Linear and nonlinear crystal optics using the magnetic field of light

Zachary N. Buckholtz and Deniz D. Yavuz

Department of Physics, 1150 University Avenue, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA

(Received 31 July 2019; revised manuscript received 15 August 2019; accepted 30 January 2020; published 18 February 2020)

We study the $^7F_0 \rightarrow ^7D_1$ magnetic-dipole transition in the $4f$ shell of europium ions at a wavelength of 527.5 nm and demonstrate spectral hole burning, ion class selection, and optical pumping to specific ground hyperfine states. We then use the narrow lines of the selected ions to observe linear group delay of a weak probe pulse with a group velocity of $c/3800$. We also demonstrate electromagnetically induced transparency by establishing a $\Lambda$ scheme between the ground hyperfine levels and driving the ions to a dark state.

DOI: 10.1103/PhysRevA.101.023831

I. INTRODUCTION

It is well known that natural materials almost always primarily interact with light through its electric field. This is because, due to fundamental constants of nature, the interaction with the magnetic field is typically weaker by five orders of magnitude. One immediate consequence of this is that, while studying optical interactions, researchers generally take the permeability of the material to be equal to its free-space value ($\mu = \mu_0$).

The weakness of the magnetic response is a critical limitation for optical device applications. For example, to achieve a negative refractive index, both the permittivity and the permeability of the material need to be significantly modified; i.e., the material needs to interact strongly with both the electric and the magnetic fields of light [1–8]. Over the last two decades, new types of materials that show magnetic response in the optical region of the spectrum have been invented and continually refined [9–13]. These materials, referred to as metamaterials, use periodic structures to induce a magnetic-dipole response (typically in addition to an electric-dipole response) over a certain range of wavelengths. Metamaterials traditionally utilize all metal or metal-dielectric structures which can be engineered by using a variety of nanolithography techniques. Over the last five years, there has also been important progress in constructing all-dielectric metamaterials utilizing Mie resonances in high-refractive index nanoresonators [14–16]. All-dielectric metamaterials are optically transparent and do not suffer from the large Ohmic losses associated with metal-based devices.

It was recognized early on that it may also be possible to construct negative index materials using sharp transitions of atoms or ions [17–25]. Instead of relying on engineered patterns, the idea is to utilize the resonances provided to us by nature. Similar to the early stages of structured metamaterial research, obtaining a large magnetic response and modifying the permeability has remained the key challenges of this approach. In this article, we use a europium doped crystal (specifically europium doped yttrium ortho-silicate, Eu:YSO) and demonstrate coherent control of the permeability in a bulk optical crystal. We achieve this by utilizing the $^7F_0 \rightarrow ^7D_1$ purely magnetic-dipole transition in the $4f$ shell of europium ions at a wavelength of 527.5 nm [26]. We first use this transition to demonstrate spectral hole burning and ion class selection under the broad (GHz wide) inhomogeneous profile. This allows the creation of narrow (MHz-wide) magnetic-dipole optical absorption resonances with multiple stable ground hyperfine states. The selected ions can be optically pumped to any of the ground states, and both linear and nonlinear optical interactions with the incident beams can then be observed. Using these narrow lines, we demonstrate a linear group delay with a group velocity of $c/3800$ for a weak, 0.25-$\mu$s-long optical pulse. We also demonstrate electromagnetically induced transparency (EIT) by using probe and coupling laser beams in a $\Lambda$ configuration [27–29]. EIT is a nonlinear optical phenomenon in which the transmission of the probe beam is modified by the presence of the coupling beam. It is achieved by driving the ions into the dark state and establishing a Raman coherence between the hyperfine levels.

The level of control of the permeability that we demonstrate in this article is not currently sufficient to achieve a negative refractive index. With spectral hole burning we can produce a magnetic susceptibility (and therefore permeability) at the level of $\chi_M \approx 10^{-5}$, and using EIT we can coherently control this susceptibility at the level of $\Delta \chi_M \approx 10^{-6}$. However, as we discuss in the conclusions, there are many avenues for extending these proof-of-principle results to give a larger magnetic response. We also note that, using chirality, a magnetic susceptibility at the level of $\chi_M \approx 10^{-2}$ is sufficient to achieve a negative refractive index [21–23].

The atomic approach to metamaterials that we focus on in this article has important advantages over structured devices. Metamaterials require an optical response which is uniform on wavelength spatial scales, and the granularity of the periodic structures is a fundamental limitation for device performance. As shown in Fig. 1, due to resolution limitations of lithographic techniques, current metal-based metamaterials are limited to feature scales of about 100 nm (i.e., about $\lambda/5$ in the optical region of the spectrum). In all-dielectric metamaterials, Mie resonances require spheres or cylinders of
specific sizes, which fundamentally sets the feature scale to a similar range of $\lambda/2$ to $\lambda/5$. The large feature size results in key limitations to the device performance. For example, “perfect lenses” constructed by using current metamaterials would be limited to a resolution of about $\lambda/5$. In contrast, when atomic transitions are utilized, the unit-cell length of the crystal sets the scale for feature size since the individual emitters are atomic ions. The unit-cell dimensions of the host crystal that we utilize, yttrium ortho-silicate (YSO), is also shown in Fig. 1. Even at low doping concentrations of order 0.1%, the spacing between radiating ions is about 10 nm, which results in uniformity of order $\lambda/50$.

Another restriction of structured metamaterials is that their magnetic response is limited to a fraction of the plasma frequency [30]. This limits the highest frequency (and therefore the shortest wavelength) that negative refraction can be achieved to somewhere in the middle of the visible region of the spectrum. In contrast, as we discuss in the conclusions section, there are realistic prospects for extending the experiments described here to shorter wavelengths by using magnetic-dipole transitions of rare-earth ions in the ultraviolet region of the spectrum.

II. RARE-EARTH-DOPED CRYSTALS

Although the existence of magnetic-dipole transitions have been known for some time [31,32], accessing these transitions is challenging, especially in a solid. As mentioned above, the oscillator strengths of these transitions are weaker by a factor of $\alpha^2$ (the quantity $\alpha \approx 1/137$ is the fine-structure constant) compared with electric-dipole transitions. As a result, these transitions are easily dwarfed by nearby electric-dipole transitions or are largely broadened by dissipative processes. The electrons in the open $4f$ shell of rare-earth ions in doped crystals form a special environment where these challenges can be overcome [33–37]. The $4f$ shell is shielded by the filled 5s and 5p shells and interacts weakly with the crystal environment. As a result, the intraconfigurational $4f \rightarrow 4f$ transitions are sharp, and they are very much like free-ion transitions that are only weakly perturbed by the crystal field.

The homogeneous linewidths of the optical $4f \rightarrow 4f$ transitions can be very narrow, even at the Hz level at cryogenic temperatures. Furthermore, hyperfine states of the ground level are stable and long lived, and they can be used to induce Raman transitions. There is still an inhomogeneous broadening due to the interaction with the crystal field, which is typically at the GHz level. This broadening is unusually small for a solid environment, which is again a result of the $4f$ shell being weakly perturbed by the crystal field.

Due to the richness of the electronic structure, magnetic-dipole transitions in the optical region can be found within the $4f$ shell. The transition that we use, $7F_0 \rightarrow 5D_1$ of the Eu$^{3+}$ ion has recently emerged as a workhorse in studying optical magnetic response. About three years ago, Novotny and colleagues demonstrated laser excitation of this transition [38]. They utilized a tightly focused radially polarized laser, which produced unique spatial profiles for the electric and magnetic fields at the focus. By imaging the excitation profile of europium-doped nanoparticles at room temperature, they conclusively demonstrated the magnetic-dipole nature of this transition. We recently observed strong-field Rabi flopping on this transition at cryogenic temperatures [39]. Using angle-dependent fluorescence, we also confirmed that the electrons interacted with the magnetic field of light as they were being excited. In related work, the manipulation of magnetic-dipole emission from europium ions near dielectric surfaces was recently studied in Ref. [40]. In other pertinent prior work, we note the pioneering work of Rand and colleagues [41–43]. They discovered an unusually large magnetic optical response using femtosecond lasers at moderately high intensities of $\sim10^9$ W/cm$^2$, both in dielectric liquids [41,42] and molecular crystals [43]. The physical mechanism for this magnetization is the applied magnetic torque on the induced polarization causing molecular rotations in the strong-field regime.

III. EXPERIMENTAL SCHEMATIC

A simplified schematic of our experiment is shown in Fig. 2. The \(^7F_0 \rightarrow ^7D_1\) transition wavelength is 527.5 nm (green) and our laser system starts with an infrared 1055 nm external cavity diode laser (ECDL). We use an ultralow expansion (ULE) glass cavity as a frequency reference. The ECDL is locked to one of the axial modes of the cavity that lies near the peak of the inhomogeneous profile. Locking reduces the absolute linewidth of the ECDL to \(\approx 100\) kHz, which is continually monitored by using a fiber-based Mach-Zehnder interferometer (not shown in Fig. 2). The long-term (over several days) absolute frequency drift of the modes of the cavity is at the 100 kHz level. The frequency-stabilized ECDL output is amplified to an optical power exceeding 5 W by using a ytterbium-doped fiber amplifier. We frequency-double the fiber amplifier output by using second-harmonic generation with a periodically poled KTP (PPKTP) crystal. To increase the efficiency of the generated second harmonic, we utilize a ring cavity, which is housed in a continuous-flow liquid helium cryostat to cool to a temperature of 4.5 K. Cooling is needed to reduce phonon-induced relaxation rates which critically determines homogeneous optical linewidths.

IV. SPECTRAL HOLE BURNING

Our spectral hole burning technique is similar to what was previously achieved by using forced electric-dipole transitions \([44–47]\). The key difference is that ions interact with the magnetic field of light instead of the electric field. The low-lying electronic levels of the \(4f\) shell of Eu\(^{153}\) are shown in Fig. 3(a) (the full \(4f\) electronic configuration covers over 100 000 \(\text{cm}^{-1}\)). Our crystal is doped at \(\sim 0.1\%\) with natural-abundance europium, containing 48% \(^{151}\)Eu and 52% \(^{153}\)Eu. Each of these isotopes has a nuclear spin of \(I = 5/2\). Eu\(^{153}\) ions can occupy two unique sites in the YSO matrix, referred to as “site 1” and “site 2.” For our experiments we select and use a class of the \(^{153}\)Eu ions occupying site 2. The dominant contribution to the homogeneous linewidth of the \(^7F_0 \rightarrow ^7D_1\) transition is nonradiative, phonon-induced relaxation of the excited \(^7D_1\) level to \(^5D_0\). This rate is \(\Gamma = 2\pi \times 4.8\) kHz,
corresponding to a nonradiative lifetime of $\tau = 33\, \mu s$. The inhomogeneous linewidth of this transition is 1.6 GHz [39].

As shown in Fig. 4(a), the nuclear-spin results in three hyperfine states, in both the ground and excited levels, labeled $|± 1/2\rangle$, $|± 3/2\rangle$, and $|± 5/2\rangle$ (while the spacing of the hyperfine states in the excited level is known, their ordering is not). The frequency spacings between the hyperfine states is smaller than the inhomogeneous profile. As a result, a single laser beam tuned close to the center of the inhomogeneous line couples to $3 \times 3 = 9$ different transitions, each associated with a separate ion class. If the laser interacts with the ions for a sufficiently long amount of time, each ion class is optically pumped to ground hyperfine states that are not resonant with the laser beam. This establishes a spectral hole in the inhomogeneous profile, which is schematically shown in Fig. 3(b). Since the ground hyperfine levels are stable, the spectral hole lifetimes are quite long. We have observed lifetimes as long as one hour, but spectral holes in a rare-earth doped system are known to persist even for days at cryogenic temperatures [33]. Once a spectral hole is produced, it can be probed by applying a subsequent weak laser beam whose frequency is scanned. Figure 3(b) shows the transmission of such a laser as its frequency is scanned across the established spectral hole. We routinely observe spectral hole widths at the 1 MHz scale.

If the frequency of the subsequent probing laser is scanned across the whole inhomogeneous profile, the full observed spectral-hole spectrum is rather complex [47]. The central spectral hole is accompanied by $2 \times 9 \times 9 = 162$ holes and antiholes (the factor of 2 is due to the presence of the two isotopes) in the absorption spectrum. The holes and antiholes appear at specific frequencies which are related to the hyperfine spacings. The depths of these holes and antiholes are determined by the transition strengths between various hyperfine transitions. A detailed study of this complex hole and antihole spectra is left for a future publication.

Figure 3(c) shows the full-width-at-half-maximum (FWHM) and also the depth (fractional transmission) of the produced central hole as a function of the duration of the hole-burning laser. These data are taken for a hole-burning laser with a power of 1 $\mu W$ (the beam intensity at the focus is 40 mW/cm²).

### V. ION CLASS SELECTION

Figure 4(a) shows the energy levels and the three involved laser beams that we use for ion class selection and also for EIT. As mentioned above, each laser beam addresses nine different classes of ions under the broad inhomogeneous profile. However, there is only one ion class shown in Figure 4(a), for which all three hyperfine ground states are coupled to an excited hyperfine level with one of the lasers. All other ion classes have at least one ground hyperfine state which is not connected to an excited hyperfine level. As a result, when all three laser beams are turned on, all the other ion classes are optically pumped to a nonaddressed hyperfine ground state and are therefore rendered “dark.” Only the specific ion class interacts with the frequencies and resonances shown in Fig. 4(a) keeps interacting with the beams, a process that is referred to as ion class selection. We note that there are additional degeneracies that are not explicitly shown in Fig. 4(a). Each hyperfine level, which is shown in Fig. 4(a), actually consists of two values of the nuclear spin. For example, the highest energy hyperfine level in the ground level has a degeneracy of two with nuclear-spin numbers $| + 1/2\rangle$ and $| − 1/2\rangle$, respectively. As a result, the total number of states in the ground level is $3 \times 2 = 6$. While this complicates optical pumping, to our knowledge, there is no strict selection rule that prohibits the excitation of any of these six states to the excited level. As a result, we do not expect any of these six states to be strictly “dark.” While...
the coupling of some of these states could be weaker due to a smaller value of the matrix element, because ion class selection procedure occurs over quite-long timescales (many seconds), the system can be assumed to be closed.

For ion class selection, spectral-troughs (instead of holes) are preferred, in order to initially select ions that are resonant over a sufficiently broad region of the inhomogeneous profile. This reduces the interference of other ion classes with nearby resonance frequencies. Spectral troughs can be burned by scanning the frequency of the involved beams during the ion class selection process. An example spectral-trough which is about 14 MHz wide is shown in Fig. 4(b). Figure 4(c) shows the timing diagram for the experiments that will be discussed below. We follow a procedure which is similar to what was discussed in Refs. [45] and [47] where the authors investigated relative transition strengths between hyperfine levels for the forced electric-dipole transitions in Pr$^{3+}$ and Eu$^{3+}$.

Our ion-class selection procedure has four distinct steps. In the first step, we turn on the three beams at low optical powers (about 10 $\mu$W), continually scanning their frequencies over a range of 10 MHz at a rate of about 100 Hz. This is the ion-class selection process which continues for a time duration of about 3 s. In the second step, the repumper beam is turned off while the probe and coupling lasers are left on with their frequencies scanned. This step optically pumps all the ions in the selected class to the middle hyperfine ground state $|\pm 3/2\rangle$ (the state addressed by the repumper laser). In the third step, the coupling and repumping laser beams are turned on at a certain frequency to optically pump ions near that frequency to the $|\pm 1/2\rangle$ ground hyperfine state (i.e., to the state addressed by the probe laser beam). This creates a narrow, $\approx 1$ MHz wide, absorption resonance for the probe laser beam (i.e., an “ultracold” ensemble is created), which we then use for slow-light and EIT experiments. The first three steps (ion class selection, optical pumping, and state initialization) last about 3 s each. For the final step, we use $\mu$s-long pulses.

An example narrow absorption resonance that is produced for the probe laser beam is shown in Fig. 5. Here, the transmission of a weak probe laser through the crystal is measured (with the coupling laser turned off), after ion class distillation and optical pumping steps as discussed above. A 1 MHz absorption resonance with an optical depth of about 0.3 is created. These data are taken by using a 40-$\mu$s-long probe laser pulse, and the laser frequency is chirped during the pulse so that the whole frequency response is obtained in a single experiment. The data shown are an average over five experiments. The data of Fig. 5 also show a spurious peak.
FIG. 5. The absolute transmission of a weak probe laser beam through the crystal. This measurement is performed with the coupling laser off and after the ion class selection, optical pumping, and state initialization steps. A 1 MHz absorption resonance with an optical depth of about 0.3 is created. The data also show a spurious peak, which may be a result of a currently unidentified splitting of the hyperfine levels.

which may be a result of a currently unidentified splitting of the hyperfine levels.

VI. SLOW LIGHT AND ELECTROMAGNETICALLY INDUCED TRANSPARENCY

We now discuss our slow-light and EIT experiments. Using the selected ensemble, we were able to observe linear group velocity reduction. Figure 6(a) shows the propagation of a 1/4-μs-long probe laser pulse whose frequency is detuned by 0.8 MHz from the peak of the narrow absorption resonance. In addition to significant reshaping of the pulse, we observe a group delay of 127 ns while propagating through the crystal. This group delay corresponds to a group velocity $v_g = 7.8 \times 10^4 \text{ m/s}$, which is 3800 times slower than the speed of light in free space. Note that this group delay is not that which is typically associated with EIT. Rather, it is due to the large dispersion due to the narrow absorption profile as shown in Fig. 5. We also performed this slow-light experiment using longer 5-μs-long probe pulses. As shown in Fig. 6(b), we observe a significantly larger group delay of 224 ns, corresponding to a substantially slower pulse. The slower group velocity is most likely due to the narrower bandwidth of the longer pulses.

splitting of the line (Autler-Townes splitting), with slight but observable increase in the transmission at line center. The solid red line is a fit to the data points using the well-known EIT lineshape for the susceptibility \[^{29}\]:

$$\chi_M = \frac{N\mu^2}{\epsilon_0\hbar} \frac{\delta \omega + i \gamma}{(\delta \omega + i \gamma + i \Gamma/2)(\delta \omega + i \gamma) - |\Omega_1|^2}. \quad (1)$$

Here, we have taken the coupling laser beam to be exactly resonant between the relevant levels. $\Gamma$ is the population decay rate of the excited level, and $\gamma$ is the dephasing rate between the two ground hyperfine states. The quantity $\delta \omega$ is the frequency detuning of the probe laser beam from the excited level (which is also the two-photon Raman detuning since the coupling laser is assumed to be resonant), and $\Omega_c$ is the Rabi frequency of the coupling laser beam. The best fit gives a coupling laser Rabi frequency of $\Omega_c = 2\pi \times 350 \text{ kHz}$ and a Raman dephasing rate of $\gamma = 2\pi \times 150 \text{ kHz}$. The physical mechanism for this large Raman dephasing rate is currently an open question.

The bottom plot in Fig. 7 is the calculated change in the real part of the magnetic susceptibility due to EIT. We can modify the real part of $\chi_M$ by $\approx 10^{-6}$. These experiments extend
FIG. 7. Normalized probe transmission with the coupling laser beam (shown as data points) and without it (shown as a dashed line). With the coupling laser, there is splitting of the line (Autler-Townes splitting), with a slight but observable increase in the transmission at line center. The solid red line is a fit to the data points using the well-known EIT lineshape. The bottom plot is the calculated real part of the magnetic susceptibility under the conditions of EIT.

previous EIT and quantum coherence experiments that were observed in rare-earth doped crystals [48–52] to interactions with the magnetic-field of light.

The data of Fig. 7 are obtained by using a coupling laser power of 23 mW (beam intensity of 723 W/cm² at the focus). Using the inferred value of the coupling laser Rabi frequency from the fit (ΩC = 2π × 350 kHz), we calculate the magnetic-dipole matrix element for the specific hyperfine transition to be μ = (0.10 ± 0.01)μB (μB is the Bohr magneton). This is reasonably consistent with the hyperfine-averaged matrix element measurements of our previous Rabi flopping experiments [39].

VII. CONCLUSIONS

We studied the ⁷F₀ → ⁵D₁ magnetic-dipole transition in the 4f shell of europium ions at a wavelength of 527.5 nm. We first demonstrated spectral hole burning, ion class selection, and state initialization under the inhomogeneous profile. This allowed us to produce MHz-wide, magnetic-dipole optical absorption resonances with multiple stable ground hyperfine states. Using these narrow lines, we demonstrated slow light and EIT. EIT using a magnetic-dipole transition has been observed before, but only in a vapor (within the context of atomic parity violation experiments) [53]. All EIT experiments in solids to date used interaction with the electric field to increase transmission of a laser beam and therefore modified the electric susceptibility. In our experiments, we used the interaction with the magnetic field and modified the magnetic susceptibility.

One of the main limitations of our current experiment is the absolute frequency and phase noise on our laser beams. The whole ion-class selection, optical pumping, and EIT experimental cycle takes a fraction of a minute, and it is critical for the absolute frequency of the laser to not drift much during the cycle. We have found that our experimental results depend critically on the quality of the lock of the ECDL to the ULE cavity. Due to this frequency and phase-noise limitation, we were not able to observe coherent control of the group velocity of light by changing the intensity of the coupling laser beam. Improving the absolute linewidth of our laser system will likely result in better EIT data and also will allow us to observe other quantum coherence effects such as stopped and backward light [54–57]. On a related note, more available optical power in the coupling laser beam would result in a larger coupling Rabi frequency, allowing for a deeper and wider EIT transmission window.

To our knowledge, this is the first experiment to demonstrate control of the magnetic susceptibility, and therefore the permeability, in a bulk crystal. As mentioned in the introduction, one immediate application of this work is to the field of negative index materials. The modification of the permeability that we demonstrate in this article is not currently sufficient to achieve a negative refractive index. We are able to achieve a magnetic susceptibility (and therefore the permeability) at the level of χM ≈ 10⁻⁵. However, there are many avenues for future research to improve these results. For example, using stronger magnetic-dipole transitions and higher ionic densities (with higher doping concentrations), it will likely be possible to increase the magnetic susceptibility significantly. Similarly, decreasing the inhomogeneous broadening can lead to much higher effective densities, and therefore larger modifications of the permeability. It is known that repeated recrystallization and therefore purification of the host material can lead to significant narrowing in inhomogeneous linewidth [33]. Some special host crystals are known to provide a near-strain free environment, producing inhomogeneous lines as narrow as 10 MHz. Yet another narrowing mechanism is due to the strong hyperfine interaction of the rare-earth ion. In these systems, the hyperfine interaction defines a quantization axis, which makes the strain-shift terms off-diagonal, thereby reducing their effectiveness. We note that inhomogeneous broadening can also be overcome using laser-based methods. For example, it might be possible to utilize the suggestion of Ref. [58] and compensate for the frequency shifts due to the broadening process with an equal and opposite shift caused by an intense Stark-shift laser beam.

The extension of this work to magnetic-dipole transitions at shorter wavelengths would be interesting and exciting. Current structured metamaterials are limited to a shortest wavelength near the middle of the visible range of the spectrum [30,59,60]. Rare-earth ions could provide a unique environment to obtain strong magnetic response in the ultraviolet region of the spectrum. For example, we have recently identified a strong magnetic-dipole transition at a wavelength of 282 nm in terbium (Tb³⁺) [25].
ACKNOWLEDGMENTS

This work was supported by Air Force Office of Scientific Research (AFOSR) and Wisconsin Alumni Research Foundation (WARF). We thank N. Brewer and Z. Simmons for their contributions in the early stages of this project. We also would like to thank J. Karpel and D. Gold for many helpful discussions.

A. Vaskin et al., Manipulation of magnetic dipole emission from Eu$^{3+}$ with Mie-resonant dielectric metasurfaces, Nano Lett. 19, 1015 (2019).


