit model, utilizes quantum bits
(qubits) which are quantum systems that can be in two different
states. Quantum computing relies on operations performed on
qubits, analogous to gates on classical bits, but qubit operations
can exploit the extraordinary behavior of nature at the quantum
scale. The principles of quantum computing have now been
demonstrated using a variety of physical qubits including
trapped ions [9–11], neutral atoms [12–14], semiconductor
quantum dots [15,16], superconductor Josephson junctions
[17,18], and single photons [19,20]. Quantum mechanics tells
us that the size of the Hilbert space of N identical two-level
systems is 2N , i.e., exponentially large in the number of qubits.
Quantum computers are predicted to be so powerful in part
because they utilize this exponentially large dimension of the
Hilbert space and perform many computations simultaneously
in parallel (often referred to as quantum parallelism). In this
paper, we discuss a ubiquitous source of noise on quantum
computers and argue the failure of scalability of quantum
computation. This noise source is correlated (super-radiant)
decay, which inevitably happens when the qubits are coupled
to a common bosonic bath.

It is now well understood that the ideas of error correction
and fault tolerance are central to any computer architecture,
and quantum computers are no exception. Similar to our
current silicon-based solid-state classical computers, future

quantum computers will almost certainly employ codes to
detect and correct errors at various stages of the computation.
It is not a priori obvious that traditional error correction
ideas would extend to quantum computers. Over the past
two decades, a growing body of literature has shown that
error correction and fault-tolerant operation is indeed possible
for quantum computers [21–23]. One of the most important
achievements in the field has been the discovery of the
threshold theorem [24–28]. This theorem argues that if the
quantum gates are constructed with a fidelity better than a
certain threshold, then arbitrarily long quantum operations
are, in principle, possible. The error threshold is typically
established to be η ∼ 10−4, but can be as high as η ∼ 10−2

for surface codes [29]. The threshold theorem has been a main
driving force in the field. Many experimental implementations
of quantum computing have been aiming to demonstrate gate
fidelities better than the mentioned threshold, in order to
demonstrate the feasibility of their approach [9–20].

Although the threshold theorem is a remarkable achieve-
ment, it has a number of weaknesses. The theorem works
under certain assumptions regarding the properties of the
noise that affects the quantum computer. One of the key
requirements is that the sum of the norms of the Hamiltonians
that decoheres each qubit must be bounded. It is now well
understood that this assumption is not valid for certain models
of environment-qubit coupling, especially when the bath is
bosonic in nature. In such cases, it has been discussed that
the threshold theorem becomes extremely sensitive to the
high-frequency spectrum of the bath operators [27]. A number
of authors have also criticized the threshold theorem using
more general arguments [30–33]. Despite these weaknesses,
the threshold theorem has generally been regarded to cover
most reasonable models of noise sources. Quantum computers
are now widely believed to be scalable at least in principle, and
the difficulties associated with constructing an actual quantum
computer are considered technical in nature.
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In this paper, we focus on the circuit model of quantum
computation and analyze noise on quantum computers due
to correlated decay between the qubit levels which inevitably
happens when the qubits are coupled to a common bosonic
bath [34]. We consider a two-dimensional (2D) or three-
dimensional (3D) array of qubits and do not impose any
restrictions on the size of the sample; i.e., the spacing between
the qubits can be comparable to or larger than the emission
wavelength. When the qubits are coupled to a common bosonic
bath, the physical mechanism that causes correlated decay is
the exchange interaction between the qubits. We first show that
exchange interaction produces errors on each of the qubits that
are outside the applicability of the threshold theorem. This
is mainly because the strength of the exchange interaction
between the qubits decays slowly as a function of their
separation, and as a result, the introduced errors cannot be
assumed local; each qubit in the computer is affected by the
presence of any other qubit with a strength that violates the
conditions of the threshold theorem. In more technical terms,
the sum of the norms of the Hamiltonians that decoheres each
qubit scales with the total number of qubits in the computer.
This scaling is N1/2 in a 2D and N2/3 in a 3D geometry and the
sum of the norms is not bounded in the N → ∞ limit. Because
the sum of the norms is unbounded, the introduced error on
each qubit cannot be assumed lower than a certain threshold;
this is precisely how the assumptions of the threshold theorem
are violated.

The violation of the threshold theorem does not necessarily
imply uncorrectable error in a quantum computer. The norm
of a noise Hamiltonian is its largest eigenvalue, which can be
viewed as an upper bound (i.e., the worst case scenario) for
the introduced error. The fact that the upper bound cannot be
assumed lower than a threshold does not necessarily imply the
actual error in most instances of algorithm to be unbounded.
We will discuss two results that argue that correlated decay
indeed produces errors that are uncorrectable in the N → ∞
limit. (1) We study the error on each qubit that is caused
by correlated decay for a general state of the computer in the
Hilbert space. Using two different methods, we find that for the
vast majority of the Hilbert space, the actual error (instead of
the upper bound) on each qubit scales with the total number of
qubits in the computer. In the first method, we find the complete
eigenvalue spectrum of the noise Hamiltonian that decoheres
each qubit. In the second method, we use an iterative algorithm
to solve for the time evolution of the reduced density matrix
of each qubit. Both methods give the same answer and show
that the single-qubit error scales as

√
ln N (N1/6) in a 2D (3D)

geometry. As a result, as N → ∞, correlated decay causes
each qubit in the computer to decohere in arbitrarily short
time scales. (2) We find the complete eigenvalue spectrum of
the total exchange Hamiltonian due to correlated decay. We
show that in the N → ∞ limit, the eigenvalues are distributed
according to the Laplace distribution whose standard deviation
(i.e., the spread) scales as N1/2 ln N (N2/3) in a 2D (3D)
geometry. As a result, the spread of the eigenvalues of the noise
Hamiltonian scales faster with N compared to the unperturbed
system Hamiltonian, which scales as N1/2 in both geometries.
This shows that in the N → ∞ limit, the size of the noise
Hamiltonian becomes much larger compared to the size of
the unperturbed system Hamiltonian for the quantum system.

As a result, the dynamics of the quantum evolution become
completely dominated by the noise due to correlated decay.

As mentioned above, throughout this paper, we will focus
on the limit of a large number of qubits in the computer, i.e.,
the limit N → ∞. From a practical viewpoint, this limit may
look purely academic without much real-world implication.
However, many of the main ideas in modern computational
complexity theory argue that this is not the case; the scaling
in the N → ∞ limit dictates in a very real and practical sense
the efficiency of an algorithm [35]. It is now well understood
that when the number of operations required to solve a certain
problem scales polynomially with the problem size, then the
problem is viewed as efficiently solvable. Such computational
problems belong to the complexity class P and they are usually
denoted by P = T (N k) [here, N is some measure that is
related to the size of the problem (for example, number of
digits in factoring), and is usually polynomially related to the
number of bits used]. When a polynomial algorithm cannot
be found, then the problem is viewed as “hard” without an
efficient algorithm to solve. The idea of polynomial scaling of
the required number of operations (which can also be viewed
as the run time of the algorithm) is central to the computational
complexity theory. The question then is, from a practical
viewpoint, why does polynomial scaling provide a crucial
distinction? Suppose that we have two algorithms which scale
as N 1000 and 20.001N , respectively. From a purely practical
viewpoint, for most reasonable instances of the problem, the
second algorithm would require fewer steps to obtain the
solution. Why would we then favor the first algorithm from
a computational complexity standpoint? Although the answer
to this question is not known for certain, more than 60 years
of literature on the subject suggests that such pathological
cases never happen [35]. The constants are irrelevant (i.e.,
N k versus 2cN for arbitrary k and c), and the behavior as
N → ∞ dictates the efficient solvability of a problem in
practical instances. This is the key reason why it is important
to understand the scalability and fault tolerance of quantum
computers in the large number of qubits limit. This is also
precisely the reason why it would be a mistake to ignore noise
sources such as correlated decay by arguing that using proper
choice of qubit levels (for example, clock states in neutral
atoms) the decay time scales between the qubit levels can
be quite long. Within this context, we would like to point
out the pioneering work of Mucciolo and colleagues [36–39].
They analyzed fault-tolerant operation of quantum computers
in detail when the qubits are coupled to a bosonic bath in the
N → ∞ limit (which they term as the thermodynamic limit).
They have shown how time evolution of the system can be
mapped onto a statistical spin model, and they have identified
the existence of an error threshold with a thermodynamic-like
phase transition. They have also clearly discussed the violation
of the threshold theorem if the interactions are sufficiently
long range. Our results are also related to the recent paper by
Hutter and Loss, who have discussed the breakdown of error
correction in surface codes during the presence of correlated
noise [40]. Differing from what we will discuss below, they
consider the propagation of errors at a certain point in the
computer and discuss the scaling of the errors as a function
of the depth of the computation (i.e., the number of quantum
operations).
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FIG. 1. We analyze an N -qubit quantum computer in (a) two-
and (b) three-dimensional geometry with the qubits coupled to a
common bosonic bath. For a single qubit present, the interaction with
the bath causes an independent decay rate of � between the qubit
levels. When the whole ensemble of qubits is present, correlated
decay causes correlated errors to build up across the whole computer.
Since we are primarily interested in the N → ∞ limit, we do not
impose restrictions on the size of the sample; i.e, the spacing between
the qubits may be much larger than the radiation wavelength, d � λa .
For concreteness, we focus on a square and a cube arrangement of
atoms with regularly spaced qubits, but the results are not sensitive
to the precise shape and arrangement structure of the array.

Throughout this paper, we will focus on the circuit model of
quantum computation and will not consider other architectures
such as adiabatic quantum computing [41]. Our results also do
not apply to systems where the bath is fermionic in nature
or where the interaction between the qubits and the bath is
substantially different from the Hamiltonian of below Eq. (1),
for example, to structures that are topologicaly protected [42].
Although our results argue that scalable quantum computing in
the circuit model may not be possible in a 2D or 3D geometry
when the qubits are coupled to a bosonic bath, we certainly
have not proven that this is the case. It may perhaps be possible
to overcome the noise that is described here by using clever
encoding techniques (similar to decoherence-free subspaces
[43–46]) or by designing the hardware appropriately (such as
sufficiently isolating certain subsections of the computer so
that the amount of correlations are reduced). We will discuss
our preliminary assessment of a number of these strategies in
the conclusions section.

II. FORMALISM AND THE EXCHANGE INTERACTION

Since the seminal paper by Dicke [47,48], the super-
radiance problem has been analyzed by a large number of
authors and this problem continues to be relevant for a wide
range of physical systems [49–58]. As shown in Fig. 1, we
consider N two-level atoms, each with levels |0〉 and |1〉, in
a two- or three-dimensional geometry. Throughout this paper,
we will take all the qubits in the computer to be in the “causality
cone,” that is, sufficient time evolution is allowed so that each
qubit in the computer can be causally influenced by every other
qubit. In Fig. 1, for concreteness we have focused on square and
cube geometries with a regular spacing of d between adjacent
qubits. However, the results are insensitive to the precise shape
of the geometry and also to the regular nature of the array
(i.e., the qubits can be taken as randomly distributed within
the considered region). We denote each individual qubit with

the index j and consider a continuum of bosonic modes with
annihilation and creation operators âκε and â†

κε respectively.
These operators act on the mode of the field with wave vector
κ and polarization ε. The total Hamiltonian for the system
when only the energy-conserving terms are retained (under
the rotating-wave approximation) is

Ĥtotal =
∑

j

1

2
h̄ωaσ̂

j
z +

∑
κε

h̄νκε

(
â†

κε âκε + 1

2

)

−
∑

j

∑
κε

h̄gκε[âkε exp(i�κ · �rj )σ̂ j
+

+ â†
κε exp(−i�κ · �rj )σ̂ j

−], (1)

where

σ̂ j
z = |1〉j j 〈1| − |0〉j j 〈0|,

σ̂
j
+ = |1〉j j 〈0|,

σ̂
j
− = |0〉j j 〈1|. (2)

In Eq. (1), the first two terms describe the qubit array
and the bosonic modes in the absence of any interaction
whereas the third term describes the coupling between the
two systems. �rj is the position of the j th atom and the energies
of the qubit states |0〉 and |1〉 are taken to be − 1

2 h̄ωa and
1
2 h̄ωa , respectively. The Dicke limit of the above equations
is obtained when the total size of the sample is assumed to
be small compared to the κ vector of the relevant modes,
i.e., �κ · �rj → 0. It is now well understood that the key physical
effect that describes many different aspects of correlated decay
and super-radiance is the exchange interaction. Starting with
the Hamiltonian of Eq. (1), this interaction has been derived
using a variety of approaches by a number of authors [59–62].
One such derivation of the exchange interaction Hamiltonian
is shown in Appendix A. This derivation uses assumptions
that are similar to the traditional Wigner-Weisskopf theory of
spontaneous decay [63]. Briefly, we take the initial atomic
system to be an arbitrary superposition (in general entangled
state) and assume initially zero excitation in each bosonic
mode κε. We then study the problem in the interaction picture
and integrate out the probability amplitudes of the continuum
states using the usual Born-Markov approximation. Using this
approach, the end result is the following effective interaction
Hamiltonian:

Ĥeff =
∑

j

∑
k

Ĥ jk. (3)

Here, the sum is over all pairs of qubits and operators Ĥ jk

act nontrivially only on the qubits with indices j and k

Ĥ jk = Fjkσ̂
j
+σ̂ k

− + Fkj σ̂
j
−σ̂ k

+, (4)

which is essentially a “spin” exchange interaction (mediated
by photon modes) with coupling constants of Fjk:

Fjk = Fkj = −
(
i
�

2
+ δω

)(
3

8π

)[
4π (1− cos2 θjk)

sin κarjk

κarjk

+ 4π (1 − 3 cos2 θjk)

(
cos κarjk

(κarjk)2
− sin κarjk

(κarjk)3

)]
. (5)
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Here, � is the single-atom decay rate and δω is the single-atom
Lamb shift of the qubit transition. rjk is the distance between
the two atoms, and θjk is the angle between the atomic dipole
moment vector and the separation vector �rjk . The quantity κa is
the wave vector for the bosonic modes energy resonant with the
qubit transition: κa = ωa/c. For concreteness, we have focused
on qubits in free space interacting with electromagnetic modes
and have taken the nature of the qubit transition to be dipolar
(electric or magnetic dipole). However, the scaling results
that we discuss would apply to other types of radiation,
such as quadrupole or higher order multipole, with only
the angular factors in Eq. (5) being different. Similarly,
the formalism would also apply to other types of bosonic
baths, such as phonons in solid-state structures. Note that
the coupling constants Fjk are complex with an imaginary
part proportional to single-atom decay rate �. As a result,
the effective Hamiltonian of Eq. (3) is not Hermitian since it
models dissipative decay in addition to unitary dynamics. For
the below discussion, the precise values of the constants Fjk

are not important. Rather, two properties of these constants
are critical: (i) they have random signs for large separation
of the qubits, κarjk � 1, and (ii) to leading order, they scale
as Fjk ∝ 1/κarjk . All the scaling behavior with respect to the
total number of qubits will result from these two properties.
Similarly, the non-Hermiciticity of the effective Hamiltonian
of Eq. (3) is also not of significance. Our scaling results would
remain identical if we ignore the decay part of the problem and
only focus on resonance shifts due to the exchange interaction
(i.e., if we ignore the imaginary parts of the coupling constants
of Eq. (5) and take them to be purely real).

Born-Markov approximation that results in the effective
exchange Hamiltonian of Eq. (3) assumes the evolution time
scales for the state coefficients to be slow compared to the
correlation time scales of the bath. As we will discuss below,
decoherence time scales will get shorter as N → ∞, and
for a sufficiently large N , the assumptions of the Born-
Markov approximation will be violated. When Born-Markov
approximation is not satisfied, the system can no longer be
described by the static Hamiltonian of Eq. (3); instead the rate
of change in each state coefficient is not only influenced by
the values of the other coefficients at that particular time but
depend on their evolution history. All the scaling results that
we discuss in the paper result from N -dependent sums over
coupling constants between the state coefficients, which have
almost random phases (due to large spacings) and 1/rjk scaling
factors. As a result, the scaling results should not be altered
when one considers not just the values of the coefficients at that
particular time but also their evolution history, since neither
phases nor the average strengths of the coupling constants are
altered. We will discuss the extension of our formalism beyond
the Born-Markov approximation also in Appendix A.

III. VIOLATION OF THE THRESHOLD THEOREM

We next discuss how the effective Hamiltonian of Eq. (3)
violates the threshold theorem. We note that the exchange
Hamiltonian involves two-qubit interactions only, and the
applicability of the threshold theorem under these conditions is
well understood. Following Ahoronov and colleagues [26–28],
each qubit j decoheres with the Hamiltonian Ĥ j ≡∑k Ĥ jk =

∑
k Fjkσ̂

j
+σ̂ k

− + Fkj σ̂
j
−σ̂ k

+ (which we will frequently refer to
as the single-qubit error Hamiltonian). An upper bound on
the magnitude of the error can be found using the inequality
‖∑k Ĥ jk‖ <

∑
k ‖Ĥ jk‖ (the notation ‖ . . . ‖ denotes the L2

operator norm). The applicability of the threshold theorem
then requires ∑

k

‖Ĥ jk‖t0 < η, (6)

where t0 is the time required for a quantum gate. Equation
(6) requires the sum of operator norms to be bounded,∑

k ‖Ĥ jk‖ < ∞. We note that for the exchange interaction
the operator norm for each pair Hamiltonian is given by
the absolute value of the coupling constants, ‖Ĥ jk‖ = |Fjk|.
As a result, for the threshold theorem to be applicable,
we would require

∑
k |Fjk| < ∞. However, in both 2D and

3D geometries this sum scales with the number of qubits
and is unbounded. In a 3D geometry, the distance between
the qubits scales as rjk ∝ N1/3d. Since there are N terms
in the sum of operator norms, we have, to leading order,∑

k |Fjk| ∝ (�/κad)N2/3. In a 2D geometry for the qubit
array, the spacing between the qubits scales as rjk ∼ N1/2d,
and the corresponding scaling for the sum of the operator
norms is

∑
k |Fjk| ∝ (�/κad)N1/2. Physically, the key reason

for the violation of the threshold theorem in both two and three
dimensions is that the interaction strength between the qubits
due to correlated-decay drops slowly as a function of distance,
only as ∝1/r .

We note that as the spacing between the qubits d is
increased, the correlated error and the sum of the norms would
drop as

∑
k |Fjk| ∝ 1/κad. This may initially suggest that the

noise due to correlated decay can be reduced to arbitrarily
low values by increasing the separation between the qubits.
However, this argument is misleading since, as shown in
Eq. (6), the important quantity is the amount of error during
the time required for a quantum gate t0. As the qubits become
further apart, the two-qubit gate time will increase at least as
t0 ∝ d/c (due to fundamental causality constraint). As a result,
the amount of error per gate time due to correlated decay is
independent of the qubit separation d.

IV. SINGLE-QUBIT ERROR

The violation of the threshold theorem does not necessarily
imply uncorrectable error. The reason is that the norm of an
operator is its largest eigenvalue and the sum of the norms in
Eq. (6) can be viewed as an upper bound, i.e., the worst-case
scenario for the error. This worst-case scenario may occur
only in a specific region of the Hilbert space with a dimension
that does not grow exponentially with N . In this case, for
most states of the quantum computer, the introduced errors
will not scale with the number of qubits, allowing for error
correction. Calculating the actual error on the qubits instead
of just the upper bound is a much more difficult task since
it requires finding the complete eigenvalue spectrum of the
error Hamiltonian (instead of just the largest eigenvalue). In
this section, we accomplish this goal by explicitly evaluating
all the moments of the eigenvalue distribution in the N → ∞
limit. With the moments of the distribution calculated, we
find the complete eigenvalue spectrum of the single-qubit
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error Hamiltonian and show that the width of the eigenvalue
distribution scales with the number of qubits. This scaling is√

ln N in a 2D geometry and N1/6 in a 3D geometry, and
as expected, it grows more slowly with the number of qubits
compared to the scaling of the largest eigenvalue. Because of
this scaling, in the N → ∞ limit, the errors on each qubit
would happen in arbitrarily short time scales, rendering error
correction impossible. The very slow

√
ln N scaling in a 2D

case suggests that this geometry may be on the threshold of
scalability for noise due to correlated decay.

We have also been able to verify these results by calculating
the dynamics of the reduced density matrix for a specific qubit.
We find an analytical solution for the evolution of the reduced
density matrix under the single-qubit error Hamiltonian which
is valid in the N → ∞ limit. Consistent with the eigenvalue
spectrum discussed in the previous paragraph, this solution
predicts decoherence of each qubit with a time scale that
gets shorter with the mentioned scalings (

√
ln N in a 2D

and N1/6 in a 3D geometry). We have also found that this
analytical solution predicts the dynamics reasonably well even
for a computer with a relatively low number of qubits. As
we discuss below, we perform exact numerical calculations
for a 16-qubit quantum computer and show good agreement
between analytical results and the numerical simulations.

A. Eigenvalue spectrum of the single-qubit error Hamiltonian

In this section, we discuss the complete eigenvalue spec-
trum of the single-qubit error Hamiltonian Ĥ j =∑k Ĥ jk =∑

k Fjkσ̂
j
+σ̂ k

− + Fkj σ̂
j
−σ̂ k

+ in the N → ∞ limit. In this limit,
the eigenvalues λ of Ĥ j can be viewed as having a continuous
distribution with probability density function f(λ) ≡ P { =
λ}. This probability density function can be evaluated by
explicitly calculating all the moments of the distribution
σ (m) ≡ E[m] = ∫ f(λ)λmdλ, where E[. . .] stands for the
expected value. By definition, these moments are

σ (m) = E[m] = 2−N Tr[(Ĥ j )m]. (7)

Remarkably, we were able to analytically calculate all the
moments using Eq. (7) in the N → ∞ limit and thereby
explicitly evaluate f(λ). This derivation is shown in detail
in Appendix B. Here, we give a brief summary of the main
ideas used in this derivation. For all integers m, the trace can
be explicitly evaluated using Ĥ j =∑k Ĥ jk:

σ (m) = 2−N Tr[(Ĥ j )m] = 2−N
∑

q

〈q|(Ĥ j )m|q〉

= 2−N
∑

q

∑
k1

. . .
∑
km

〈q|Ĥ jk1 . . . Ĥ jkm |q〉, (8)

where the state |q〉 runs through all 2N possible combinations
of the qubit basis states. Using Eq. (8), calculating the trace is
reduced to summing over the matrix elements of the products
of two-qubit exchange Hamiltonians Ĥ jk . We first observe that
in order for 〈q|Ĥ jk1 . . . Ĥ jkm |q〉 = 0, each Ĥ jki must appear
an even number of times; thus if m is odd, σ (m) = 0. For m

even, in the high-N limit the trace is dominated by the terms
which correspond to sequences of Hamiltonians Ĥ jk1 . . . Ĥ jkm

(which we identify with the sequence of qubits {k1 . . . km}) in
which each qubit ki appears exactly twice. This is discussed in

detail in Appendix B. Because the status of qubit j alternates
as the two-qubit Hamiltonians are applied to |q〉, if the first
Hamiltonian Ĥ jki at which a given qubit ki appears is at an even
(odd) location in the sequence, then the second time the same
Hamiltonian Ĥ jki appears must be at an odd (even) location.
These sequences correspond to ways to pair the Hamiltonians
at an even location in the sequence, of which there are m/2,
with Hamiltonians at odd locations, of which there are also
m/2. Thus there are (m/2)! ways to pair them, and we call
such a pairing s, so that the sum over all of these pairings is∑

s (note that here, differing from in Appendix B, in order to
simplify the discussion we have chosen the patterns s to be not
ordered).

For a given pairing s, a sequence can be reconstructed
by choosing a set of qubits {k1 . . . km/2} and an or-
der to assign them to the pairs. For concreteness, con-
sider m = 6 and the specific sequence of Hamiltonians
Ĥ j,5Ĥ j,31Ĥ j,31Ĥ j,5Ĥ j,2Ĥ j,2. This sequence can be broken
down into the pattern {{1,4},{2,3},{5,6}} (labelling the left-
most Hamiltonian 1 and the rightmost as 6) and the qubit
list {5,31,2}. All relevant sequences conform to exactly one
pairing s, and all sequences which conform to a pairing are
accounted for by summing over all ways to assign qubits to
those pairings, i.e.,

∑
{k1...km/2}.

For any sequence s, the number of q for which
〈q|Ĥ jk1 . . . Ĥ jkm |q〉 = 0 is 2N−m/2, because the status of each
of the qubits {k1 . . . km} is fixed relative to j , and modifying
the status of any other qubit preserves 〈q|Ĥ jk1 . . . Ĥ jkm |q〉.
Because each qubit appears twice in {k1 . . . km}, there are
only m/2 qubits in that list, leaving N − m/2 other qubits
which each can be up or down. For example, consider the
sequence and state 〈q|Ĥ j,5Ĥ j,31Ĥ j,31Ĥ j,5Ĥ j,2Ĥ j,2|q〉 = 0
with m = 6; it must be that qubit 2 is opposite j in q (i.e., if j is
raised in q then 2 is lowered, or vice versa), qubit 5 must also be
opposite j , and qubit 31 must match j . Thus once j is fixed, the
three (or more generally m/2) qubits involved in the sequence
are fixed, while the other N − 1 − 3 = N − 1 − m/2 are
arbitrary. There are two choices for j , as well as for the other
N − 1 − 3 = N − 1 − m/2 qubits, leading to 2 × 2N−1−3 =
2N−3 = 2N−m/2 states.

For each of the q for which 〈q|Ĥ jk1 . . . Ĥ jkm |q〉 = 0, this
matrix element is simply the product of exchange coupling
constants 〈q|Ĥ jk1 . . . Ĥ jkm |q〉 = F 2

jk1
. . . .F 2

jkm/2
. Therefore, if

we break up the sum over sequences which conform to the
condition that each qubit appears exactly twice into a sum
over pairings s and qubit assignments {k1 . . . km/2}, we obtain

σ (m) = 2−N 2N−m/2
∑

s

∑
{k1...km/2}

F 2
jk1

. . . F 2
jkm/2

. (9)

There is no s dependence to the right of its sum, so
it simply contributes a multiplication by the number of
pairings s, which is (m/2)! as previously discussed. As
discussed in detail in Appendix B, in the high-N limit
the second sum can be replaced by the expected value of
the exchange coupling constants and a combinatorial factor∑

{k1...km/2} F 2
jk1

. . . F 2
jkm/2

→ (N−1
m/2 )(m/2)!E′[F 2] (here, E′[..]

denotes the expected value of the quantity in brackets over
all pairings jk with j fixed). Using the high-N limit of the
combinatorial prefactor [(N−1

m/2 )(m/2)! → Nm/2], we finally
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FIG. 2. The distribution of the eigenvalues of the single-qubit
error Hamiltonian Ĥ j =∑k Ĥ jk =∑k Fjkσ̂

j
+σ̂ k

− + Fkj σ̂
j
−σ̂ k

+ in the
N → ∞ limit. The distribution has a width σ = (NE′[F 2]/2)1/2

(the quantity E′[F 2] denotes the expected value of the square of the
coupling constants for all pairings jk with j fixed), which scales as
σ ∼ √

ln N in a 2D and σ ∼ N1/6 in a 3D geometry, respectively.

obtain

σ (m) → (m/2)!(NE′[F 2]/2)m/2 m even,
σ (m) = 0 m odd.

(10)

Equation (10) shows that the probability density function
has a standard deviation σ = (NE′[F 2]/2)1/2. Using the
expected values of the coupling constants as discussed in
Appendix E, the width of the distributions would scale as
σ ∼ √

ln N in 2D and σ ∼ N1/6 in 3D, respectively. The
moments shown in Eq. (10) do not correspond to any known
distribution. However, using these moments, we can find the
probability density function f(λ) by first calculating the
moment generating function:

Fmoment(ζ ) ≡ E[exp(iζ)]

=
∫

exp(iζλ)f(λ)dλ

= E

[
1 + iζ + (iζ )2

2!
2 + · · ·

]

= 1 +
∑

m even

(−1)m/2(m/2)!
(σζ )m

m!
. (11)

With the moment generating function calculated using
Eq. (11), the probability density function can then be es-
timated by taking the inverse Fourier transform f(λ) =∫

Fmoment(ζ )exp(−iζλ)dζ . We perform this calculation nu-
merically by using all the even moments m ranging from 2
to 200 in Eq. (11). The calculated probability density function
f(λ) with the horizontal axis scaled by the standard deviation
of the distribution is shown in Fig. 2.

We next discuss how the eigenvalue distribution of the
single-qubit error Hamiltonian relates to the single-qubit error.
The state of the computer can be written as a superposition
of the eigenstates of the single-qubit error Hamiltonian,

|ψ〉 =∑n cn|vn〉. The error on the state vector over a gate
time t0 will then be ε ∼ √∑n |cn|2λ2

nt0 ∼ σ t0. Since the
width of the distribution of the eigenvalues, σ , scales with
the number of qubits, the actual error also scales with the
number of qubits for the vast majority of the states of the
quantum computer in the Hilbert space. More formally, if we
bound the amount of single-qubit error by a threshold, ε < η,
the fraction of the Hilbert space producing errors below this
bound vanishes as N → ∞.

B. Time evolution of the reduced density matrix

In this section, we discuss the time dynamics of the reduced
density matrix for a specific qubit in the ensemble, qubit j . In
this section only, we take the exchange coupling constants Fjk

to be purely real and consider Hermitian dynamics (i.e., we
focus on the Lamb shift part of the coupling constants instead
of the decay). One motivation for this simplification is to
emphasize that all the scaling results that we discuss do not rely
on the non-Hermiciticity of the exchange Hamiltonian. Also,
non-Hermitian dynamics cause the probability amplitudes to
be not conserved, which complicates interpretation of the
dynamics. Without loss of generality, we can write the initial
state of the computer in the following form:

|ψ(t = 0)〉 = |0〉j ⊗
∑

q

αq |q〉 + |1〉j ⊗
∑

q

βq |q〉. (12)

Here, differing from the rest of the paper, |q〉 denotes the
states of the remaining N − 1 qubits other than that specific
qubit j (instead of the state of the full computer), and the
quantities αq and βq are the complex expansion coefficients.
Using the single-qubit error Hamiltonian Ĥ j =∑k Ĥ jk and
the expansion of Eq. (12), Schrodinger’s equation can be
reduced to a set of coupled differential equations for the
coefficients:

i
dαq

dt
=
∑

k

F ∗
jkβq�k, i

dβq

dt
=
∑

k

Fjkαq⊕k. (13)

Here, we use the notation |q � k〉 to mean the configuration
that equals |q〉 at all qubits except qubit k = j which has under-
gone |1〉k → |0〉k transition (the summation is over configura-
tions |q � k〉 where |q〉 has qubit k raised). Similarly, |q ⊕ k〉
is the configuration that equals |q〉 at all qubits except qubit
k = j which has undergone |0〉k → |1〉k transition. With the
time evolution for the coefficients calculated through Eq. (13),
the reduced density matrix elements for the qubit j can be
calculated by writing out the full density matrix and tracing out
the coordinates of the remaining N − 1 qubits, which results
in ρ

j

00(t) =∑q |αq(t)|2, ρ
j

11(t) =∑q |βq(t)|2 (the diagonal

density matrix elements), and ρ
j

01(t) =∑q αq(t)β∗
q (t) (the

off-diagonal density matrix element).
We first discuss the solution of Eqs. (13) when the initial

condition is such that only one of the αQ coefficients for
a specific configuration Q is nonzero [i.e., αQ(t = 0) = 1;
αq(t = 0) = 0 for q = Q; βq(t = 0) = 0]. The key difficulty
in finding the solution is that due to the structure of the
coupled equations (Fig. 3), the number of coefficients that
αQ couples to grows exponentially. For the vast majority of
states Q in the Hilbert space, αQ initially couples to (∼N/2)
βQ�k coefficients, each of which couples to (∼N/2) αQ�k⊕k′
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FIG. 3. The structure of the couplings in the coupled equations of
Eqs. (13). Each αq initially couples to (∼N/2) βq�k coefficients, each
of which couples to (∼N/2) αq�k⊕k′ coefficients, and this structure
continues until αq couples to all the coefficients in a specific subspace
of the Hilbert space. Because of this nested structure, the number of
coefficients that αq couples to grows exponentially.

coefficients, each of which couples to (∼N/2) βQ�k⊕k′�k′′

coefficients, and this nested structure continues. This structure
suggests that an iterative solution based on Taylor series
expansion can be found. The details of this solution are
discussed in Appendix C. Briefly, we start with the zeroth-
order solution, which is essentially the initial condition (at
t = 0) for the coefficients: α

(0)
Q = 1; α(0)

q = 0 for q = Q;
β(0)

q = 0. We then solve Eqs. (13), using the zeroth-order
solutions on the right-hand side of the equations. The result
gives us the first-order solutions which we denote as α

(1)
Q , α(1)

q ,
and β(1)

q . These first-order solutions are then used to resolve the
coupled differential equations to give second-order solutions,
and this iterative procedure is repeated until all orders of the
Taylor series expansion are found. The end result is a Taylor
series solution of the form

αQ(t) =
∑

n

(−1)n
l(n)

(2n)!
(σ t)2n, (14)

where σ is the standard deviation of the eigenvalue distribution
of the single-qubit error Hamiltonian as discussed above σ =
(NE′[F 2]/2)1/2. The quantities l(k) are combinatorial factors
whose values are calculated algebraically using an iterative
algorithm which gives l(1) = 1, l(2) = 2, l(3) = 5, l(4) = 14,
l(5) = 42, l(6) = 132, and so on. The details of this iterative
algorithm can also be found in Appendix C. We numerically
find that the Taylor series converges when more than about
30 terms are kept in the expansion (i.e., terms that go until
t60). Using this approach, we numerically evaluate αQ(t) and
the result is shown in Fig. 4. αQ(t) decays as the amplitude
leaks out to the other states in the Hilbert space in time scales
t ∝ 1/σ . As discussed above, the standard deviation of the
eigenvalue distribution scales as σ ∼ √

ln N in a 2D geometry
and σ ∼ N1/6 in a 3D geometry, respectively. As a result, the
decay time scale gets ever shorter as the total number of qubits
in the computer is increased: t ∼ 1/

√
ln N in 2D, t ∼ 1/N1/6

in 3D, respectively.

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15
t

Q (t)

FIG. 4. The evolution of αQ(t) as a function of time for the initial
condition αQ(t = 0) = 1; αq (t = 0) = 0 for q = Q; βq (t = 0) = 0.
The initial probability amplitude decays in time scales given by t ∝
1/σ , where σ = (NE′[F 2]/2)1/2. As a result, the decay time scale
gets ever shorter as the total number of qubits in the computer is
increased: t ∼ 1/

√
ln N in 2D, t ∼ 1/N1/6 in 3D, respectively.

To extend the analysis to an arbitrary initial state, we
utilize the linearity of the problem. We denote the specific
time function that starts at a value of 1 and decays to 0
as plotted in Fig. 4 with ξ (t). In the previous paragraphs,
we have shown that with αQ(t = 0) = 1 initial condition,
the solution is of the form αQ(t) = αQ(t = 0)ξ (t). Using the
general form of the solution of the Schrodinger’s equation,
|ψ(t)〉 = exp(−iĤ j t)|ψ(t = 0)〉, for an arbitrary initial state
written in the form of Eq. (12), the solutions for the expansion
coefficients will be of the form

αq(t) = αq(t = 0)ξ (t) + δαq(t),

βq(t) = βq(t = 0)ξ (t) + δβq(t). (15)

Here, δαq(t) and δβq(t) include the “flow” of the probability
amplitude to that specific αq or βq due to the decay of all
the other coefficients. The key insight that Eq. (15) gives is
that each coefficient in the initial condition decays with the
time function ξ (t) and gets gradually replaced by a “random-
looking” contribution that depends in a complex manner on
all the other coefficients. This shows that the function ξ (t) as
plotted in Fig. 4 captures the “single-qubit error.” For example,
the evolution of one of the off-diagonal density matrix element
(coherence) for this specific qubit j is given by

ρ
j

01(t) =
∑

q

αq(t)β∗
q (t)

=
∑

q

αq(0)β∗
q (0)ξ (t)2 +

∑
q

αq(0)δβ∗
q (t)ξ (t)

+
∑

q

δαq(t)β∗
q (0)ξ (t) +

∑
q

δαq(t)δβ∗
q (t)

= ρ
j

01(0)ξ (t)2 +
∑

q

αq(0)δβ∗
q (t)ξ (t)

+
∑

q

δαq(t)β∗
q (0)ξ (t) +

∑
q

δαq(t)δβ∗
q (t). (16)
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FIG. 5. The time evolution of the coherence (off-diagonal density matrix element) for qubit j , ρj

01(t), for eight different initial conditions in
a 16-qubit quantum computer. (a) Uniform initial condition αq (t = 0) = βq (t = 0) = 1/

√
2N , (b) 8 nonzero amplitudes with equal amplitudes

and phases, (c) only 2 nonzero amplitudes, (d) 200 nonzero amplitudes with 50 of them π out of phase with the rest, (e) 50 nonzero amplitudes
with 8 of them π out of phase with the rest, and [(f)–(h)] all nonzero probability amplitudes with random amplitudes and phases (slight
nonrandomness in the phases is introduced to produce a small initial value of the single-qubit coherence). For comparison, the square of the
analytical solution of Fig. 4 is also plotted for each initial condition (red dashed line). The initial decay is well predicted by the analytical
solution (which is valid in the N → ∞ limit) even for this low number of qubits.

Equation (16) shows that the initial coherence for the qubit
decays with the function ξ (t)2 and gets replaced by sums over
quantities that involve δαq(t) and δβq(t). In the N → ∞ limit,
the coupling coefficients Fjk have practically random signs.
As a result, the signs of δαq(t) and δβq(t) are also random,
and neither of the three sums in Eq. (16) produce substantial
coherence. This shows that qubit j decoheres and essentially
loses all the information regarding its initial coherence in time
scales determined by t ∝ 1/σ . The evolution of the diagonal
density matrix elements, ρ

j

00 and ρ
j

11, would show exactly the
same behavior. The bit-flip errors would also happen in time
scales determined by t ∝ 1/σ .

We have also tested these ideas by performing numerical
simulations over the full Hilbert space of the computer. In
these simulations, starting with a specific initial state, we
numerically solve coupled equations of Eqs. (13) using the
finite difference method on a discrete time grid. Because of
memory limitations, the largest number of atoms that we can
simulate is limited to 16 with the Hilbert space dimension
of 216 = 65536. For concreteness, we consider a 2D 4 × 4
array of qubits and choose qubit j to be at the corner of
the array. We take the emission wavelength to be λa = 9
and choose d = 5 in arbitrary units such that κad = 10π/9.
Figure 5 shows the evolution of the coherence for the qubit

j , ρ
j

01, for eight different initial conditions; the specifics of
these initial conditions are outlined in the figure caption. For
all eight of these initial conditions, the initial decay of the
coherence is rather similar. Because of the low number of
qubits considered, the values of the coupling constants Fjk

do not span a very large range. As a result, there are partial
revivals of the coherence at time points that depend on the
specifics of the initial conditions. For comparison, the square
of the analytical solution of Fig. 4, ξ (t)2, is also plotted for
each initial condition (red dashed line). The initial decay is
well predicted by the analytical solution, which is strictly
speaking valid in the N → ∞ limit. Using similar numerical
simulations with a variety of initial conditions, we have also
looked at the evolution of the diagonal density matrix elements
for qubit j , ρ

j

11(t), and ρ
j

00(t). We have found results to be
similar to those that are displayed in Fig. 5; both diagonal
elements approach 1/2 in time scales determined by t ∝ 1/σ ,
and the initial information regarding the value of the bit is lost.

Figure 6 shows the diffusion of the initial probability
amplitudes in the full Hilbert space of 216 coefficients for
the numerical simulation of Fig. 5(c). Here starting from the
initial two nonzero probability amplitudes, the state of the
computer evolves to cover almost all of the Hilbert space by
the time σ t ∼ 4. Although some information about the initial
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FIG. 6. The absolute value of the expansion coefficients at t = 0,
σ t = 1, σ t = 2, σ t = 3, and σ t = 4 respectively. This simulation
is performed for parameters that are identical to those used in
the simulation of Fig. 5(c). Starting from the initial two nonzero
probability amplitudes, the state of the computer evolves to cover
almost all of the Hilbert space by the time σ t ∼ 4.

condition remains by the time σ t ∼ 4, the random nature of
the leakage of the initial amplitudes to the Hilbert space is also
clear even for this very small number of qubits.

In this section, we have shown that each qubit j in the
computer decoheres in time scales t ∝ 1/σ due to correlated
decay. As discussed in the introduction, if complexity classifi-
cations have a similar importance in quantum computation as
in classical computation, then the fundamental result that the
error always dominates for sufficiently large N is relevant
regardless of the number N∗ at which the error begins
to dominate. However, there is no guarantee that N → ∞
limit carries the same weight in quantum computing (as it
does in classical computing), and we now have the tools
to roughly estimate N∗. We stress that this is tangential to

the main result, which is the mere existence of such an N∗.
We define N∗ through the condition 1/σ = t0, where σ is
the width of the single-qubit Hamiltonian spectrum so that
1/σ is the time scale over which a single qubit decoheres,
and t0 is the gate time, which we take to have its smallest
physically possible value, t0 = d/c. As discussed above, σ =√

NE′[F 2]/2, which leads to the condition N∗ = e
2
π

(cκa/�)2
in

2D and N∗ = 8
(π+29/12)3 (cκa/�)6 in 3D, respectively (we have

averaged over all possible choices of single qubits j , so that
E′[F 2] → E[F 2] where E[. . .] stands for the expected value
over all possible pairs, and used the results of Appendix E for
E[F 2]). For N > N∗, qubits decohere on time scales shorter
than the gate time, making error correction impossible.

V. PHYSICAL DESCRIPTION OF THE SINGLE-QUBIT
ERROR

The scaling of the single-qubit error with the total number
of qubits in the computer can be understood using a qualitative
classical argument which we discuss here. The key idea is that
at the position of specific qubit j , the field emission from each
of the other qubits interfere and cause this qubit to dephase.
In the limit of N → ∞, the radiation from other qubits at the
position of qubit j has essentially random phases. As a result,
the interference can be thought of as an incoherent sum of the
radiated fields from the other qubits at the position of qubit j .
Consider any other qubit in the computer, qubit k, at a distance
�rjk away from qubit j . Classically qubit k can be viewed as
a radiating dipole at the frequency of the qubit transition ωa .
This radiating dipole would then produce the following electric
field at the position of qubit j [64]:

Ejk = ηω2
a

4πc

μ

rjk

exp(iκarjk). (17)

Here, the quantity η is the impedance of free space η =√
μ0/ε0, and μ is classically the strength of the radiating dipole

(the dipole matrix element). In Eq. (17), for simplicity, we have
ignored any angular dependence of the radiation pattern and
considered the angular average. The electric field of Eq. (17)
will interact with qubit j and cause unwanted rotation of the
qubit states. The rate of this dephasing rotation is captured by
the Rabi frequency due to the electric field:

�jk = μEjk

h̄
= ηω2

a

4πh̄c

μ2

rjk

exp(iκarjk). (18)

Equation (18) can be thought of as the dephasing rate of
qubit j due to the presence of qubit k in the computer. Each
qubit k in the computer produces an electric field given by
Eq. (17). In the N → ∞ limit, the quantities κarjk become
very large, and as a result, the radiated fields from individual
qubits can be taken to have a random phase relationship with
each other. The total electric field is then the incoherent sum
from individual emissions Etotal = √∑k |Ejk|2 and the total
dephasing rate is

�total =
√∑

k

|�jk|2 =
(

3

4
NE′[F 2]

)1/2

. (19)

This dephasing rate can be thought of as the single-qubit
error rate. Note that this result agrees (within a prefactor) with
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both of the results discussed in the previous section; i.e., the
spread of the eigenvalue distribution σ of the single-qubit error
Hamiltonian and the decay predicted by the analytical solution
of Fig. 4.

VI. EIGENVALUE SPECTRUM OF THE TOTAL
EXCHANGE HAMILTONIAN

We note that the previous sections have only considered
approximate dynamics for estimating the single-qubit error on
a given qubit by only including interactions in the exchange
Hamiltonian Ĥeff which affect that qubit, i.e., the single-
qubit error Hamiltonian Ĥ j . The width of the single-qubit
Hamiltonian’s spectrum gives the time scale over which state
coefficients evolve if only those interactions are considered;
in Sec. IV, we also showed that, as expected from the
eigenvalue spectrum, the single-qubit coherence evolves on
this time scale. However, because [Ĥ k1k2 ,Ĥ k2k3 ] = 0 for k1 =
k3, this time evolution is approximate; although unlikely,
there is the possibility that interactions between single-qubit
Hamiltonians, the sum over which comprise the full exchange
Hamiltonian, mitigate the errors. In this section, we show
that this is not the case by finding the spectrum of the full
Hamiltonian and showing that it is consistent with the picture
in which each single-qubit Hamiltonian acts randomly and
independently. Roughly speaking, if N single-qubit Hamil-
tonians act independently during each time step, changing
the coefficient in a random direction but with magnitude
typically σ (where σ is the width of the single-qubit error
Hamiltonian spectrum), then the coefficient should change by
typically

√
Nσ during that time step. If this holds for finite

times, all moments of the exchange Hamiltonian spectrum
should therefore be

√
N times larger than the moments of the

single-qubit error Hamiltonian, which is indeed the case. In
this section, we will also discuss how error correction fails
in another fundamental way. The width of the eigenvalue
spectrum of the exchange Hamiltonian grows faster compared
to the width of the system Hamiltonian. As a result, as
N → ∞, exchange interaction Hamiltonian dominates and
can no longer be thought of as a perturbation to the system
Hamiltonian. In fact, the system Hamiltonian becomes a
perturbation on the exchange interaction Hamiltonian.

The eigenvalue distribution of the full exchange Hamilto-
nian Ĥ eff =∑(jk) Ĥ

jk can be found in the N → ∞ and con-
tinuum limit by again finding the moments of the distribution,
σ (m), for all integers m:

σ (m) = 2−NTr[(Ĥ eff)m]

= 2−N
∑

q

〈q|(Ĥ eff)m|q〉

= 2−N
∑

q

∑
(k1,l1)

. . .
∑

(km,lm)

〈q|Ĥ k1l1 . . . Ĥ kmlm |q〉. (20)

This derivation is highly technical and the details are presented
in Appendix D. The result is that the odd moments become
negligible as N → ∞, and the even moments fractionally
converge to

σ (m) → m!
(

1
2NE[F 2]1/2

)m
. (21)
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FIG. 7. The distribution of the eigenvalues of the total exchange
Hamiltonian Ĥeff in the N → ∞ limit. The eigenvalues are distributed
according to the Laplace distribution, f(λ) = 1

2σeff
exp(− |λ|

σeff
) whose

standard deviation is given by σeff = 1
2 NE[F 2]1/2. The width of the

spectrum scales as σeff ∼ N 1/2 ln N in 2D and σeff ∼ N 2/3 in 3D
respectively. Since in both geometries the spectrum spreads faster than
the spectrum of the system Hamiltonian, 1

2 ωa

∑N

j=1 σ̂ j
z , the dynamics

of the computer become completely dominated by the noise due to
correlated decay in the N → ∞ limit.

Here, the notation E[. . .] refers to calculating the expected
value of the quantity inside the brackets for all possible pairings
of jk. Equation (21) shows that the eigenvalues of the full
exchange Hamiltonian are distributed according to the Laplace
distribution,

f(λ) = 1

2σeff
exp

(
− |λ|

σeff

)
, (22)

whose standard deviation is given by σeff = 1
2NE[F 2]1/2.

This distribution is plotted in Fig. 7. Using the scaling of
the expected values of the coupling constants as discussed
in Appendix E, the width of the spectrum scales as σeff ∼
N1/2 ln N in 2D and σeff ∼ N2/3 in 3D respectively. Note
that the computer system Hamiltonian without any noise is
1
2ωa

∑N
j=1 σ̂

j
z (with possibly a gate Hamiltonian added on,

which adds no N dependence). When N → ∞, the eigen-
value distribution of the computer Hamiltonian thus becomes
a Gaussian distribution, with standard deviation σsystem =
ωa

√
N/2. Both in 2D and 3D geometry, the spectrum of

the exchange interaction Hamiltonian has a spread that scales
faster compared to the system Hamiltonian, showing that as
N → ∞ noise would dominate. To formalize this statement,
for a Gaussian distribution, the odd moments are zero and the
even moments are (m − 1)!!σm

system = (m − 1)!!( 1
2ωaN

1/2)m

(the symbol “!!” stands for the double factorial). Thus the
scaling of the mth moment (for m even) of the computer
Hamiltonian is Nm/2, while for the exchange Hamiltonian it
is NmE[F 2]m/2; in 2D NmE[F 2]m/2 ∼ Nm/2 ln(N )m/2 and in
3D, NmE[F 2]m/2 ∼ Nm/2Nm/6. As a result, for both geome-
tries for sufficiently large N the spectrum of the exchange
Hamiltonian dominates over the computer Hamiltonian. When
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the exchange interaction Hamiltonian dominates, the system
can no longer be thought of as a collection of two-level
systems. This is another way to see that the exchange
Hamiltonian causes fundamental problems when considering
scalability.

The eigenvalue spectrum of the full exchange Hamiltonian
discussed above is consistent with each single-qubit error
Hamiltonian decohering the quantum state randomly and
independently. Suppose that there are no correlations between
the single-qubit Hamiltonians Ĥ j , in the sense that for almost
all states |ψ〉, the overlap between Ĥ j |ψ〉 and Ĥ k|ψ〉 for
j = k is approximately the overlap between two random states,
which is the randomly signed sum of 2N objects, each typically
of the magnitude (2−N/2)2, making the overlap typically
2−N/2. Then the norm of Ĥeff|ψ〉, which is typically σeff ,
is (〈ψ |ĤeffĤeff|ψ〉)1/2 = (

∑
j,k 〈ψ |Ĥ j Ĥ k|ψ〉)1/2. For k = j ,

〈ψ |(Ĥ j )2|ψ〉 is typically σ 2 in magnitude (σ is the width of
the single-qubit error Hamiltonian). For k = j , 〈ψ |Ĥ j Ĥ k|ψ〉
is typically σ 22−N/2 in magnitude under the assumption of no
correlations between Ĥ j ,Ĥ k . There are N terms with k = j

and N2 with k = j , so for large N the k = j terms don’t
matter and the norm of Ĥeff|ψ〉 is typically

√
Nσ . Similar

considerations show that the same relationship holds for all
powers: The norm of (Ĥeff)m|ψ〉, which by definition is on
average σ (m) ∼ σm

eff , is typically Nm/2σeff . As we have found,
these are indeed the moments of the exchange Hamiltonian
spectrum, which shows that the N single-qubit Hamiltonians
do not have strong correlations between them, and therefore
that the single-qubit Hamiltonian yields the correct time scale
for the single-qubit error.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, we have analyzed noise on quantum com-
puters due to correlated decay between the qubit levels,
which inevitably happens when the qubits are coupled to
a common bosonic bath. We have first shown that even
when the spacing between the qubits becomes larger than
the emission wavelength, correlated decay produces errors
outside the applicability of the threshold theorem. This is
because the sum of the norms of the Hamiltonians (which
can be viewed as the upper bound on the single-qubit error)
that decoheres each qubit scales with the total number of qubits
and is unbounded. We have then discussed two related results:
(1) We have shown that for a majority of states in the Hilbert
space, the actual error (instead of the upper bound) on each
qubit scales with the number of qubits. As a result, in the
limit of large number of qubits in the computer, N → ∞,
correlated decay causes each qubit in the computer to decohere
in arbitrarily short time scales. (2) We have found the complete
eigenvalue spectrum of the Hamiltonian that causes correlated
decay in the same limit. We have shown that the spread of
the eigenvalue distribution grows faster with N compared to
the spectrum of the unperturbed system Hamiltonian. As a
result, as N → ∞, quantum evolution becomes completely
dominated by the noise due to correlated decay.

One weakness of our results is that, throughout this paper,
we have taken all the qubits to be causally connected to each
other. It could perhaps be argued that if quantum error detection

and correction cycle time is chosen to be sufficiently short,
then before correlations causally reach all the qubits in the
computer, errors can be corrected. We believe, however, that
this argument is flawed. Suppose that we choose a fixed number
of qubits, K , and during every quantum error correction cycle,
we detect and correct errors on these K qubits. In this picture,
we divide the full computer into clusters each of which contains
K qubits. The error correction cycle is chosen to be sufficiently
short such that K qubits in each cluster are causally connected
to one another, but they are causally isolated from the rest
of the computer. The main concern is that the qubits in each
cluster can emit photons to the bath, which can propagate
and at a later time be absorbed by another cluster. Unless
the bosonic bath memory is erased, then bath correlations
would propagate across the clusters and eventually cover the
full computer (once sufficient time evolution is allowed so
that the full computer is causally connected). To us, it is very
hard to see how propagation of photons in the bath (causing
“coupling” between clusters) can be avoided unless sections
of the computer are completely isolated from one another. The
physical picture that is developed in Sec. V is also helpful
here. As noted above, this picture suggests that the radiated
fields from all the other qubits in the computer interfere at
the position of each qubit, causing decoherence that depends
on the total number of qubits in the computer. In this picture,
the precise emission time of the photons should not matter.
The photons emitted from far-away points in the ensemble,
even though they may have been emitted many quantum error
correction cycles ago, would have similar strength and random
phase as they reach a specific qubit in the ensemble. The
scaling results that we discuss should, therefore, still be valid
even though there may be many quantum error correction
cycles during the time as the whole computer becomes causally
connected.

In our view, our results put the scalability of quantum
computers in 2D and 3D geometries into significant question,
since any quantum system is inevitably coupled to a common
bosonic bath. This being said, we certainly have not proven
that noise due to correlated decay cannot be overcome. One
strategy would be to use clever software (encoding) techniques
of quantum information. It is now well understood that
when the qubit-environment coupling is completely symmetric
(small-sample regime), then quantum information can be
protected from this kind of noise by encoding in decoherence
free subspaces [43–45]. Unfortunately, such subspaces do
not exist when the symmetries in the qubit-environment
coupling are broken [46], which inevitably happens in the
large sample case. But nevertheless, there are states with a
reduced decoherence rate. For example, in the eigenvalue
spectrum of the single-qubit error Hamiltonian of Fig. 2,
there are eigenstates with an eigenvalue near zero. Because
the standard deviation (the spread) of the whole distribution
scales with the number of qubits, it is clear that the fraction
of states with an eigenvalue smaller than a fixed threshold
will be vanishingly small as N → ∞. But perhaps it may
be possible to show that scalable quantum computing can be
performed in this vanishingly small fraction of the Hilbert
space. We do note, however, that for complicated noise
Hamiltonians (such as the exchange Hamiltonian that causes
correlated decay) it is not clear how such special portions of
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the Hilbert space can be calculated. For such systems, even
calculating the ground state of the Hamiltonian is usually an
exponentially-hard problem. This indicates that it is likely not
possible to efficiently calculate the space of states with reduced
decoherence properties for such complex Hamiltonians. As
discussed in detail in Refs. [66,67], efficient calculation of
the eigenstates of similar spin-glass Ising models would have
far-reaching consequences in computational complexity.

Another strategy would be to design the computer at
the hardware level to overcome correlated noise. A detailed
discussion of various hardware strategies is left for a future
publication, but we will mention a few ideas here. The key
reason why correlated noise becomes uncorrectable is that
every qubit interacts with and randomly decoheres every
other qubit in the computer. It may be possible to physically
isolate subsections of the computer so that they are uncoupled.
Although it is not quite clear how this could be done, since
subsections need to be entangled at some point during the
computation and any entangling operation will necessarily
include some kind of common environment coupling. Related
to this idea, perhaps clusters of qubits at remote locations
(coupled using, for example, long optical fibers) could be used.
Yet another strategy would be to use a specific qubit system
that would be less susceptible to correlated decay. Degenerate
qubits (i.e., qubits with zero energy spacing between the qubit
levels) and systems with varying qubit energies over the whole
ensemble are known methods to reduce correlated decay. Our
preliminary assessment of these strategies indicates that none
of these ideas change the central results and the scalings in the
problem; i.e., in the computational complexity terminology
they modify the constants but not the N scalings. However, all
of these ideas need to be carefully evaluated to clarify if the
noise due to correlated decay can be overcome at a fundamental
level.

We finally note that the exhange interaction is rather fun-
damental and is relevant in many interacting “spin” systems,
ranging from polar molecules to Rydberg atoms [68]. Another
future direction would be to explore the implications of the
spectrum of the total exchange Hamiltonian of Fig. 7 in these
other interacting spin systems.
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APPENDIX A: DERIVATION OF THE EXCHANGE
HAMILTONIAN

In this Appendix, we discuss derivation of the effective
exchange Hamiltonian of Eq. (3) starting with the total
Hamiltonian for the system of Eq. (1) which describes the
qubit ensemble, the bosonic bath, and the interaction between
the two. This derivation follows steps that closely mimic the

Wigner-Weiskoppf theory of spontaneous decay [63]. We take
the the initial state of the qubit system to be an arbitrary (in
general entangled) superposition state and assume that we start
with zero photons in each field mode κε. The initial state
of the combined atom-radiation field system can be written
as

|ψ(t = 0)〉 =
2N −1∑
q=0

cq,0|q〉 ⊗ |0〉. (A1)

Here, the index q runs through all possible 2N combinations
for the qubits and cq are the expansion coefficients. We define
the following parameter for each atomic state |q〉:
2Mq ≡ # of atoms in state|1〉 − # of atoms in state|0〉. (A2)

With this definition, the energy of the atomic state |q〉 is
Mqh̄ωa . Working in the interaction picture, we expand the
wave function as

|ψ(t)〉 =
2N −1∑
q=0

cq,0(t)exp[−i(Mqωa)t] |q〉 ⊗ |0〉

+
∑
κε

2N−1∑
q ′=0

cq ′,1κε
(t)

× exp[−i(Mq ′ωa + νκε)t] |q ′〉 ⊗ |1κε〉. (A3)

Here, |1κε〉 represents the state of the radiation field in
which the field mode κε has one photon while all the other
modes are in vacuum state and the quantity νκε is the fre-
quency of this mode. With these definitions, the Schrödinger’s
equation

ih̄
d|ψ(t)〉

dt
= Ĥtotal|ψ(t)〉 (A4)

yields the following continuum of coupled equations:

dcq,0

dt
= i

∑
κε

gκε

∑
j

exp(i�κ · �rj )cq�j,1κε
(t)

× exp[−i(νκε − ωa)t],

dcq�j,1kε

dt
= igκε

∑
k

exp(−i�κ · �rk)cq�j⊕k,0(t)

× exp[−i(ωa − νκε)t]. (A5)

Here, as mentioned in the main text, we use the notation
|q � j 〉 to mean the configuration that equals |q〉 at all
qubits except the qubit j which has undergone a |1〉j → |0〉j
transition. The quantity �rj is the position vector of the qubit j .
Similarly, the configuration |q � j ⊕ k〉 differs from |q � j 〉
by raising qubit k (at the position �rk) from |0〉k → |1〉k .
The coupled equations of above are intuitive. Each specific
configuration |q〉 is coupled to configurations where a qubit is
lowered (configurations |q � j 〉) by emitting a photon into
the bath. Similarly, each configuration |q � j 〉 is coupled
to configurations where a qubit is raised (configurations
|q � j ⊕ k〉) by absorbing a photon from the bath. We then
formally integrate the equations that contain bath excitations
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cq�j,1κε

cq�j,1κε
(t) = igκε

∑
k

exp(−i�κ · �rk)

×
∫ t

0
exp[−i(ωa − νκε)t ′]cq�j⊕k,0(t ′)dt ′.

(A6)

Here, it is assumed that the coupling to the radiation
modes is turned on at t = 0. It is also assumed that the
initial conditions for the continuum mode amplitudes are
cq�j,1κε

(t = 0) = 0. Using Eq. (A6), the differential equation
for cq,0 in Eq. (A5) now reads

dcq,0

dt
= −

∑
κε

|gκε |2
∑

j

∑
k

exp(i�κ · �rjk)

×
∫ t

0
exp[−i(νκε − ωa)(t − t ′)]cq�j⊕k,0(t ′)dt ′,

(A7)

where we have defined �rjk ≡ �rj − �rk . This way, the problem is
reduced to a set of coupled integrodifferential equations for the
initial probability amplitudes cq,0. Each state |q〉 is coupled to
all states that differ by lowering one qubit and raising another
qubit in the configuration (i.e., to states |q � j ⊕ k〉). We next
rewrite the summation as an integral since we are considering
a continuum of radiation modes:∑

κε

|gκε |2 → V

(2π )3

∫
κε

|gκε |2d3κ. (A8)

Here, κ = |�κ| and V is the quantization volume which
is assumed to be much larger than the qubit ensemble. We
proceed in spherical coordinates and replace d3κ integral with
d3κ = κ2 sin θdκdθdφ. The coupling constants gκε depend on
the matrix element between the two levels and also the angle
between the polarization of a particular electromagnetic mode
and the orientation of the atomic dipole:

|gκε |2 = νκεμ
2

2ε0h̄V
(�ε · �εa)2. (A9)

Here, μ is the coupling matrix element between the two
levels (electric-dipole or magnetic-dipole), �ε is the polarization
vector of the mode with frequency νkε , and �εa is the orientation
vector of the atomic dipole. With these definitions, Eq. (A7)
reads

dcq,0

dt
= − μ2

2(2π )3ε0h̄c3

∑
j

∑
k

∫ ∞

0
ν3

κ

×
[∫ π

0

∫ 2π

0
sin θ (�ε · �εa)2 exp(i�κ · �rjk)dθdφ

]

×
[∫ t

0
exp[−i(νκ − ωa)(t − t ′)]cq�j⊕k,0(t ′)dt ′

]
dνκ .

(A10)

Here, we have used the identity κ = νκ/c to convert the
outermost integral from dκ to dνκ . The middle angular integral

can be evaluated analytically:∫ π

0

∫ 2π

0
sin θ (�ε · �εa)2 exp(i�κ · �rjk)dθdφ

= 4π (1 − cos2 θjk)
sin(κrjk)

κrjk

+ 4π (1 − 3 cos2 θjk)

×
[

cos(κrjk)

(κrjk)2
− sin(κrjk)

(κrjk)3

]
. (A11)

Here rjk = |�rjk| and the angle θjk is the angle between the
atomic dipole moment vector �εa and the separation vector �rjk:

cos θjk = (�εa · �rjk)2

r2
jk

. (A12)

To evaluate the time and frequency integrals in Eq. (A10),
we employ the usual Born-Markov approximation. For this
purpose we replace cq�j⊕k,0(t ′) with cq�j⊕k,0(t) and take
this quantity outside the integral. We also consider the
t → ∞ limit of the inner time integral, which results in∫∞

0 exp[i(νκ − ωa)t ′]dt ′ = πδ(νκ − ωa) + iP{ 1
νκ−ωa

} (δ is the
Dirac δ function and P{} stands for the principal value). Using
all of these results and simplifications, Eq. (A10) reduces to

dcq,0

dt
= −

∑
j

∑
k

Fjkcq�j⊕k,0, (A13)

where Fjk are the exchange coupling coefficients as defined in
Eq. (5).

1. Beyond the Born-Markov approximation

The Born-Markov approximation that allows the derivation
of the effective exchange Hamiltonian of Eq. (3) assumes
the evolution time scales for the state coefficients to be
slow compared to the correlation time scales of the bath.
It is important to understand our system beyond this ap-
proximation, since as N → ∞ the system dynamics become
ever faster and Born-Markov approximation is violated. We
recently developed a model of correlated decay that goes
beyond the Born-Markov approximation and models finite
time scales of bath correlations and propagation effects across
the sample. We will discuss the details of this model, including
its derivation, in a future publication. Briefly, in this model,
the state coefficients evolve according to an integrodifferential
equation of the form

dcq

dt
= −

(
3

8π

)
�

2

∑
j

∑
k

(1 − cos2 θjk)
∫ t

0
exp[iωa(t − τ )]

×G(t − τ )cq�j⊕k(τ )dτ, (A14)

where

G(t − τ ) ≡ 2π

(rjk/c)
Box

[
t − τ

(rjk/c)

]

− i
2

(rjk/c)
ln

[
(rjk/c) + (t − τ )

|(rjk/c) − (t − τ )|
]
. (A15)

Here, the Box function equals one when its argument is
between 0 and 1, and equals zero otherwise. The integration
kernel G(t − τ ) captures the correlation (memory) time scales
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of the bath, which has a width of order rjk/c. We have
verified that the above model is consistent with many other
formulations of large-sample super-radiance, as discussed in
detail, for example, in the review article Ref. [48], Sec. 7.
The above model clarifies the effect of the Born-Markov
approximation in large samples. If the evolution time scales
for the state coefficients are slow compared to the width of
the function G(t − τ ), then the kernel effectively acts like a
δ function. Under these conditions, cq�j⊕k(τ ) coefficients can
be taken outside the integral and be replaced by cq�j⊕k(τ ) ≈
cq�j⊕k(t). If the coefficients are not slowly varying, then this
approximation cannot be applied. When the Born-Markov
approximation is not satisfied, the rate of change in each
coefficient cq is not only influenced by the values of the
coefficients at that particular time, cq�j⊕k(t), but instead
depends the values of the coefficients over the time window
[t,t − rjk/c]. We note that all the scaling results that we discuss
in the paper result from N -dependent sums over the prefactors
in fronts of these coefficients, which have almost random
phases (due to large spacings) and 1/rjk scaling factors. It
is very hard to see how any of these scaling results could
be altered when one considers not just the values of the
coefficients at that particular time but also takes into account
their evolution history, since neither phases nor the average
strengths of the prefactors are altered.

As discussed in Sec. V above, a good physical model
for correlated decay in large samples can be summarized as
follows: Consider a specific qubit j in the ensemble. The
radiated fields from all the other qubits in the computer
interfere at the position of the qubit j producing a randomly
fluctuating field. This fluctuating field results in random phase
rotations and population transfer in qubit j , causing bit-flip and
decoherence errors. When the Born-Markov approximation is
satisfied, we evaluate the field values at a specific point in
time and consider their interference. When the Born-Markov
approximation is violated, we need to take into account not
only each emitted field at a specific point in time, but also
the history of the field over the window [t,t − rjk/c]. But for
both cases, neither the number of fields that are interfering nor
the average strength of each field is altered. As a result, the
scaling results that we discuss should remain valid even when
the Born-Markov approximation is violated.

APPENDIX B: THE EIGENVALUE SPECTRUM
OF THE SINGLE-QUBIT ERROR HAMILTONIAN

Here we present the details of deriving the eigenvalue dis-
tribution of the single-qubit error Hamiltonian Ĥ j in the limit
of N → ∞. The method outlined below is more complicated
than it needs to be, but it introduces the ideas and definitions
necessary for the case of the full exchange Hamiltonian Ĥeff ,
which is discussed in Appendix D. The distribution of the
eigenvalues can be reconstructed by evaluating the moments,
the mth of which is defined as

σ (m) = 2−N Tr[(Ĥ j )m]. (B1)

To compute the trace, we use the basis of states |q〉 which cor-
respond to definite arrangements q of the qubits. For example,
with N = 6, one q is {{1,1},{2,0},{3,0},{4,1},{5,1},{6,0}},
which indicates that the first qubit is raised, the second is

lowered, the third is lowered, and so forth. Let the space of
arrangements of any set of qubits Q be AQ; defining N be the
set of all qubits, q ∈ AN . We will make use of the space AQ
for Q = N , which makes the explicit reference to the qubit
labels in the arrangements q useful. Note that the common
convention in which the qubit label is deduced from the loca-
tion, i.e., {{1,1},{2,0},{3,0},{4,1},{5,1},{6,0}} → {100110},
is more concise but is only unambiguous when dealing
with arrangements of all qubits, i.e., Q = N . To make the
distinction between these cases clear, we reserve the letter
q for elements of AN , and use r for elements of AQ when
Q ⊂ N . Thus above, q ∈ AN , but r = {{1,1},{4,0}} ∈ A{1,4}.

Each of the N qubits can be 0 or 1, which we call
“lowered” and “raised” respectively, so 2N = |AN | is the
number of elements in AN . Expressing the trace in this basis
results in

σ (m) = 2−N
∑

q∈AN

〈q|(Ĥ j )m|q〉. (B2)

First we expand each of the m Hamiltonians as a sum of pair
Hamiltonians Ĥ j =∑k =j Ĥ jk and then expand the product
over the m Hamiltonians:

σ (m) = 2−N
∑

q∈AN

〈q|
∑
k1

∑
k2

. . .
∑
km

Ĥ jk1Ĥ jk2 . . . Ĥ jkm |q〉,

(B3)

where the restriction that each sum is over qubits kα = j

is implicit, in order to avoid the notation becoming too
cumbersome.

For each ordered sequence of m qubits {k1 . . . km}, given
a state |q〉, it is either the case that 〈q|Ĥ jk1 . . . Ĥ jkm |q〉 =
Fjk1 . . . Fjkm

, in which case we call this sequence compatible
with q, or else 〈q|Ĥ jk1 . . . Ĥ jkm |q〉 = 0, in which case we call
this sequence incompatible with q. Let Km

Q be the set of all
ordered sequences of m qubits chosen from the set Q, and
introduce a function ω(q,K), which accepts an arrangement
in q ∈ AN and a sequence K ∈ Km

Q, and returns 1 if they
are compatible and 0 if they are incompatible. Defining∏

F (K) ≡∏m
α=1 Fjkα

for K = {k1 . . . km} and denoting the
set of all qubits besides j as N ′,

σ (m) = 2−N
∑

q∈AN

∑
k1

· · ·
∑
km

∏
F ({k1 . . . km})ω(q,{k1 . . . km})

= 2−N
∑

q∈AN

∑
K∈Km

N ′

∏
F (K)ω(q,K)

= 2−N
∑

K∈Km
N ′

∏
F (K)

∑
q∈AN

ω(q,K). (B4)

Let us divide the set Km
Q into subsets in which each element

(sequence) of the subset has the same number of unique
qubits. We will denote the space of all sequences of m qubits
chosen from the set Q with u unique qubits appearing in
it by Km

Q(u). Km
Q = Km

Q(1) ∪ Km
Q(2) ∪ · · · ∪ Km

Q(m ∧ |Q|) and
Km

Q(u1) ∩ Km
Q(u2) = 0 for u1 = u2 (we use the notation a ∧ b

to mean the smaller of a,b), so we may express the sum over
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K as

σ (m) = 2−N

m∧|N ′|∑
u=1

∑
K∈Km

N ′ (u)

∏
F (K)

∑
q∈AN

ω(q,K). (B5)

We only require σ (m) out to arbitrarily high but finite order, so
we take m ∧ |N ′| = m ∧ (N − 1) = m.

We note that ω(q,{k1 . . . km}) = 1 if and only if
|q〉 = Ĥ k1j . . . Ĥ kmj |q〉. Thus for m odd, there are no
sequences compatible with any states, and so σ (m) = 0; from
now on we focus exclusively on the case that m is even.
Because the product Ĥ jk1 . . . Ĥ jkm only acts nontrivially on
j and the qubits which appear in the sequence {k1 . . . km}, all
arrangements which agree on these qubits will be compatible
or incompatible with the same sequences. To formalize this
statement, let UK be the unordered set of u unique qubits
which appear in the sequence K ∈ Km

Q(u). Then for any
K ∈ Km

Q(u), for any r ∈ AUK∪{j}, and for all q,q ′ ∈ AN and
q,q ′ ⊇ r , ω(q,K) = ω(q ′,K). Thus we may unambiguously
define a new function ω̃(r ∈ AUK∪{j},K ∈ Km

Q(u)), which
accepts a sequence and arrangements of j and the qubits
appearing in that sequence (as opposed to ω which accepts
a sequence and arrangements of all N qubits), to be equal
to ω(q,K) for any q ⊇ r , q ∈ AN . For example, consider a
four-qubit computer with N = {1,2,3,4}, and focus on pair
Hamiltonian sequences K ∈ K2

{1,4} that only involve qubits 1
and 4. Then if we consider all arrangements q where qubit 1
is lowered and qubit 4 is raised, r = {{10},{41}} ∈ A{1,4}, the
states of qubits 2 and 3 are irrelevant for compatibility, i.e.,
ω({10},{20},{30},{41}},K) = ω({{10},{21},{30},{41}},K) =
ω({{10},{20},{31},{41}},K)=ω({{10},{21},{31},{41}},K) =
ω̃({{10},{41}},K).

For each sequence K ∈ Km
Q(u), for any r ∈ AUK∪{j}, there

are 2N−u−1 unique q ∈ AN that contain q, because each of
the N − u − 1 qubits which are not j or in UK can be up
or down for such a q. Therefore,

∑
q∈AN

ω(q,K ∈ Km
N ′ (u)) =

2N−u−1∑
r∈AUK

∪{j} ω̃(r,K), which allows us to write

σ (m) =
m∑

u=1

2−u−1
∑

K∈Km
N ′ (u)

∏
F (K)

∑
r∈AUK ∪{j}

ω̃(r,K). (B6)

To calculate Eq. (B6), we wish to isolate the N dependence
of the different pieces of this sum, so that we may keep only
the important parts as N → ∞. To this end, note that we
can construct any sequence {k1 . . . km} = K ∈ Km

Q(u) out of
(1) an ordered list of u subsets of the first m integers and (2) an
ordered list of u unique qubits which are not j . The sequence is
then constructed by assigning the first location in the sequence
the integer 1, the second location the integer 2, etc., and
then placing the first qubit in the qubit list at all locations
in the sequence associated with the integers contained in the
first subset, the second qubit at all locations associated with
integers in the second subset, and so forth until the uth qubit has
been assigned. For example, the sequence {2,5,14,2,2,5,2,14}
with m = 8 and u = 3 is constructed by the integer subsets
{{145},{26},{38}} and the qubit list {2,5,14}. A set of integer
subsets paired with a qubit list generates a sequence as long as
there are the same number of subsets as qubits, and each integer
appears in exactly one subset. We will call a set of integer

subsets in which each integer appears in exactly one subset a
pattern (we do not employ the notion of a partition because it
does not extend to the full Hamiltonian case) and denote the set
of all patterns of m integers with u subsets bySm(u), so that the
set of all patterns of m integers is Sm = Sm(1) ∪ Sm(2) ∪ · · · ∪
Sm(m). We will call Lu

Q the set of all ordered lists of u unique
qubits chosen from the set of qubits Q. We define a function
S to take a pattern and a qubit list, and return the constructed
sequence, i.e., if K ∈ Km

Q(u) is the sequence constructed by
s ∈ Sm(u) and L ∈ Lu

Q, then S(s,L) = K . Then, because every
sequence can be constructed by some pattern and qubit list,
we may express the moments as

σ (m) =
m∑

u=1

2−u−1
∑

s∈Sm(u)

∑
L∈Lu

N ′

1

(S(s,L))

∏
F (S(s,L))

×
∑

r∈AUS(s,L)∪{j}

ω̃(r,S(s,L)), (B7)

where (K) is the number of combinations of patterns and
qubit lists such which, when given as the argument of S, yield
S = K . Each pattern and qubit list is associated with one
sequence, but each sequence is associated with many pattern
and qubit list combinations, so we must divide the degeneracy
factor  to prevent overcounting. All sequences are paired
uniquely with a set of subsets which make up a pattern; this is
done by writing down subsets containing the integer locations
of each qubit. The order is left arbitrary, and the sequence
K(s,L) will not be altered if we reorder the subsets in s and
then reorder the qubits in L in the same way. Thus, (s) = u!
for s ∈ Sm(u).

The system is invariant under the relabelling of qubits, so
it must be that the quantity

∑
q∈AUS(s,L)∪{j} ω̃(q,S(s,L)) ≡ �(s)

does not depend on the choice of qubits. This allows us to
write

σ (m) =
m∑

u=1

1

2u+1u!

∑
s∈Sm(u)

�(s)
∑

L∈Lu
N ′

∏
F (S(s,L)). (B8)

There is no N dependence in |Sm(u)| or �(s). Thus for
fixed m, the above sum is a fixed number of terms (one for each
pattern s ∈ Sm), with a fixed coefficient (equal to �(s)/2u+1u!)
in front of an N -dependent sum

∑
L∈Lu

N ′

∏
F (S(s,L)) ≡

Gs(N ):

σ (m) =
m∑

u=1

1

2u+1u!

∑
s∈Sm(u)

�(s)Gs(N ). (B9)

We now examine the scaling with large N of the sums∑
L∈Lu

N ′

∏
F (S(s,L)) = Gs(N ) for patterns with nonzero

coefficients, i.e., �(s) = 0, and keep only the patterns for
which the N scaling is the largest among these, creating a
new quantity which will fractionally converge to σ (m) in the
high-N limit. We use the notation A → B to mean that A

fractionally converges to B, i.e., A/B = 1 in the limit that N

goes to infinity.
We note that Lu

N ′ is the set of all ways to make an ordered
list of u unique qubits chosen from the set of all qubits except
j , so |Lu

N ′ | = (N−1
u

)u! → Nu is the number of ways to pick u

qubits times the number of ways to order them. Thus, by the
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definition of the expectation value of a pattern, E′
s[
∏

F ], as
defined in Appendix F, we have

Gs(N ) =
∑

L∈Lu
N ′

∏
F (S(s,L)) = (N − 1)!

(N − 1 − u)!
E′

s

[∏
F
]

→ NuE′
s

[∏
F
]
. (B10)

In order for �(s) = 0, each of the u subsets in the pattern s

must contain some even number of integers. Let pz be the
number of integers in the zth subset; then

∑u
z=1 pz = m,

all pz are even, each pz � 2, and for any set of integers
{p1, . . . ,pu} which obey these conditions, there is some pattern
s for which �(s) = 0 and with pz integers in its zth subset.
For a pattern s with at least one pz > 2, we compare the
N scaling of G(s,N ) to the scaling of G(s ′,N ), where s ′ is
the same as s except that one of the pz greater than 2 has
been reduced by 2, and u has been increased by 1, adding a
pu+1 = 2; i.e., if s has {p1, . . . ,pi, . . . pu} where pi > 2, then
s ′ has {p1, . . . ,pi − 2, . . . pu,2}. As shown in Appendix F,
E′

s(
∏

F ) <N NE′
s ′ [
∏

F ] (where <N means “has smaller N

scaling than”), so

Gs(N ) → NuE′
s

[∏
F
]

<N Nu+1E′
s ′

[∏
F
]

= Gs ′ (N ),

(B11)

and we conclude that terms corresponding to the pattern s

becomes negligible compared to s ′ in the high-N limit (as long
as �(s ′) = 0, which is true if �(s) = 0). This transformation
may be repeatedly applied to all patterns for which some pz =
2, and thus all such patterns may be ignored in favor of patterns
for which all pz = 2. Keeping only these, which are all of the
patterns with u = m/2,

σ (m) → 1

2m/2+1(m/2)!

∑
s∈Sm(m/2)

�(s)Gs(N )

→ 1

2m/2+1(m/2)!

∑
s∈Sm(m/2)

�(s)Nm/2E′
s

[∏
F
]
.

(B12)

Recall that �(s) =∑q∈AUS(s,L)∪{j} ω̃(q,S(s,L)), for s ∈
Sm(m/2); in order for ω̃(q,S(s,L)) to be nonzero the qubits in
Um/2

S(s,L) must have the ‘correct’ relative status to j in q, depend-
ing on the locations they appear at in the sequence. For exam-
ple, suppose j is raised in q; if 〈q|Ĥjk1Ĥjk2Ĥjk2Ĥjk1 |q〉 = 0,
then k1 must be lowered in q, and k2 must be raised. Thus
�(s ∈ Sm(m/2)) = 2, corresponding to the two possibilities
for qubit j , which yields

σ (m) → Nm/2

2m/2+1(m/2)!

∑
s∈Sm(m/2)

2E′
s

[∏
F
]

= Nm/2

2m/2(m/2)!

∑
s∈Sm(m/2)

E′
s

[∏
F
]
. (B13)

The expectation value of
∏

F , which is∑
(k1...km/2) F

2
jk1

. . . F 2
jkm/2

/( N

m/2 ), is the same for all patterns in
Sm(m/2); we denote this by E′

(2,m)[
∏

F ], and utilize the fact
that there is no longer any s dependence in the summand to

write

σ (m) → Nm/2

2m/2(m/2)!

∑
s∈Sm(m/2)

E′
(2,m)

[∏
F
]

= Nm/2

2m/2(m/2)!
E′

(2,m)

[∏
F
]
|Sm(m/2)|. (B14)

The patterns in Sm(m/2) are all of the ways to pair up
the integers, but because the status of j alternates after
each Hamiltonian is applied, each odd integer must be
paired with an even integer. We may order these m/2 pairs
in any way, so |Sm(m/2)| = (m/2)! × (m/2)!. Using the
result in Appendix F that E′

(2,m)[
∏

F ] → E′[F 2]m/2 (where
E′[F 2] → N−1∑

k =j F 2
jk), we finally obtain

σ (m) → (m/2)!(NE′[F 2]/2)m/2, m even,

σ (m) = 0, m odd. (B15)

APPENDIX C: DYNAMICS OF THE REDUCED DENSITY
MATRIX FOR A SPECIFIC QUBIT

In this Appendix, we discuss the details of the Taylor-
series analytical solution of Eq. (B14), which is plotted in
Fig. 4. Consider the initial condition that only one of the αQ

coefficients for a specific configuration Q is nonzero, αQ(t =
0) = 1; αq(t = 0) = 0 for q = Q; βq(t = 0) = 0. We view this
initial condition as the zeroth-order solution: α(0)

Q = 1; α(0)
q = 0

for q = Q; β(0)
q = 0. To find the first-order solutions, we solve

the coupled equations of Eqs. (13) using the zeroth-order
solution on the right-hand side of the equations:

i
dα(1)

q

dt
=
∑

k

F ∗
jkβ

(0)
q�k, i

dβ(1)
q

dt
=
∑

k

Fjkα
(0)
q⊕k, (C1)

which then gives

α
(1)
Q = 1,

α(1)
q = 0, (C2)

β(1)
q = −iFjkt if q = Q � k.

These first-order solutions are then used again in the right-
hand side of the coupled equations, to find the second-order
solutions:

i
dα(2)

q

dt
=
∑

k

F ∗
jkβ

(1)
q�k,

i
dβ(2)

q

dt
=
∑

k

Fjkα
(1)
q⊕k, (C3)

which then gives

α
(2)
Q = 1 − 1

2

(∑
k

|Fjk|2
)

t2,

α(2)
q = −1

2
(F ∗

jk′Fjk)t2 if q = Q � k ⊕ k′, (C4)

β(2)
q = −iFjkt if q = Q � k.
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Using these second-order solutions, the third-order solu-
tions can again be found by solving the coupled equations:

α
(3)
Q = 1 − 1

2

(∑
k

|Fjk|2
)

t2,

α(3)
q = −1

2
(F ∗

jk′Fjk)t2 if q = Q � k ⊕ k′,

β(3)
q = −iFjkt + i

1

2

1

3

(
Fjk

∑
k

|Fjk|2
)

t3 (C5)

+ i
1

2

1

3

(
Fjk

∑
k′

|Fjk′ |2
)

t3 if q = Q � k,

β(3)
q = −i

1

2

1

3
(Fjk′′F ∗

jk′Fjk)t3 if q = Q � k ⊕ k′ � k′′.

This procedure can be continued until all coefficients of the
Taylor series expansion for the initial probability amplitude
αQ(t) are found. As shown above, the solutions contain terms
that are summations over the squares of the exchange coupling
constants

∑
k |Fjk|2,

∑
k′ |Fjk′ |2,

∑
k′′ |Fjk′′ |2, and so on. For

the vast majority of the Hilbert space, these summations
contain ≈N/2 terms. As the number of qubits N is in-
creased, the expected value of these sums grows more quickly
compared to the variations around the expected value. We,
therefore, make the key assumption that in the N → ∞ limit,
these sums can be taken equal,

∑
j (q) |Fij |2 ≈∑j ′ |Fij ′ |2 ≈∑

j ′′ |Fij ′′ |2 ≈ · · · and replace these sums with their expected
value σ 2 = (NE′[F 2]/2). Under this assumption, the solution
for the initial probability amplitude is of the form

αQ(t) =
∑

n

(−1)n
l(n)

(2n)!
(σ t)2n, (C6)

where the quantities l(n) are combinatorial factors. By
inspection, these factors can be found using the following
recursive relationship. Start with an initial array of numbers
A where the only nonzero element is the first element and it
equals to 1; i.e., the initial array is A(0) = (1,0,0,0,0,0, . . .).
Then at each step, update the array using the recursive
algorithm: A(n)(0) = A(n−1)(0) + A(n−1)(1), and A(n)(m) =
A(n−1)(m − 1) + 2A(n−1)(m) + A(n−1)(m + 1) for m > 0 (n
is the number of iterations and m is the element number
in the array). For example, after one iteration, the array
is A(1) = (1,1,0,0,0,0, . . .), after two iterations it is A(2) =
(2,3,1,0,0,0, . . .), and after three iterations, the array becomes
A(3) = (5,9,5,1,0,0, . . .), and so on. The combinatorial factors
l(n) are the first elements of the array at each iteration,
l(n) = A(n)(1).

APPENDIX D: THE EIGENVALUE SPECTRUM
OF THE TOTAL EXCHANGE HAMILTONIAN

Here we find the eigenvalue distribution of the exchange
Hamiltonian Ĥeff in the limit of N → ∞. We will use very
similar techniques to those in Appendix B and use much
of the same notation; for simplicity, when dealing with an
object never referenced outside of the appendices, we use the
same symbol for the analogous object from Appendix B, even
though in some cases the analogous objects are not the same.

We again begin by calculating the moments of the distribution:

σ (m) = 2−N Tr[(Ĥeff)
m]. (D1)

Following Appendix B, we introduce the basis |q〉 which corre-
spond to definite arrangements q of all of the qubits in the com-
puter. The set of all qubits is N , and the set of all arrangements
of any set of qubits Q ⊆ N is denoted by AQ; thus q ∈ AN .
We use the convention set in Appendix B for the form of ar-
rangements which has explicit reference to the qubits involved.
Each of the N qubits can be 0 or 1, which we call “lowered”
and “ raised” respectively, so 2N = |AN | is the number of
elements in AN . Expressing the trace in this basis results in

σ (m) = 2−N
∑

q∈AN

〈q|(Ĥeff)
m|q〉. (D2)

First we write each of the m Hamiltonians as a sum
of pair Hamiltonians Ĥeff =∑(kl) Ĥ

kl , and then expand the
product over the m Hamiltonians. Each term in the resulting
expansion begins and ends with some state |q〉, and has m

operators in between each of which act nontivially on two
qubits, e.g., 〈q|Ĥk1l1Ĥk2l2 . . . Ĥkmlm |q〉. For each sequence of
m pairs of qubits {{k1l1}{k2l2} . . . {kmlm}}, it is either the
case that 〈q|Ĥk1l1 . . . Ĥkmlm |q〉 = 0, in which case we call this
sequence incompatible with the configuration |q〉, or else
〈q|Ĥk1l1 . . . Ĥkmlm |q〉 = Fk1l1Fk2l2 . . . Fkmlm , in which case we
call this sequence compatible with |q〉. Let Km

Q be the set
of all sequences of m pairs of qubits chosen from the set
Q, and introduce a function ω(q ∈ AN ,{{k1l1} . . . {kmlm}} ∈
Km

N ) which accepts states and sequences, and returns 1
if the sequence is compatible with the state and 0 if the
sequence is incompatible with |q〉. Introducing the notation∏

F ({{k1l1} . . . {kmlm}} ∈ Km
Q) =∏m

α=1 Fkαlα , we then have

σ (m) = 2−N
∑

q∈AN

∑
(k1l1)

∑
(k2l2)

· · ·
∑

(kmlm)

〈q|Ĥk1l1Ĥk2l2 . . . Ĥkmlm |q〉

= 2−N
∑

q∈AN

∑
(k1l1)

∑
(k2l2)

. . .

∑
(kmlm)

ω(q,{{k1l1} . . . {kmlm}})
m∏

α=1

Fkαlα

= 2−N
∑
q∈N

∑
K∈Km

N

ω(q,K)
∏

F (K)

= 2−N
∑

K∈Km
N

∏
F (K)

∑
q∈AN

ω(q,K). (D3)

Let us divide the set Km
Q into subsets in which each element

(sequence) has the same number of unique qubits appearing
in it. We will denote the space of all sequences of m pairs of
qubits chosen from the set Q with u unique qubits appearing
in it by Km

Q(u). Km
Q = Km

Q(1) ∪ Km
Q(2) ∪ · · · ∪ Km

Q(2m ∧ |Q|)
and Km

Q(u1) ∩ Km
Q(u2) = 0 for u1 = u2, so we may express the

sum over K as

σ (m) = 2−N

2m∧|N |∑
u=2

∑
K∈Km

N (u)

∏
F (K)

∑
q∈AN

ω(q,K). (D4)

We only require σ (m) out to arbitrarily high but finite order, so
we take 2m ∧ |N | = 2m ∧ N = 2m.
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We defineUK to be the unordered set of all qubits appearing
in the sequence K ∈ Km

Q, so that |UK| = u if K ∈ Km
Q(u). For

{{k1,l1}, . . . ,{km,lm}} = K ∈ Km
Q, the operator Ĥk1l1 . . . Ĥkmlm

acts nontrivially only on the qubits in UK , so for the same
reasoning as in Appendix B, for a given K ∈ Km

Q and r ∈
AUK

, for any q,q ′ which are in AN and contain r (i.e.,
q,q ′ ⊇ r), ω(q,K) = ω(q ′,K). Thus we may unambiguously
define a new function ω̃(r ∈ AUK

,K ∈ Km
Q(u)), which accepts

a sequence and arrangements of the qubits appearing in
that sequence (as opposed to ω which accepts a sequence
and arrangements of all N qubits), to be equal to ω(q,K)
for any q ⊇ r , q ∈ AN . For each sequence K ∈ Km

Q(u), for
any r ∈ AUK

, there are 2N−u unique q ∈ AN that contain r ,
because each of the N − u qubits which are not inUK can be up
or down for such a q. Therefore,

∑
q∈AN

ω(q,K ∈ Km
N (u)) =

2N−u
∑

r∈AUK
ω̃(r,K), which allows us to write

σ (m) =
2m∑
u=2

2−u
∑

K∈Km
N

∏
F (K)

∑
r∈AUK

ω̃(r,K). (D5)

We wish to isolate the N dependence of the different pieces
of this sum, so that we may keep only the important part as
N → ∞. To this end, note that we can construct any sequence
{{k1,l1}, . . . ,{km,lm}} = K ∈ Km

Q(u) out of (1) an ordered list
of u subsets of the first m integers and (2) an ordered list
of u unique qubits. The sequence is then constructed by
assigning the first location in the sequence to the integer 1, the
second to the integer 2, etc., and then placing the first qubit
in the qubit list at all locations in the sequence associated
with the integers contained in the first subset, the second
qubit at all locations associated with integers in the second
subset, and so forth until the uth qubit has been assigned. For
example, the sequence {{2,7}{5,9}{5,2}{7,9}{5,13}{5,13}}
with m = 6 and u = 5 is constructed by the integer sub-
sets {{13},{5,6},{2,3,5,6},{1,4},{2,4}} and the qubit list
{2,13,5,7,9}. A set of integer subsets paired with a qubit list
generates a sequence as long as there are the same number
of subsets as qubits, and each integer appears in exactly
two subsets. We will call a set of integer subsets in which
each integer appears in exactly two subsets a pattern, and
denote the set of all patterns of m integers with u subsets
by Sm(u), so that the set of all patterns of m integers is
Sm = Sm(2) ∪ Sm(3) ∪ · · · ∪ Sm(2m). We will call Lu

Q the set
of all ordered lists of u unique qubits chosen from the set of
qubits Q. We define a function K to take a pattern and a qubit
list and return the constructed sequence; i.e., if K ∈ Km

Q(u)
is the sequence constructed by s ∈ Sm(u) and L ∈ Lu

Q, then
K(s,L) = K . The double use of the letter K should not lead to
confusion, because after being given arguments, the function
K becomes an element of Km

N . Then, because every sequence
can be constructed by some pattern and qubit list, we may
express the moments as

σ (m) =
2m∑
u=2

2−u
∑

s∈Sm(u)

∑
L∈Lu

N

1

(K(s,L))

∏
F (K(s,L))

×
∑

r∈AUS(s,L)

ω̃(r,K(s,L)), (D6)

where (K) is the number of combinations of patterns and
qubit lists such which, when given as the argument of the
function K , yields K . Each pattern and qubit list is associated
with one sequence, but each sequence is associated with many
pattern and qubit list combinations, so we must divide the
degeneracy factor  to prevent overcounting. All sequences
are paired uniquely with a set of subsets which make up a
pattern; this is done by writing down subsets containing the
integer locations of each qubit. The order is left arbitrary, and
the sequence K(s,L) will not be altered if we reorder the
subsets in s and then reorder the qubits in L in the same way.
Thus, (s) = u! for s ∈ Sm(u).

The system is invariant under the relabeling of qubits, so
it must be that the quantity

∑
r∈AUK(s,L)

ω̃(r,K(s,L)) ≡ �(s)

does not depend on choice of qubits, i.e., does not depend on
L. This allows us to write

σ (m) =
2m∑
u=2

1

2uu!

∑
s∈Sm(u)

�(s)
∑

L∈Lu
N

∏
F (K(s,L)). (D7)

In evaluating Eq. (D7), we note that there is no N

dependence in |Sm(u)| or �(s). Thus for fixed m, the above
sum is a fixed number of terms (one for each pattern s ∈ Sm),
with a fixed coefficient (equal to �(s)/2uu!) in front of an
N -dependent sum

∑
L∈Lu

N

∏
F (K(s,L)) ≡ Gs(N ):

σ (m) =
2m∑
u=2

1

2uu!

∑
s∈Sm(u)

�(s)Gs(N ). (D8)

Having isolated the N dependence, we wish to identify the
parts with the largest scaling, since we need only keep these
as N → ∞ in order to have a quantity which fractionally
converges to σ (m) for large N . First, we subdivide each set
Sm(u) into sets Sm(u,v) where v is the number of pairs
of subsets in s whose intersects contain an odd number of
integers. Intuitively, this is the number of qubits whose choice
in L will affect the overall sign of

∏
F (K(s,L)) because

that qubit appears as the index of an F which appears an
odd number of times in

∏
F in total. Each element of Sm(u)

belongs in one such Sm(u,v), so we can write

σ (m) =
2m∑
u=2

1

2uu!

u∑
v=0

∑
s∈Sm(u,v)

�(s)Gs(N ). (D9)

We now examine the scaling with large N of the sums∑
L∈Lu

N

∏
F (S(s,L)) ≡ Gs(N ) for patterns with nonzero co-

efficients, i.e., �(s) = 0, since only these have relevant N

scaling. We use the notation A → B to mean that A fraction-
ally converges to B, i.e., A/B = 1 in the limit that N goes to
infinity. In addition, <N means “has lower N scaling than,”
so that if A/B → 0, then it must be that A <N B. In order
for �(s) = 0, each subset in s must contain an even number
of integers, so that every qubit gets flipped an even number
of times and therefore is ultimately unchanged, allowing
〈q|Ĥk1l1 . . . Ĥkmlm |q〉 = 0. Thus �(s ∈ Sm(u > m)) = 0, and
so we may truncate the sum over u at m. We note that Lu

N is
the set of all ways to make an ordered list of u unique qubits
chosen from the set of all qubits, so |Lu

N | = (N

u
)u! → Nu is the

number of ways to pick u qubits times the number of ways to
order them. Thus, by the definition of the expectation value of
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a pattern Es[
∏

F ] as defined in Appendix F, for s ∈ Sm(u,v)
we have

Gs(N ) =
∑

L∈Lu
N

∏
F (S(s,L))

= N !

(N − u)!
Es

[∏
F
]

→ NuEs

[∏
F
]
. (D10)

When v = 0, in the large sample limit where the sign of each
Fjk factor is random, Gs(N ) → 0. However, for purposes
of comparing the relative size of terms, we are interested in
the typical size of Gs(N ), denoted by |Gs(N )|, which by the
central limit theorem has the typical size

|Gs(N )| → Nu−v
√

NvEs

[∣∣∣∏F

∣∣∣] = Nu−v/2Es

[∣∣∣∏F

∣∣∣].
(D11)

For v = 0, |Gs(N )| = Gs(N ) since each term in the sum is
positive.

We proceed to identify the class of patterns for which
|Gs(N )| has the largest N scaling among all s with �(s) = 0
by taking certain kinds of patterns s and identifying patterns
s ′ for which |Gs(N )| <N |Gs ′ (N )|; then, as long as �(s ′) = 0,
the |Gs(N )| term can be ignored in the large-N limit since
they will become negligible compared to the |Gs ′ (N )| term.
For each of the steps below, we choose s ′ related to s such that
�(s) = 0 ⇒ �(s ′) = 0.

We begin with patterns in which there exists a pair of subsets
whose intersect contains greater than two elements; this means
that for any L ∈ Lu

N , in
∏

F (S(s,L)) is some Fa
jk for a > 2,

where j and k are decided by L. Let s ′ be the pattern created by
starting with s, finding two subsets with an intersect larger than
two, choosing any two elements of that intersection and remov-
ing them from both subsets, then creating two new subsets,
each of which contains both elements. This effectively takes
Fa

jk to Fa−2
jk F 2

j ′k′ , where j ′ and k′ do not appear anywhere else
in the sequence. As shown in Appendix F, when s and s ′ have
this relationship, Es[|

∏
F |] < NEs ′ [|∏F |], meaning that

|Gs(N )| → Nu−v/2Es

[∣∣∣∏F

∣∣∣] < Nu+1−v/2Es ′
[∣∣∣∏F

∣∣∣]
= Nu′−1−v′/2Es ′

[∣∣∣∏F

∣∣∣]→ N−1|Gs ′ (N )|, (D12)

where s ∈ Sm(u,v) so s ′ ∈ Sm(u′,v′) = Sm(u + 2,v). Thus
terms associated with s can be ignored in the large-N limit, and
we now focus only patterns for which the overlap between any
two subsets contains at most two integers; i.e., for each unique
Fjk in

∏
F (s,L), it is either raised to the first or second power.

Next we show that any pattern with a subset containing
four or more elements that has two elements in an intersect
with another subset can be ignored. The products associated
with these patterns contain terms like Fk1k2F

2
k2k3

, and we show
that these scale less with N then the same pattern but with
this product changed to Fk1k2F

2
k3k4

. Accordingly, let us call
the original pattern s, and s ′ the pattern s except with the
two elements in the intersect between the subset with four
or more elements, another subset removed from both, and
both added to two new subsets which contains only those
two elements. Note that for s ∈ Sm(u,v) and s ′ ∈ Sm(u′,v′),
v′ = v while u′ = u + 2 or u + 1, the latter case being if the
subset in s whose intersect with a subset with four or more

elements contains two elements has only two elements in it in
total. According to Appendix F, Es[|

∏
F |] <N NEs ′ [|∏F |],

which yields for s ∈ Sm(u,v) and s ′ ∈ Sm(u′,v′),

|Gs(N )| → Nu−v/2Es

[∣∣∣∏F

∣∣∣] <N N1+u−v/2Es ′
[∣∣∣∏F

∣∣∣]
� Nu′−v′/2Es ′

[∣∣∣∏F

∣∣∣]→ |Gs ′ (N )|. (D13)

Thus terms associated with patterns like s can be ignored.
The only patterns that have not been shown to be ignorable

for large N have at most two elements in the intersect of any
two of its subsets, and if the intersect between two subsets
does contain two elements than both subsets contain only two
elements. This corresponds to patterns with

∏
F (K(s,L)) of

the form Fk1k2Fk2k3Fk3k1F
2
k4k5

F 2
k6k7

, where there are a number
of F 2 with no overlapping indices, and then a number of F 1

with potentially complicated overlapping indices with each
other but not with any of the F 2. For one of these patterns
s ∈ Sm(u,v), let us call a the number of pairs of subsets whose
intersect contains two elements (i.e., the number of F 2 in∏

F (K(s,L)), so that 2a = u − v), and let b = m − 2a be
the number of F 1 which appear in

∏
F (K(s,L)). All qubits

appearing as an argument of an F 1 can affect the overall sign,
while the ones appearing in an F 2 cannot, so v � b.

We first treat the case that m is even; note in this case
that b is even. Let s ′ ∈ Sm(m,0) be a pattern in which all
subsets contain two elements, and the intersect between any
two subsets contains 2 or 0 elements. This corresponds to
patterns with

∏
F (K(s ′,L)) of the form F 2

k1k2
F 2

k3k4
. . . F 2

km−1km
.

Gs ′ (N ) is the same for all s ′ which obey this property because
they are all the same under the renaming and reordering of
qubits and subsets, and we call this G(2,m)(N ). If b = 0, then
Gs(N ) = G(2,m)(N ). In Appendix F, it is shown for b = 0
that Es[|

∏
F |] < Nb/2−1/2Es ′ [|∏F |] = Nb/2−1/2Es ′ [

∏
F ],

which means that for s ∈ Sm(u,v) and s ′ ∈ Sm(m,0),

|Gs(N )| → Nu−v/2Es

[∣∣∣∏F

∣∣∣] < Nu−v/2+b/2−1/2Es ′
[∏

F
]

= Nu−v/2+b/2−1/2−mGs ′ (N )

= Nu−v/2+b/2−1/2−mG(2,m)(N ). (D14)

Using the relations 2a + b = m and 2a + v = u, we have that
u − v/2 + b/2 − m = 1

2 (v − b), and since v � b, u − v/2 +
b/2 − m � 0, allowing us to conclude

|Gs(N )| < N−1/2G(2,m)(N ), (D15)

meaning that, for m even, only patterns with all subsets
containing 2 elements and all intersects containing 2 or 0
elements matter as N → ∞, and all of these matter because
the terms associated with each of these patterns have the same
N scaling. These are exactly the patterns in Sm(m,0), so

σ (m) → 1

2mm!

∑
s∈Sm(m,0)

�(s)Gs(N )

= 1

2mm!
G(2,m)(N )

∑
s∈Sm(m,0)

�(s), m even. (D16)
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Now we treat the case that m is odd; note in this case that b is odd. Let s ′ ∈ Sm(u,3) be a pattern in which all but three subsets
contain two elements, and the intersect between any two of these subsets contains 2 or 0 elements, and the other three subsets
each have 2 elements and the intersect between any two of them contains 1 element. For all such s ′, the N scaling of |Gs ′ (N )|
is the same, and we call this |G(3,m)(N )|. In Appendix F, it is shown that, for b > 3, Es[|

∏
F |] <N Nb/2−3/2Es ′ [|∏F |], and

therefore

|Gs(N )| → Nu−v/2Es

[∣∣∣∏F

∣∣∣] <N Nu−v/2+b/2−3/2Es ′
[∣∣∣∏F

∣∣∣]
→ Nu−v/2+b/2−3/2−(m−3/2)|Gs ′(N )| = Nu−v/2−m+b/2|G(3,m)(N )|. (D17)

Using the same relation as in the m even case, that u − v/2 + b/2 − m = 1
2 (v − b) � 0, we conclude

|Gs(N )| <N |G(3,m)(N )|, (D18)

and thus for m odd, only patterns like s ′ described above matter as N → ∞. These are exactly all of the patterns in Sm(u,3), so
for m odd, the typical size of the moments scales as

|σ (m)| → 1

2mm!

∑
s∈Sm(m,0)

�(s)|Gs(N )| = 1

2mm!
|G(3,m)(N )|

∑
s∈Sm(m,3)

�(s), m odd. (D19)

Now we must evaluate �(s) for s ∈ Sm(m,3) when m is odd, and s ∈ Sm(m,0) when m is even. Recall that �(s) =∑
r∈AUK (s,L)

ω̃(r,K(s,L)) for any L ∈ Lm
N is the number of arrangements of the set L of m qubits such that the Hamiltonian

operator term associated with the sequence K(s,L) (for example, if K(s,L) = {{k1,l1}, . . . ,{kmlm}} then the associated operator
term is Ĥk1l1 . . . Ĥkmlm ), when sandwiched in between 〈q||q〉 for any q ⊃ r , is not zero. In order for 〈q|Ĥk1l1 . . . Ĥkmlm |q〉 = 0,
k1 can have any status in q but l1 must be opposite k1. Similarly, for each pair of qubits which appear as indices on the same
Hamiltonian, they must be opposite one another, and so there are two choices. For s ∈ Sm(m,0), if k1 and l1 appear as indices
on a Hamiltonian, then they also appear on the indices on another Hamiltonian, and the condition is therefore automatically
satisfied for the second. There are m/2 pairs of qubits, so �(s) = 2m/2. For s ∈ Sm(m,3), the same reasoning applies to each
paired Hamiltonian, of which there are (m − 3)/2. For the triplet of the form Hk1k2Hk2k3Hk3k1 , once the status of k1 is set, the
status of k2 and k3 is fixed, so all three of those qubits only contribute a factor of 2 to �(s). Thus �(s) = 2(m−3)/2 × 2 = 2m/2−1/2,
and

σ (m) → 1

2mm!
G(2,m)(N )

∑
s∈Sm(m,0)

2m/2 = 1

2m/2m!
G(2,m)(N )|Sm(m,0)|, m even,

|σ (m)| → 1

2mm!
|G(3,m)(N )|

∑
s∈Sm(m,3)

2m/2−1/2 = 1

2m/2+1m!
|G(3,m)(N )||Sm(m,3)|, m odd. (D20)

For m even, elements of Sm(m,0) have m/2 unique subsets which each contain two integers, and there are two copies of each
subset. Thus |Sm(m,0)| is the number of ways to pair up m objects times the number of ways to order the m objects. There are
(m

2 )(m−2
2 ) . . . ( 4

2 )( 2
2 ) = 2−m/2m! ways to pair up the Hamiltonian terms, and m! ways to order them, so |Sm(m,0)| = 2−m/2(m!)2.

For m odd, elements of Sm(m,3) have (m − 3)/2 unique subsets which each contain two integers, and there are two copies of
each of these: The other three subsets each contain two elements, and the intersect with each other contains one element. Thus
|Sm(m,3)| is the number of ways to choose three objects from m of them times the number of ways to pair up m − 3 objects
times the number of ways to order all m of them, which is (m

3 ) × 2−(m−3)/2(m − 3)! × m! = 1
3 2−m/2+1/2(m!)2. Therefore,

σ (m) → 1

2m/2m!
G(2,m)(N )2−m/2(m!)2 = m!

2m
G(2,m)(N ), m even,

|σ (m)| → 1

2m/2+1m!
|G(3,m)(N )|1

3
2−m/2+1/2(m!)2 = 1

3
√

2

m!

2m
|G(3,m)(N )|, m odd. (D21)

We next discuss how the odd moments can be ignored in the N → ∞ limit by evaluating the moment generating function,
which is the Fourier transform of the probability density function of the eigenvalue distribution:

Fmoment(ζ ) =
∞∑

m=0

(iζ )m

m!
σ (m) =

∞∑
m=0

(
(is)2m

(2m)!
σ (2m) + (iζ )2m+1

(2m + 1)!
σ (2m+1)

)
=

∞∑
m=0

(iζ )2m

(2m)!

(
σ (2m) + iζ

2m + 1
σ (2m+1)

)

=
∞∑

m=0

(iζ/2)2m

(
G(2,2m)(N ) + iζ

6
√

2
G(3,2m+1)(N )

)
. (D22)

As in Appendix F, we define E(2,m)[
∏

F ] by G(2,m) → NmE(2,m)[
∏

F ] and similarly |G(3,m)| → NmE(3,m)E[|∏F |]. Using the
result that E(2,m)[

∏
F ] → E[F 2]m/2, G(2,m)(N ) → NmE[F 2]m/2, and introducing the rescaled variable ζ̃ = NE[F 2]1/2ζ , we
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obtain

Fmoment(ζ̃ ) =
∞∑

m=0

(iζ̃ /2)2m

(
1 + iζ̃

6
√

2

G(3,2m+1)

N2m+1E[F 2]m+1

)
. (D23)

Typically, the size of G(3,m)(N ) is |G(3,m)(N )| → Nm−3/2E(3,m)[|
∏

F |]. As shown in Appendix F, the N scaling of
E(3,m)[|

∏
F |] is at most E(2,m−3)[

∏
F ] × E[|F |] → E[|F |]E[F 2](m−3)/2, and so |G(3,2m+1)(N )|/(N2m+1E[F 2]m+1) has,

as a maximum N scaling, N2m+1−3/2 × E[|F |]E[F 2](2m+1−3)/2/(N2m+1E[F 2]m+1) = E[|F |]/(N3/2E[F 2]2). As shown in
Appendix E, in 2D geometry, E[F 2] ∼ ln(N )/N and E[|F |] ∼ N−1/2, so this maximum N scaling is ln(N )−2, which vanishes
when compared to the other term which ∼1. Similarly, in 3D geometry, E[F 2] ∼ N−2/3 and E[|F |] ∼ N−1/3, and so the
maximum N scaling is N−1/2 which also vanishes when compared to the other term. Thus the odd terms can be ignored in the
large-N limit, and the moment generating function converges to

Fmoment(ζ̃ ) →
∞∑

m=0

(iζ̃ /2)2m =
∞∑

m=0

(iζNE[F 2]1/2/2)2m. (D24)

APPENDIX E: THE DISTRIBUTIONS AND EXPECTATION
VALUES OF VARIOUS POWERS OF THE EXCHANGE

COUPLING CONSTANTS

In this Appendix, we discuss the probability density
functions and the expectation values of various powers of
the exchange coupling constants Fjk for both the 2D and 3D
geometries. We are particularly interested in the N dependence
of the expected values of these quantities in the N → ∞ limit
since these expected values are used throughout the paper.
The full expression for the exchange coupling constants are
given in Eq. (5). Since we are interested in the N → ∞ limit,
we will only consider the leading order of these constants,
Fjk ∝ sin κarjk/(κarjk). For large distances, the sin κarjk term
essentially produces a random sign, whose square contributes
a factor of 1/2 to the expected value. We therefore focus on the
remaining 1/(κarjk) term in this section. We define a random
variable U ≡ 1/(κ2

a r2
jk) (which is proportional to the square

of the exchange coupling constant U ∼ F 2
jk) and first discuss

the probability density function and the expected value of this
random variable. We will then discuss the distributions and the
expected values of various powers of U .

1. Two-dimensional geometry

Consider a two-dimensional array of qubits in a square
geometry, in x-y dimensions. Note that r2

jk = x2
jk + y2

jk =
(xj − xk)2 + (yj − yk)2 where (xj ,yj ) and (xk,yk) are the
coordinates of the j th and kth qubits respectively. We view
each of these coordinates xj , xk , yj , and yk to be uniformly
distributed random variables within the interval [0 N1/2d].
Taking these initial uniformly distributed random variables,
the probability density function of the random variable U ≡
1/(κ2

a r2
ij ) can be found using the methods outlined in Ref. [65].

Defining fU (u)du ≡ P {u � U � u + du}, this probability
density function is

fU (u) = 0 if u < 0

= 0 if 0 � u � 1

2L2

= 1

u2

[
2

L2
arcsin (2L2u − 1) − 2

L2
− 1

uL4
+ 4

L3

√
1

u
− L2

]
if

1

2L2
� u � 1

L2

= 1

u2

[
π

L2
+ 1

uL4
− 4√

uL3

]
if

1

L2
� u � 1

κ2
a d2

. (E1)

Here, the quantity L ≡ N1/2κad is the phase accumulation
over the full length of the square. Using the density function
of Eq. (E1), the expectation value of U can be found, which
gives in the N → ∞ limit

E[U ] =
∫

fU (u)udu = π

κ2
a d2

ln N

N
. (E2)

Using the probability density function of the random
variable U , we can find the distributions of various powers
of U (such as

√
U , U 3/2, and so on) again using the methods

outlined in Ref. [65]. These distributions are then used to

find the corresponding expected values various powers of the
exchange coupling constants. These results are

E[|F |] = �

κad

2π − 10
3

N1/2
,

E[F 2] = π
�2

κ2
a d2

ln N

N
, (E3)

E[Fn] ∼ �n

κn
a dn

1

N
for n > 2.
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2. Three-dimensional geometry

Here, we consider a three-dimensional array of cubits in a cube geometry, in x-y-z dimensions and we have r2
jk = x2

jk +
y2

jk + z2
jk = (xj − xk)2 + (yj − yk)2 + (zj − zk)2. Following the above discussion, taking all the coordinates to be uniformly

distributed, the probability density function of U ≡ 1/(κ2
a r2

jk) is

fU (u) = 0 if u < 0

= 0 if 0 � u � 1

3L2

= 1

u2

∫ 2L2

1/u−L2

[
2

L2
arcsin

(
2L2 − t

t

)
− 2

L2
− t

L4
+ 4

√
t − L2

L3

]⎡⎣ 1√
1
e

− tL

− 1

L2

⎤
⎦dt if

1

3L2
� u � 1

2L2

= 1

u2

∫ L2

1/u−L2

[
π

L2
+ t

L4
− 4

√
t

L3

]⎡⎣ 1√
1
u

− tL

− 1

L2

⎤
⎦dt

+ 1

u2

∫ 1/u

L2

[
2

L2
arcsin

(
2L2 − t

t

)
− 2

L2
− t

L4
+ 4

√
t − L2

L3

]⎡⎣ 1√
1
u

− tL

− 1

L2

⎤
⎦dt if

1

2L2
� u � 1

L2

= 1

u2

[
2π√
uL3

− 3π

eL4
+ 4

u
√

eL5
− 1

2u2L6

]
if

1

L2
� u � 1

κ2
a d2

. (E4)

Here, the probability density function in some of the regions
cannot be evaluated analytically and as a result they are left
in the integral form (the quantity t is the integration variable).
The quantity L ≡ N1/3κad is again the phase accumulation
over one length of the cube. We numerically find that for
the calculation of the expectation value, the majority of the
contribution comes from the 1

L2 � u � 1
κ2

a d2 region which can
be evaluated analytically:

E[U ] =
∫

fU (u)udu =
(

π + 29

12

)
1

κ2
a d2

1

N2/3
. (E5)

The exact numerical result that includes all the regions of
the probability density function [given in Eq. (E4)] differs
from the analytical result of Eq. (E5) only by 1.2%. Following
the 2D discussion, with the probability density function fU (u)
known, the distribution of the various powers of U can be
evaluated and the corresponding expectation values for the
coupling constants are (again with an accuracy at the level of
few percent)

E[|F |] = �

κad

2π − 9
5

N1/3
,

E[F 2] =
(

π + 29

12

)
�2

κ2
a d2

1

N2/3
,

E[F 3] = 4π

3

�3

κ3
a d3

ln N

N
,

E[Fn] ∼ �n

κn
a dn

1

N
for n > 3. (E6)

In Fig. 8, we plot the probability density function fU (u)
for both the 2D (dashed red line) and 3D (black solid line)
geometries. The functions are plotted for the case when the
length of each side is L = 1. For an arbitrary L, the horizontal

axis of the plot is scaled by 1/L2 whereas the vertical axis is
scaled by L2.

In the above discussion, we have taken selected qubits j and
k to be randomly among all the qubits and have calculated the
distribution and the expected value of the exchange coupling
constants Fjk . For the single-qubit error Hamiltonian and
subsequent discussion, one of the qubits, qubit j , is fixed, and
the summations are over the remaining qubits in the computer.
For this case, the precise values of the distributions and the
expected values will depend on the choice of the qubit j , for
example, whether it is chosen to be at the edge of the array or at
the center. However, using the above formalism, as expected,
one can show that these considerations do not change the N

scalings of the expected values, i.e., E′[Fn] ∼ E[Fn] for all n

in both 2D and 3D geometries.

u

fU (u)

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10

FIG. 8. The probability density functions of the random variable
U ≡ 1/(k2

ar
2
ij ) for an array of atoms in two (dashed red line) and

three (solid black line) dimensions. The functions are plotted for the
case when the length of each side is L = 1. For an arbitrary L, the
horizontal axis of the plot is scaled by 1/L2 whereas the vertical axis
is scaled by L2.
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APPENDIX F: VARIOUS DEFINITIONS AND RESULTS ON THE EXPECTED
VALUES OF THE COUPLING CONSTANTS

In this Appendix, we define the expectation values Es[
∏

F ] and E′
s[
∏

F ] for some pattern of u subsets of m integers Sm(u)
(see Appendixes B and D for this and other definitions used in this Appendix). The expectation value is over all ways to choose
qubits for the pattern, i.e., over all qubit lists which can combine with that pattern to create a sequence. In the single-qubit
Hamiltonian case, we only choose qubits from N ′, which is the set of all qubits besides j , whereas in the full Hamiltonian case
we choose qubits from N , which is the set of all qubits. Thus we define two expectation values, one for each case: For s ∈ Sm(u),

Es

[∏
F
]

=
∑

L∈Lu
N

∏
F (S(s,L))/

∣∣Lu
N
∣∣, E′

s

[∏
F
]

=
∑

L∈Lu
N ′

∏
F (S(s,L))/

∣∣Lu
N ′
∣∣. (F1)

We can divide the sum over all elements of Lu
Q into a sum over all ways to choose qubits from Q and a sum over all ways to order

those qubits. This implies that |Lu
Q| = ( |Q|

u
)u! = |Q|!/(|Q| − u)!, which scales as Nu when Q = N or N ′. Taking this limit, and

denoting the sum over all choices of u qubits from the set Q by
∑(Q)

(k1...ku), the sum over all permutations of these qubits by
∑

πu
,

and the element of Lu
Q created by putting the qubits k1 . . . ku in the order πu by L({k1 . . . ku},πu),

Es

[∏
F
]

→ N−u

(N )∑
(k1...ku)

∑
πu

∏
F (S(s,L({k1 . . . ku},πu))),

E′
s

[∏
F
]

→ N−u

(N ′)∑
(k1...ku)

∑
πu

∏
F (S(s,L({k1 . . . ku},πu))). (F2)

We also define

E′[F 2] = 1

N − 1

∑
k =j

F 2
jk → N−1

∑
k =j

F 2
jk,

E[F 2] = 1(
N

2

) ∑
(kl)

F 2
kl → N−2

∑
k

∑
l =k

F 2
kl, (F3)

E[|F |] = 1(
N

2

) ∑
(kl)

|Fkl| → N−2
∑

k

∑
l =k

|Fkl|.

The N scalings of the expected values of Eq. (F3) are discussed in Appendix E. Next, we prove inequalities between expectation
values of patterns related in specific ways. We will utilize the N scaling of the maximum and minimum values of F (x) = f sin(kx)

kx

in the large sample size limit where the the sine can be averaged out, leaving |F (x)| = f̃ /kx. In this case, Fmax = f̃ /kd, and
Fmin = f̃ /kR ∼ N−1/D , where R is the largest separation between any two qubits, and the computer dimension is D, so that R

scales as N1/D . This means that, for any x and y, |F (x)| � N1/D|F (y)|, where the equality is only if x = d and y = R. This
also means that, for any k1,l1,k2,l2, |Fk1l1 | � N1/D|Fk2l2 |.

As mentioned previously, we will make use of the notation A <N B which means that the N scaling of A is less than the
N scaling of B, i.e., A/B → 0 as N → ∞. We also define ∼ to mean “ scales with N as”: For example, A ∼ Na means that
A → cNa for some constant c.

For the single-qubit case, if we call the number of integers in subset z pz, then we may associate with each pattern a list of
integers {p1, . . . ,pu} for which

∑u
z=1 pz = m. All patterns which are compatible with any states (i.e., �(s) = 0) have an even

number of integers in each of its u subsets; i.e., pz is even for all z. We seek to show that for any s with {p1, . . . ,pi, . . . pu} with
some pi > 2, E′

s[
∏

F ] <N NE′
s ′ [
∏

F ] where s ′ has {p1, . . . ,pi − 2, . . . ,pu,2}. This is done by using the definitions of the
the expectation values, and that F 2

jk1
< N2/DF 2

jk2
for any k1 and k2, which is a consequence of the inequality established above.

Definining
∑′

ki
to be

∑
ki =k1,...,ki−1

, we have

E′
s

[∏
F
]

→ N−u
∑

(k1...ku)

(N ′)∑
πu

∏
F (S(s,L({k1 . . . ku},πu))) = N−u

∑
k1 =j

∑
k2 =j,k1

. . .
∑

ku =j,k1,...,ku−1

u∏
z=1

F
pz

jkz

= N−u
∑
k1 =j

∑
k2 =j

′
. . .
∑
ku =j

′ u∏
z=1

F
pz

jkz
< N−u

∑
k1 =j

′
. . .
∑
ku =j

′
F

p1
jk1

. . . F
pi−2
jki

. . . F
pu

jku
× N2/DF 2

min. (F4)

For D = 2, E′[F 2] → N−1∑
k =j F 2

jk ∼ ln(N )/N , while F 2
min ∼ 1/N , meaning that F 2

min <N E′[F 2] and therefore
N2/DF 2

min <N NE′[F 2]. For D = 3, E′[F 2] ∼ N−2/3 while F 2
min ∼ N−2/D = N−2/3, so F 2

min ∼ E′[F 2], and therefore
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N2/DF 2
min <N NE′[F 2]. Using this, and the fact that for any unique k1 . . . ku,

∑
k =j F 2

jk →∑
k =j,k1,...,ku

F 2
jk ,

N−u
∑
k1 =j

. . .
∑
ku =j

′
F

p1
jk1

. . . F
pi−2
jki

. . . F
pu

jku
× N2/DF 2

min

<N N1−u
∑
k1 =j

. . .
∑
ku =j

′
F

p1
jk1

. . . F
pi−2
jki

. . . F
pu

jku

∑
ku+1 =j

F 2
jku+1

/N

→ N1−u
∑
k1 =j

. . .
∑
ku =j

′
F

p1
jk1

. . . F
pi−2
jki

. . . F
pu

jku

∑
ku+1 =j

′
F 2

jku+1
/N

= N−u
∑
k1 =j

. . .
∑

ku+1 =j

′
F

p1
jk1

. . . F
pu

jku
F 2

jku+1
= NE′

s ′

[∏
F
]
. (F5)

thus establishing the desired result for D = 2 and D = 3.
For the single-qubit case, we show that E′

(2,m)[
∏

F ] → E′[F 2]m/2, where E′
(2,m)[

∏
F ] is defined in Appendix B and also

below for any even integer m. We begin by rewriting E′
(2,m)[

∏
F ]:

E′
(2,m)

[∏
F
]

→ N−m/2
∑
k1 =j

∑
k2 =j

′
. . .

∑
km/2 =j

′
F 2

jk1
F 2

jk2
. . . F 2

jkm/2

= N−m/2
∑
k1 =j

. . .
∑

km/2−1 =j

′
F 2

jk1
. . . F 2

jkm/2−1

⎛
⎝ ∑

km/2 =j

F 2
jkm/2

−
m/2−1∑

i=1

F 2
jki

⎞
⎠. (F6)

Let us compare the size of the two terms; the first, N−m/2∑
k1 =j . . .

∑′
km/2−1 =j F 2

jk1
. . . F 2

jkm/2−1

∑
km/2 =j F 2

jkm/2
,

is equal to E′
(2,m−2)[

∏
F ]E′[F 2]. The second, N−m/2∑

k1 =j . . .
∑′

km/2−1 =j F 2
jk1

. . . F 2
jkm/2−1

∑m/2−1
i=1 F 2

jki
, is less than

N−m/2∑
k1 =j . . .

∑′
km/2−1 =j F 2

jk1
. . . F 2

jkm/2−1
× (m/2 − 1)F 2

max = (m/2 − 1)E′
(2,m−2)[

∏
F ]F 2

max/N . In both two and three di-

mensions, (m − 1)F 2
max/N ∼ N−1 <N E′[F 2], so the second term is negligible compared to the first for large N and thus

E′
(2,m)[

∏
F ] → E′

(2,m−2)[(F
2)m−1]E′[F 2]. The base case E′

(2,2)[
∏

F ] = E′[F 2] is true by definition, and so by induction
E′

(2,m)[
∏

F ] → E′[F 2]m/2 for all even integers m.
For the full Hamiltonian case, we first show that Es[|

∏
F |] < NEs ′ [|∏F |] when s is a pattern in which there exists a pair

of subsets whose intersection has more than two elements, and s ′ is the pattern created from s by removing two of the elements
contained in the intersect of such a pair of subsets in s from both of those subsets, and adding two new subsets, each of which
contains the two removed elements. To do this, let us define an intermediate pattern, s ′′, which is s but with the two elements
moved to two new subsets by s ′ instead of simply removed from both subsets in which they originally appeared in s. Thus for
s ∈ Sm(u,v), s ′′ ∈ Sm−2(u,v) and s ′ ∈ Sm(u′,v′) = Sm(u + 2,v′). Using the inequality established above, that for any k and l,
Fkl � N1/2Fmin, and again using

∑′
ki

=∑ki =k1,...,ki−1
, we obtain the desired result:

Es

[∣∣∣∏F

∣∣∣] → N−u
∑

(k1...ku)

(N )∑
πu

∣∣∣∣∏F (K(s,L({k1 . . . ku},πu)))

∣∣∣∣
< N−u

∑
(k1...ku)

(N )∑
πu

∣∣∣∣∏F (K(s ′′,L({k1 . . . ku},πu)))

∣∣∣∣× N2/DF 2
min

< N2/D−u
∑

(k1...ku)

(N )∑
πu

∣∣∣∣∏F (K(s ′′,L({k1 . . . ku},πu)))

∣∣∣∣
∑

ku+1 =k1,...,ku

∑
ku+2 =k1,...,ku+1

F 2
ku+1ku+2

(N − u)(N − u − 1)

= N2/D−u
∑

(k1...ku)

(N )∑
πu

∣∣∣∣∏F (K(s ′′,L({k1 . . . ku},πu)))

∣∣∣∣
∑′

ku+1

∑′
ku+2

F 2
ku+1ku+2

(N − u)(N − u − 1)

→ N2/D−2−u
∑

(k1...ku+2)

(N )
∣∣∣∣∣
∏
πu+2

F (K(s ′,L({k1 . . . ku+2},πu+2))}
∣∣∣∣∣ = N2/DEs ′

[∣∣∣∏F

∣∣∣], (F7)

and therefore, for both D = 2 and D = 3,

Es

[∣∣∣∏F

∣∣∣] < NEs ′
[∣∣∣∏F

∣∣∣]. (F8)
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Next, we show that if s ∈ Sm(u,v) has a subset with four or more elements, and its intersect with another subset contains two
elements, then for s ′ ∈ Sm(u′,v′) which is s but with the two elements in the intersect between the two subsets in question removed
from both subsets, and both added to each of two new subsets which contains only these two elements, then Es[|

∏
F |] <N

NEs ′ [|∏F |]. This is done similarly to above, but in order to have <N instead of <, we use the fact that in D = 2, E[F 2] →
N−2∑

k

∑
l =k F 2

kl ∼ ln(N )/N and F 2
min ∼ 1/N , while in D = 3, E[F 2] ∼ N−2/3 and F 2

min ∼ N−2/3, meaning that in either case
N2/DF 2

min <N NE[F 2]. Additionally, we use that, for any finite set of u qubits k1, . . . ,ku,
∑

ku+1 =k1,...,ku

∑
ku+2 =k1,...,ku+1

F 2
ku1 ku+2

=∑′
ku+1

∑′
ku+2

F 2
ku1 ku+2

→∑
ku+1

∑
ku+2 =ku+1

F 2
ku+1ku+2

→ N2E[F 2]. Let s ′′ ∈ Sm−2(u′′,v′′) be s but with the two elements moved to
new subsets in s ′ simply removed from both subsets they appear in. We must treat the case that both subsets with an intersect
with two elements have four or more elements, as well as the case when one has four or more and the other has two. In the former
case, u′′ = u and u′ = u + 2, and we have

Es

[∣∣∣∏F

∣∣∣] → N−u
∑

(k1...ku)

(N )∑
πu

∣∣∣∣∏F (K(s,L({k1 . . . ku},πu)))

∣∣∣∣
< N−u

∑
(k1...ku)

(N )∑
πu

∣∣∣∣∏F (K(s ′′,L({k1 . . . ku},πu)))

∣∣∣∣× N2/DF 2
min

<N N1−u
∑

(k1...ku)

(N )∑
πu

∣∣∣∣∏F (K(s ′′,L({k1 . . . ku},πu)))

∣∣∣∣× E(F 2)

→ N−1−u
∑

(k1...ku)

(N )∑
πu

∣∣∣∣∏F (K(s ′′,L({k1 . . . ku},πu)))

∣∣∣∣∑
ku+1

′∑
ku+2

′
F 2

ku+1ku+2

= N−1−u
∑

(k1...ku+2)

(N )
∣∣∣∣∣
∏
πu+2

F (K(s ′,L({k1 . . . ku+2}),πu+2))

∣∣∣∣∣ = NEs ′
[∣∣∣∏F

∣∣∣]. (F9)

If one of the subsets has only two elements, then u′′ = u − 1 and u′ = u + 1, so

Es

[∣∣∣∏F

∣∣∣] → N−u
∑

(k1...ku)

(N )∑
πu

∣∣∣∣∏F (K(s,L({k1 . . . ku},πu)))

∣∣∣∣
< N−u(N − (u − 1))

∑
(k1...ku−1)

(N )∑
πu−1

∣∣∣∣∏F (K(s ′′,L({k1 . . . ku−1},πu−1)))

∣∣∣∣× N2/DF 2
min

→ N1−u
∑

(k1...ku−1)

(N )∑
πu−1

∣∣∣∣∏F (K(s ′′,L({k1 . . . ku−1},πu−1)))

∣∣∣∣× N2/DF 2
min

<N N2−u
∑

(k1...ku−1)

(N )∑
πu−1

∣∣∣∣∏F (K(s ′′,L({k1 . . . ku−1},πu−1)))

∣∣∣∣× E(F 2)

→ N−u
∑

(k1...ku−1)

(N )∑
πu−1

∣∣∣∣∏F (K(s ′′,L({k1 . . . ku−1},πu−1)))

∣∣∣∣∑
ku

′∑
ku+1

′
F 2

kuku+1

= N−u
∑

(k1...ku+1)

(N )
∣∣∣∣∣
∏
πu+1

F (K(s ′,L({k1 . . . ku+1},πu+1)))

∣∣∣∣∣ = NEs ′
[∣∣∣∏F

∣∣∣]. (F10)

Thus in both cases, which are exhaustive, we have established the desired result.
For m even, we show that if s ∈ Sm(u,v) has u − v = 2a subsets with two elements and the property that the intersect between

any of these subsets with any other is two or zero (there must be an even number of these), and the other v subsets, which contain
a total of m − 2a = b integers, have intersects with all other subsets which contain no more than one element, and s ′ is a pattern
where all subsets have two elements and all intersects have two or zero elements (i.e., b = 0), then for b = 0, Es[|

∏
F |] <

Nb/2−1/2Es ′ [|∏F |]. All s ′ of this form have the same expectation value, which we denote Es ′ [|∏F |] = E(2,m)[|
∏

F |]. Let
s ′′ ∈ S2a(2a,0) be s but with all subsets which with an intersect with another subset containing one element removed, so that
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u′′ = u − v:

Es

[∣∣∣∏F

∣∣∣] → N−u
∑

(k1...ku)

(N )∑
πu

∣∣∣∣∏F (K(s,L({k1 . . . ku},πu)))

∣∣∣∣
< N−uNv−2

∑
(k1...ku−v )

(N )∑
πu−v

∣∣∣∣∏F (K(s ′′,L({k1 . . . ku−v},πu−v)))

∣∣∣∣
×
∑

ku−v+1

′ ∑
ku−v+2

′
∣∣∣∣Fku−v+1ku−v+2

∣∣∣∣N (b−1)/DF b−1
min

< Nv−2−u+(b−1)/D
∑

(k1...ku−v)

(N )∑
πu−v

∣∣∣∣∏F (K(s ′′,L({k1 . . . ku−v},πu−v)))

∣∣∣∣
×

∑′
ku−v+1

. . .
∑′

ku−v+b
F 2

ku−v+1ku−v+2
. . . F 2

ku−v+b−1ku−v+b

(N − (u − v + 2))(N − (u − v + 3)) . . . (N − (u − v + (b − 1)))

→ Nv−2−u+(b−1)/D
∑

(k1...ku−v)

(N )∑
πu−v

∣∣∣∣∏F (K(s ′′,L({k1 . . . ku−v},πu−v)))

∣∣∣∣
×N−(b−2)

∑
ku−v+1

′
. . .
∑

ku−v+b

′
F 2

ku−v+1ku−v+2
. . . F 2

ku−v+b−1ku−v+b

= Nv−u+b/D−1/D−b
∑

(k1...ku−v+b)

∑
πu−v+b

∣∣∣∣∏F (K(s ′,L({k1 . . . ku−v+b},πu−v+b)))

∣∣∣∣
→ Nv−u−b/D−1/D+mEs ′

[∣∣∣∣∏F

∣∣∣∣
]

= N (b−1)/DEs ′
[∣∣∣∏F

∣∣∣], (F11)

since u − v + b = u − v + m − 2a = m. (b − 1)/3 < (b − 1)/2, so for D = 2 or D = 3,

Es

[∣∣∣∏F

∣∣∣] < Nb/2−1/2Es ′
[∏

F
]
. (F12)

For m odd, we show that if s ∈ Sm(u,v) has u − v = 2a subsets with two elements and the property that the intersect between
any of these subsets with any other is two or zero (there must be an even number of these), and the other v subsets, which
contain a total of m − 2a = b integers, have intersects with all other subsets which contain no more than one element, and s ′ is
a pattern where all subsets but three have two elements and all intersects between these subsets contain two or zero elements
and the other three subsets each contain two elements and the intersect between any two of them contains one element (i.e., s

but with b = 3), then for b � 5, Es[|
∏

F |] <N Nb/2−3/2Es ′ [|∏F |]. All s ′ of this form have the same expectation value, which
we denote Es ′ [|∏F |] = E(3,m)[|

∏
F |]. Again, let s ′′ ∈ S2a(2a,0) be s but with all subsets which with an intersect with another

subset containing one element removed, so that u′′ = u − v:

Es

[∣∣∣∏F

∣∣∣] → N−u
∑

(k1...ku)

(N )∑
πu

∣∣∣∣∏F (K(s,L({k1 . . . ku},πu)))

∣∣∣∣
< N−uNv−5

∑
(k1...ku−v)

(N )∑
πu−v

∏
F (K(s ′′,L({k1 . . . ku−v},πu−v)))

×
∑

ku−v+1

′ ∑
ku−v+2

′ ∑
ku−v+3

′ ∑
ku−v+4

′ ∑
ku−v+5

′∣∣Fku−v+1ku−v+2Fku−v+2ku−v+3Fku−v+4ku−v+5

∣∣N (b−3)/DF b−3
min

< Nv−5−u+b/D−3/D
∑

(k1...ku−v)

(N )∑
πu−v

∏
F (K(s ′′,L({k1 . . . ku−v},πu−v)))

×N−(b−5)
∑

ku−v+1

′
. . .
∑

ku−v+b

′
F 2

ku−v+1ku−v+2
. . . F 2

ku−v+b−4ku−v+b−3

∣∣Fku−v+b−2ku−v+b−1Fku−v−1ku−v
Fku−vku−v−2

∣∣
= Nv−u−b+b/D−3/D

∑
(k1...ku−v+b)

∑
πu−v+b

∏
F (K(s ′,L({k1 . . . ku−v+b},πu−v+b)))

→ Nv−u−b+b/D−3/D+mEs ′

(∣∣∣∣∏F

∣∣∣∣
)

= N (b−3)/DEs ′
[∣∣∣∏F

∣∣∣], (F13)
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and again, because (b − 3)/3 < (b − 3)/2,

Es

[∣∣∣∏F

∣∣∣] < Nb/2−3/2Es ′

[∣∣∣∣∏F

∣∣∣∣
]
. (F14)

Finally, we simplify E(2,m)[
∏

F ] and E(3,m)[
∏

F ] (as defined in Appendix B) in terms of E[F 2] and E[F 3]. We begin with
showing that E(2,m)(

∏
F ) → E[F 2]m/2. This is done similarly to the analogous result in the single qubit case. We begin by

rewriting E(2,m)[F ]:

E(2,m)
[
F
] → N−m

∑
k1

∑
k2

′
. . .
∑
km

′
F 2

k1k2
. . . F 2

km−1km

= N−m
∑
k1

∑
k2

′
. . .
∑
km−2

′
F 2

k1k2
. . . F 2

km−3km−2

⎛
⎝∑

km−1

∑
km =km−1

F 2
km−1km

−
m−2∑
i=1

∑
k =ki

F 2
kik

−
m−2∑
i=1

∑
k

′
F 2

kki

⎞
⎠. (F15)

Let us compare the size of all three of these terms: The first term, N−m
∑

k1

∑′
k2

. . .
∑′

km−2
F 2

k1k2
. . . F 2

km−3km−2

∑
km−1

∑
km =km−1

F 2
km−1km

, is equal to E(2,m−2)[
∏

F ] × E[F 2]. The second, N−m
∑

k1

∑′
k2

. . .
∑′

km−2
F 2

k1k2
. . . F 2

km−3km−2

∑m−2
i=1

∑
k =ki

F 2
kik

, is smaller
than N−m

∑
k1

∑′
k2

. . .
∑′

km−2
F 2

k1k2
. . . F 2

km−3km−2
× (m − 2)(N − 1)F 2

max → (m − 2)F 2
maxE(2,m−2)[

∏
F ]/N . Similarly, the third

term has the same upper bound for large N . But (m − 2)F 2
max/N ∼ N−1 <N E[F 2] in both two and three dimensions, so

the second and third terms become negligible for large N , and thus E(2,m)(
∏

F ) → E(2,m−2)[
∏

F ]E[F 2]. The base case
E(2,2)[

∏
F ] = E[F 2] is true by definition, and so by induction E(2,m)[

∏
F ] → E[F 2]m/2 for all even integers m.

We now show that the N scaling of E(3,m)[|
∏

F |] is at most E(2,m−3)[
∏

F ] × E[|F |].

E(3,m)

[∣∣∣∏F

∣∣∣] → N−m
∑
k1

∑
k2

′
. . .
∑
km

′∣∣F 2
k1k2

. . . F 2
km−4km−3

Fkm−2km−1Fkm−1km
Fkmkm−2

∣∣
< N−m

∑
k1

∑
k2

′
. . .
∑
km−3

′
F 2

k1k2
. . . F 2

km−4km−3

∑
km−2

∑
km−1 =km−2

∑
km =km−1,km−2

∣∣Fkm−2km−1Fkm−1km
Fkmkm−2

∣∣
< N−m

∑
k1

∑
k2

′
. . .
∑
km−3

′
F 2

k1k2
. . . F 2

km−4km−3

∑
km−2

∑
km−1 =km−2

∑
km =km−1,km−2

∣∣Fkm−2km−1

∣∣F 2
max

< N1−mF 2
max

∑
k1

∑
k2
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and the result is obtained by noting that Fmax ∼ 1.
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