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i

I do not think that the wireless waves I have discovered will have any practical application.

-Heinrich Hertz on his discovery of radio waves.
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Abstract

Progress Towards an Atomic Metamaterial

Zachary Noel Buckholtz

Under the supervision of Professor Deniz D. Yavuz

At the University of Wisconsin - Madison

There are no naturally occurring materials with a negative index of refraction (NIM).

However, in 1968, Victor Veselago noted that a NIM could in principle be produced if a

material had both a negative permittivity and permeability. The idea of a NIM remained

relatively unexplored until John Pendry’s seminal paper in 2000 where he proposed an

implementation of a NIM in the form of a material constructed from metallic nanos-

tructures engineered to have the electric and magnetic response required to produce a

negative index, called a metamaterial. Pendry also noted that NIMs could be used to

construct so called “perfect lenses”, a lens which, in principle, could have infinite reso-

lution. Since the publication of this seminal paper, NIM and metamaterials have been

explored both theoretically and experimentally and have found numerous interesting

and exotic applications.

However, this form of metamaterials that relies on artificial structures has several

limitations, one of which is the smallest scale at which these nanostructures can be

produced. Currently, the state of the art puts this scale at about 100 nm. This scale

puts limitations on the properties of NIMs, such as the practical limit of resolution of

the perfect lens. The main goal of our work is to construct what we are calling an



xiv

atomic metamaterial out of a rare-earth doped crystal which will circumvent the scale

limitations of traditional metamaterials by using the naturally small scale of the crystal

structure (about 1 nm). Rare earths are known to have strong magnetic transitions, which

are a requirement for NIMs, in the optical region of the spectrum, but these transitions

have remained relatively unexplored.

Our work has focused on the 7F0 →5D1 transition in europium doped yttrium or-

thosilicate (Eu:YSO). We have measured the magnetic dipole moment of this 527 nm

transition via Rabi oscillations. We then studied the effects of the host crystal on the

dipole moment to understand discrepancies between our measured value and our theo-

retical value. Our work on Eu:YSO has also included manipulating the linear magnetic

response via spectral hole burning, as well as the nonlinear magnetic response via elec-

tromagnetically induced transparency. Last, we have theoretically explored implement-

ing a driven negative index scheme using this europium transition in YSO and other

host crystals, as well the possibility of using terbium doped crystals.
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Chapter 1

Introduction

If there is one thing I’ve learned in graduate school, it’s that you can do just about

anything you want to light. Generate it, absorb it, shift the frequency to any frequency,

entangle it, manipulate the statistics, even produce a Fourier transform that is floating

right in front of your face via Fourier image processing. As long as conservation laws

are obeyed and causality isn’t violated, then you can probably do it. The restriction

of causality is even more loose than might first appear. As it turns out, individual

modes and even the entire group velocity can be superluminal and not violate any causal

relations.

One of the more interesting ways in which light can be manipulated, in my opinion,

has to do with negative indices of refraction. Typically we think of the index of refraction

being greater than or equal to 1, otherwise the phase velocity could become greater than

the speed of light in a vacuum. However, theoretical and experimental works have

shown that such materials are possible and indices less than one or even negative have

been demonstrated. When the index of refraction becomes negative, the nonintuitive

properties multiply. With a negative index of refraction, the phase velocity becomes

negative meaning that the phase is propagating in the opposite direction of the pulse

[2]. This phenomenon has consequences ranging from a reversed Doppler effect to the
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Sci-Fi evoking radiation tension.

The work in this thesis is aimed at developing what we are calling atomic metama-

terials. There are no known natural materials with a negative index of refraction. The

main limitation is that a negative index requires a strong response from the material to

both the electric and magnetic field of light. Unfortunately, at optical frequencies, the

magnetic response is typically orders of magnitude smaller than the electric response.

To get around this limitation, researchers have developed what are called metamaterials,

materials constructed from arrays of metallic nanostructures that are engineered to have

the electric and magnetic response required for a negative index [3]. Although these tra-

ditional metamaterials have achieved great success, there are limitations to the smallest

wavelength at which these materials can have a negative index. Our atomic approach

offers a new route to a negative index that is based on manipulating the response of ions

within a solid and opens up the possibility of circumventing the limitations of traditional

metamaterials.

The ability to design the index of refraction of a material, whether through tradi-

tional or atomic metamaterials, can lead to some pretty astounding applications. Many

of these applications were discovered through a field of study that developed alongside

metamaterials: transformation optics [4]. Transformation optics uses ideas from differ-

ential geometry to describe how light propagates through a material with an index that

depends on time and space and is, in some cases, negative. It draws heavily on the

techniques of general relativity and has even been used to devise an index profile that

would simulate a black hole [5]. Transformation optics has been used to design beam

shifters, construct simplified optical systems [6], as well as to tailor the radiation pattern

of antennae [7]. Some of the more fantastical sounding applications of transformation

optics are the various cloaking schemes. One of the early applications of transformation

optics was in designing an index profile that could be used as an invisibility cloak; the

incident light would be diverted around an object and then returned to their previous
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trajectory [8]. The idea of a spatial cloak was then taken one step further by [9]. There,

the authors have devised a temporal cloak; a cloak that hides events rather than objects.

The time varying material properties of the temporal cloak achieve this by slowing down

the light preceding the event and speeding up the light following the event, resulting in

the obfuscation of the event. Such a temporal cloak has been demonstrated in optical

fibers [10, 11].

The foundations of transformation optics are quite general and have been applied

to other types of waves. The methods of transformation optics have been used to study

metamaterials designed for heat waves [12] as well as acoustic waves [13]. Work has even

gone into developing seismic metamaterials [14] which offer the possibility of protecting

buildings from earthquakes.

Among all the amazing applications of negative indices, the one that has gotten the

most attention is the so called perfect lens [3]. A perfect lens is a slab of negative in-

dex materials that can resolve sub-diffraction limited features with, in principle, infinite

resolution. The slab is able to do this because of particular surface phenomenon at the

interfaces between the negative index slab and the positive index material in which the

slab is embedded.

Some of the physics of light propagation and index of refraction is reviewed in Chap-

ter 2. It turns out that the theory behind the properties of negative index of refraction is

not all that different from positive index materials. However, the content of Chapter 2 is

meant to illuminate the origins of the strange properties of negative index materials. In

Chapter 2, I also discuss metamaterials and their limitations, as well as a couple of our

schemes to implement a negative index in an atomic medium.

In order to understand how to produce an atomic metamaterial, we must understand

the material we are starting with. Our approaches utilized rare-earth doped crystals.

Rare-earth ions have been shown to exhibit relatively strong magnetic responses. By

doping them into a crystal, we are able to achieve much higher densities than we would
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with an atomic vapor, which will aid us in achieving a negative index. In chapter 3

I discuss some of the physics of rare earth ions and crystal fields. These concepts are

necessary to accurately calculate the magnetic (and electric for that mater) response of

our material.

Chapter 4 delves into the details of our crystal, europium doped yttrium orthosili-

cate. There I talk about the spectral properties of europium ions, as well as the crystal

structure of yttrium orthosilicate. The next two chapters discuss the details of our ex-

periments with this crystal. In chapter 5, I discuss our Rabi flopping experiment in

which we measured the magnetic dipole moment of a 527.5 nm transition. In chapter 6,

I discuss our experiments where we manipulated the response of this transition. These

experiments include spectral hole burning, electromagnetically induced transparency,

and linear slow light.

In chapter 6, I discuss our theoretical investigations of terbium and the possibility of

implementing one of our schemes in a terbium doped crystal. Experimental investiga-

tions of terbium are discussed in chapter 7, along with other potential future directions,

such as refinements of our measurements with europium, other host crystals for eu-

ropium, and combining our observed magnetic response in europium with an electric

response to produce a negative index.
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Chapter 2

Negative Index of Refraction

2.1 Brief Review of Light Propagating Through a Medium

Before we get too far into discussions about index of refraction, it will be useful to

review some properties of electromagnetic fields in dielectric and magnetic materials.

This will mainly be discussions and equations from E&M class, but cast in a way that

lends them to discussions of negative indices of refraction. The materials we will discuss

are assumed to be isotropic, homogeneous, and have no free charges or currents.

Let’s begin with the constitutive relations. When matter is exposed to electric and

magnetic fields, the atoms that compose the material respond according to the electric

and magnetic susceptibilities, χE and χM. For an electric field, the material becomes

polarized according to

~P = ε0χE~E (2.1)

where ε0 is the permitivity of free space. This is typically combined with the electric

field within the material to give the displacement field

~D = ε0~E + ~P = ε0(1 + χE)~E = ε~E (2.2)
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thus defining the permitivity of the material

ε = ε0(1 + χE). (2.3)

Similar relations can be found for the magnetic field where the magnetization

~M = χM~H (2.4)

replaces the polarization and

~B = µ0(~H + ~M) = µ0(1 + χM)~H = µ~H (2.5)

where µ0 is the permeability of free space, µ is the permeability of the material and is

defined as

µ = µ0(1 + χM). (2.6)

Typically µ ≈ µ0 at optical frequencies.

Maxwell’s equations for a material with no free charges or currents are

∇ · ~D = 0 (2.7a)

∇ · ~B = 0 (2.7b)

∇× ~E = −∂~B
∂t

(2.7c)

∇× ~H =
∂~D
∂t

. (2.7d)

These equations, along with the divergence theorem and Stokes’s theorem give us the
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boundary conditions

D1,⊥ = D2,⊥ (2.8a)

B1,⊥ = B2,⊥ (2.8b)

E1,|| = E2,|| (2.8c)

H1,|| = H2,||. (2.8d)

If we take Maxwell’s equations and the vector identity:

∇× (∇×) = ∇(∇·)−∇2 = −∇2 (2.9)

we find that the electric and magnetic fields obey the wave equations

∇2~E = εµ
∂2~E
∂t2 (2.10a)

∇2~B = εµ
∂2~B
∂t2 (2.10b)

where the prefactor on the right is equal to one over the phase speed squared. In general,

both ε and µ are functions of frequency.

We can factor out the free space phase values of ε and µ to get

εµ = ε0µ0
ε

ε0

µ

µ0
=

1
c2 εrµr =

n2

c2 (2.11)

where εr and µr are the relative permitivity and permeability, respectively, and the factor

n =
√

εrµr (2.12)

is the index of refraction, and we see that the index of refraction describes how the phase

speed of light propagating through a medium differs from that of free space. If we take
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either of the Eqs. 2.10 and substitute in a monochromatic wave

~E = ~E0ei(~k·~r−ωt) (2.13a)

~B = ~B0ei(~k·~r−ωt), (2.13b)

where |E0| and |B0| are the amplitudes of the fields and we assumed linear polarization

for simplicity, we find the dispersion relation

ω

k
=

c
n

(2.14)

We can also use Eqs. 2.13 to find a relationship between the magnitude of the electric

and magnetic fields. Let’s take Eqs. 2.13, plug them into Eq. 2.7c, and take the absolute

value to get

k|E| = ω|B| → |E| = ω

k
|B| = c

n
|B|. (2.15)

which can be expressed as

|E| = c
n

µ|H| = 1
√

εµ
µH =

√
µ

ε
|H| = η|Z||H| (2.16)

by using Eq. 2.5. The quantity

Z = η

∣∣∣∣√µ

ε

∣∣∣∣ (2.17)

is the impedance of the material and η is the sign of the square root in Eq. 2.17 which

will be useful later.

Eq. 2.15 is often used with the Poynting vector to get a relationship between the

electric field and the time-averaged intensity of the beam propagating in a nonmagnetic

material. This relationship is often expressed as I = 1
2 cnε0|E|2. Since we will be working
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with magnetic materials, it will be useful to reexpress this equation, using Eq. 2.11, as

I =
1
2
|~E× ~H∗| = 1

2
|E|2

Z
. (2.18)

We can use Eq. 2.16 to find the relation between the magnetic field magnitude and the

beam intensity to be

I =
1
2

Z|H|2. (2.19)

Reflection, Transmission, and Refraction

The boundary between a positive and negative index material is of special interest be-

cause phenomenon at the surface are what give negative index materials some of their

more interesting properties, such as negative refraction and perfect lensing. To derive

Snell’s law, we often look at the boundary condition in Eq. 2.8c. Because the component

of the electric field that is parallel to the interface must be equal on each side of the

boundary, the phase, ei~k·~r, must also be equal anywhere along the interface, meaning

~ki ·~r|inter f ace =~kr ·~r|inter f ace =~kt ·~r|inter f ace

→ 2πn1

λ
sin(θi) =

2πn1

λ
sin(θr) =

2πn2

λ
sin(θt)

(2.20)

giving us Snell’s law

n1 sin(θi) = n2 sin(θt). (2.21)

The subscripts 1, 2, i, and t are defined in Fig. 2.1 and r is the label for the reflected

beam, which is not shown in the figure. We can follow a similar procedure using the

magnetic field as well.

There is an alternative point of view of Snell’s law that can provide some intuition



10

Figure 2.1: The field vectors for an electromagnetic wave incident on an interface be-

tween two positive index materials. The subscripts 1 and 2 label the materials that the

incident/reflected beams and the transmitted beams travel through, respectively, and the

subscripts i and t label the incident angle and transmitted/refracted angle, respectively.

that will be useful for understanding negative refraction. This point of view makes use

of two boundary conditions, Eqs. 2.8c and 2.8a (or Eqs. 2.8d and 2.8b if we wanted to

look at the magnetic field), and is depicted in Fig. 2.1. Since the electric field vector,

magnetic field vector, and k vector form a triad, we can find the change of angle of k by

considering the change of angle of the electric field. Only the perpendicular component

of the electric field changes as the beam crosses the boundary and this change depends

on the dielectric constant of the material, ε. For a positive index to positive index in-

terface, both dielectric constants are also positive and so the perpendicular component

of the electric field has the same direction on both sides of the interface. However, for

a positive index to negative index interface, the dielectric constant switches signs and

therefore the direction of the perpendicular component of the electric field switches di-

rections.

The coefficients of reflection and transmission can also be derived using the boundary
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conditions for Maxwell’s equations. These are particularly relevant for the perfect lens,

which is typically depicted as a slab of negative index material embedded in a positive

index material. I think that the easiest way to understand the transmission and reflection

from a negative index slab is using the transfer matrix method. Other methods wind up

with divergences and handling these can get confusing. More on that later though.

The amount of light reflected or transmitted depends on the boundary conditions in

Eq. 2.8. As an example, I will discuss the TE wave pictured in Fig. 2.1. Our boundary

conditions say that the total electric field in material one is equal to the total electric

field in material two at the boundary (this is because there is no perpendicular electric

field component). Similarly, the total parallel H field in material one is equal to the total

parallel H field in material two.

E+
1 + E−1 = E+

2 + E−2 (2.22a)

H+
1,|| + H−1,|| = H+

2,|| + H−2,|| (2.22b)

where the + superscript indicates waves moving from left to right, and the − superscript

indicates wave moving from right to left. The second equation above can be rewritten

using Eq. 2.16,

η1Z1 cos(θi)(E+
1 − E−1 ) = η2Z2 cos(θt)(E+

2 − E−2 ). (2.23)

We can combine the above equations into one single matrix relation

 1 1

η2Z2 cos(θt) −η2Z2 cos(θt)


E+

2

E−2

 =

 1 1

η1Z1 cos(θi) −η1Z1 cos(θi)


E+

1

E−1


(2.24)
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which becomes 1

E+
2

E−2

 =
−1

2η2Z2 cos(θt)

(
−η1Z1 cos(θi)−η2Z2 cos(θt) η1Z1 cos(θi)−η2Z2 cos(θt)
η1Z1 cos(θi)−η2Z2 cos(θt) −η1Z1 cos(θi)−η2Z2 cos(θt)

)E+
1

E−1

 (2.26)

In my view, some of the properties of positive to negative interfaces are easier to under-

stand in terms of these transfer matrices. It is important to note that all of the matrices

discussed so far are nonsingular and the elements are finite. The importance of this will

become more evident in the context of negative index materials. The field reflection and

transmission coefficients are defined in a straightforward manner as

r =
E−1
E+

1
t =

E+
2

E+
1

. (2.27)

Typically, in a real physical situation, there is an incident beam, reflected beam, and a

transmitted beam. In other words, E−2 = 0. When this is the case, it is straightforward to

derive the reflection coefficient from Eq. 2.26

r =
η1Z1 cos(θi)− η2Z2 cos(θt)

η1Z1 cos(θi) + η2Z2 cos(θt)
. (2.28)

The reflection coefficient can be used with Eq. 2.26 to find the transmission coefficient

t =
2η1Z1 cos(θi)

η1Z1 cos(θi) + η2Z2 cos(θt)
. (2.29)

1The inverse of the matrix on the left side of Eq. 2.24 is

−1
2η2Z2 cos(θt)

(
−η2Z2 cos(θt) −1
−η2Z2 cos(θt) 1

)
(2.25)
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2.2 What is the Index of Refraction?

The index of refraction is a parameter that describes how light propagates through a

material. It describes how the phase velocity and wavelength are modified by the ma-

terial, angles of refraction, and reflection and transmission coefficients at an interface.

However, ultimately, the phenomenon that are typically parameterized by the index of

refraction are a result of the electric and magnetic responses of the material, χE and χM

through which the light is propagating.

The motivation for this thesis is negative indices of refraction. However, according

to the discussion above, these indices appear to be manifestly unphysical because an

index of refraction less than one would allow the phase velocity in the medium to be

larger than the speed of light in a vacuum. Have we failed before we even begin? We

can better understand the limitations imposed on the index of refraction by studying the

limitations on the susceptibilities.

2.2.1 Kramers-Krönig Relations

We can start by taking the Faltung theorem

c(ω) = a(ω)b(ω)→ C(t) =
1√
2π

∫ ∞

−∞
dωc(ω)e−iωt =

∫ ∞

−∞
A(τ)B(t− τ)dτ (2.30)

and identify a(ω) (A(t)) with χE(ω) (G(t)), b(ω) (B(t)) with E(ω) (E(t)), and c(ω) (C(t))

with D(ω) (D(t)). We then get

P(t) =
∫ ∞

−∞
G(τ)E(t− τ)dτ. (2.31)

Eq. 2.31 tells us that the polarization at a particular time is dependent on the electric

field and response function at all other times due to Eq. 2.30. We are assuming that

the spatial variation of the field is much larger than the microscopic spatial scales of the



14

material.

It is reasonable to assume that the polarization will not be affected by the electric field

from some future time. We can use this assumption to make very general statements

about the response function G, which is the Fourier transform of the susceptibility

G(τ) =
1√
2π

∫ ∞

−∞
χ(ω)e−iωτdω. (2.32)

This integral can be evaluated by contour integration in the complex ω plane. The

contours are shown in Fig. 2.2. Lets split it into two cases: τ > 0, for past times, and

τ < 0, for future times. For the first case τ > 0, the exponential in Eq. 2.32 becomes

−iωτ = −iωr|τ|+ ωi|τ| τ > 0. (2.33)

In order for the contour integral not to diverge, we must integrate around the lower-half

plane. Since it is fine for G to be nonzero for τ > 0, G can have poles in this part of the

complex ω plane.

The other case, τ < 0, however, is where the magic happens. In this case the expo-

nential becomes

−iωτ = iωr|τ| −ωi|τ| τ > 0 (2.34)

and the contour must be around the upper-half plane. Since there can be no response

from times where τ < 0, G(τ < 0) = 0 and therefore there G must be analytic in the

upper-half plane.
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Figure 2.2: The contours for integrating Eq. 2.32. The x’s represent the location of χ’s

poles. For τ > 0 we must integrate around the lower-half plane and we get a nonzero

result because of the poles. For τ < 0 we must integrate around the upper-half plane

and we get zero.

This restriction has important consequences for the susceptibility. First of all, we can

restrict the inverse of Eq. 2.32 to

χ(ω) =
1√
2π

∫ ∞

0
G(τ)eiωτdτ. (2.35)

We can use Eq. 2.35 to get a rough idea of the large ω dependence of χ. Due to the cyclic

nature of eiωτ, for large ω we can restrict our attention to small τ and Taylor expand G

G(τ) ≈ G(0) + τG′(0) + ... (2.36)
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Plugging this into Eq. 2.35 and integrating by parts results in

g(ω) ≈ i
G(0)

ω
− G′(0)

ω2 + ... (2.37)

Since G(0−) = 0 it is reasonable to assume that G(0+) = 0 as well. Thus, the dependence

of g(ω) as ω → ∞ allows us to take Cauchy’s theorem

χ(ω) =
1

2πi

∮
C

χ(ω′)

ω′ −ω
dω′ (2.38)

and extend the contour out to infinity resulting in

χ(ω) =
1

2πi

∫ ∞

−∞

χ(ω′)

ω′ −ω
dω′. (2.39)

This can be further modified to give

χ(ω) =
−i
π

P
∫ ∞

−∞

χ(ω′)

ω′ −ω
dω′ (2.40)

which give us our final result: The Kramers-Krönig relations

<[χ(ω)] =
1
π

P
∫ ∞

−∞

=[χ(ω′)]
ω′ −ω

dω′ (2.41a)

=[χ(ω)] =
−1
π

P
∫ ∞

−∞

<[χ(ω′)]
ω′ −ω

dω′. (2.41b)

This result shows that if the susceptibility is nonzero, then there must be an imaginary

component to it as well as dispersion. Through Eq. 2.12, we see that this can be extended

to the index of refraction; the index of refraction can have a positive or negative real part

and not violate causality as long as there is a sufficient imaginary part and dispersion.

Eqs. 2.41b give the restrictions that prevent a material from responding to future

fields. We can extend this result to show that the edge of the field cannot propagate
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to another point in the material faster than c. The field at a particular position can be

expressed as

E(x = 0, t) =
1√
2π

∫ ∞

−∞
dωE(ω)e−iωt (2.42)

where

E(ω) =
1√
2π

∫ ∞

−∞
dt′E(x = 0, t′)eiωt′ . (2.43)

For t′ < 0, E = 0. We can use Eqs. 2.13 and 2.14 to see that the field at some other

position will be

E(x, t) =
1√
2π

∫ ∞

−∞
dωE(ω)eikx−iωt =

1√
2π

∫ ∞

−∞
dωE(ω) exp

[
iω
(

n(ω)

c
x− t

)]

=
1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dt′E(x = 0, t′) exp

[
iω
(

n(ω)

c
x− (t− t′)

)]
.

(2.44)

Based on the relationship between the susceptibilities and index of refraction, we can

make similar arguments for the index of refraction as we did for the susceptibilities and

conclude that the index of refraction should be analytic in the upper-half plane. We

can also assume that the resonances that cause the susceptibilities/index of refraction to

deviate from their free space values occur at finite frequency. The exponent in Eq. 2.44

is then iω(x/c− (t− t′)) for large enough ω.

The ω integral in Eq. 2.44 can be done via contour integration. For x/c > t − t′,

we must integrate around the upper-half plane. Since n(ω) is analytic in the upper-half

plane, the integral will be zero. In addition, because E(x = 0, t′ < 0) = 0, the t′ integral

can start at zero. Therefore, unless t > x/c, x/c > t− t′ for all t′ where E(x = 0, t′) is

nonzero and E(x, t) = 0. This means that the signal cannot arrive faster than it would if

traveling in free space, regardless of whether or not the index of refraction is less than
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one or negative at a particular frequency.

2.2.2 Group Velocity

With the factor n2/c2, where n is the real part of the index of refraction, identified as

the phase speed of a mode of the wave Eqs. 2.10, we see that the effect of the index of

refraction is to modify the phase speed. However, the constitutive parameters, ε and µ,

are frequency dependent and thus the index of refraction is frequency dependent. We

can see the consequences of this by considering the propagation of a pulse through a

medium with a frequency dependent index of refraction. If we take the pulse

a(x, t) =
1√
2π

∫ ∞

−∞
dkA(k)ei(kx−ωt) (2.45)

and assume the pulse’s bandwidth is narrow compared to its central frequency so that

ω(k) = ω0 + (k− k0)
dω

dk
(2.46)

we can plug Eq. 2.46 into Eq. 2.45 to get

a(x, t) =
1√
2π

∫ ∞

−∞
dkA(k)ei(kx−ω0t−k dω

dk t+k0
dω
dk t)

=
1√
2π

ei(k dω
dk −ω0)t

∫ ∞

−∞
dkA(k)eik(x− dω

dk t)

=a
(

x− dω

dk
t, 0
)

ei(k dω
dk −ω0)t.

(2.47)

Eq. 2.47 shows us that this pulse propagates with a speed

vg =
dω

dk
(2.48)

known as the group velocity. If we were to include more terms in the Taylor series in Eq.

2.46 we would find what is known as the group velocity dispersion, along with higher
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order terms that are important when working with ultra short pulses.

We use the dispersion relation, Eq. 2.14, to rewrite Eq. 2.48 in terms of the frequency

derivative of the index of refraction.

vg =
d
dk

ck
n(k)

= c
(

1
n(k)

− k
n2(k)

dn
dk

)
=

c
n(k)

− ω

n(k)
vg

dn
dω

.
(2.49)

Solving for vg we get

vg =
c

n + ω dn
dω

. (2.50)

Eq. 2.50 shows us that we can manipulate the group velocity by manipulating the fre-

quency dependence of the index of refraction. The larger the slope, the slower the light.

2.2.3 Imaginary Part Leads to Absorption

We have seen in the previous sections that the real part of the index of refraction leads

to phenomenon associated with wave propagation. The imaginary part of the index of

refraction plays the important role of absorption. The imaginary part is often called the

absorption coefficient and is represented as α. If we put both the real and imaginary part

of the index of refraction into the wave formula, we get

e
2πi(n+iα)

λ x = e2πi nx
λ e−2π αx

λ . (2.51)

For passive materials, we can see from the above equation that the absorption coefficient

must be positive. Otherwise the field amplitude would increase exponentially which is

impossible for a passive material.
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Figure 2.3: Complex valued ε, µ, and index of refraction, n =
√

µrεr. When the real part

of the permeability and permittivity are negative and the imaginary parts are positive

(as we would expect from a passive material), the real part of the index of refraction is

negative.

2.3 What is a Negative Index of Refraction?

First thing’s first. You might be looking at the definition of the index of refraction,

n =
√

εrµr, and wondering how having a negative µ and ε requires us to take the

negative branch of the square root when the radical still seems to be positive. What we

have seen in the beginning of this chapter that if µ and ε differ from their free space

value then they must be complex valued and their imaginary part must be positive. In

the original papers about negative index, the material was considered to be lossless and

therefore did not have an imaginary part. When we add the imaginary part in, we must

specify that a negative index of refraction requires a negative real part of µ and ε. The

way in which these requirements results in a negative (real part of the) index of refraction

can be seen in Fig. 2.3. The square root in the definition of the index of refraction puts

the index’s phase angle between the phase angles of the permeability and permittivity. If
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the permeability and permittivity have their phase angles in the second quadrant, then

the index of refraction will also be in the second quandrant with a negative real part.

In 1968 Victor Vesalago [2] pointed out that, in principle, it was possible for a material

to have a negative index of refraction. Although there are no naturally occurring mate-

rials with negative index and schemes for artificial materials had not yet been devised,

Vesalago considered the consequences of a wave propagating with a negative index, and

therefore a negative phase velocity.

There are many strange consequences of a negative index/negative phase velocity.

Consider plugging the plane-wave solution Eq. 2.13 into the two Maxwell’s Eqs. 2.7c

and 2.7d. This would give us

~k× ~E =
ω

c
µ~H

~k× ~H = −ω

c
ε~E.

(2.52)

We can see from Eq. 2.52 that if ε and µ are positive, then~k, ~E, and ~H for a right handed

triad. However, in the negative index case with ε and µ negative, we get a left handed

triad. If we then consider the triad formed between ~E, ~H, and the Poynting vector

~S = ~E× ~H (2.53)

we see that these vectors for a right handed triad no matter the sign of ε and µ. Therefore,

in a negative index material, the vectors~k and ~S are antiparallel.

In addition to negative phase velocity and antiparallel ~k and ~S, a negative index

material would also undergo a reversed Cerenkov effect, where the radiation cone is

obtuse instead of acute, reverse Doppler effect, where emitters moving towards you are

red shifted and those moving away are blue shifted, and a radiation tension, instead of

radiation pressure.

There are also consequences of a negative on Snell’s law. As it turns out, you can just
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plug the negative index straight into Snell’s law. The result will be a negative angle of

refraction; the refracted beam remains on the same side of the normal as the incident

beam. Fig. 2.4 shows how this works through the boundary conditions of Maxwell’s

equations, similar to Fig. 2.1.

Figure 2.4: The field vectors and boundary conditions from Fig. 2.1 on the left. We

can compare these to the right hand side which shows the field vectors and boundary

conditions for a positive-negative index interface. The change in sign of the dielectric

constant causes the direction of the perpendicular component of the electric field to

switch direction. The result is that the beam refracts to the same side of the normal that

the incident beam is on.

Vesalago considered the first implementations of these strange optical elements by

noting that a lens could be made by using a slab of negative index material with flat,

parallel interfaces with a positive index material, shown in Fig. 2.5.

Although Vesalago considered the possibility of a negative index lens in 1968, the
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Figure 2.5: A lens made out of a rectangular slab of negative index material embedded

in a positive index material. The change in sign of the refracted angle means that the

image can be formed without the usual requirement of curved surfaces.
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Figure 2.6: The fields and interfaces of a slab of length L with index of refraction equal

to n2 embedded in a material with index of refraction n1.

subject did not attract much attention until 2000 when John Pendry pointed out that a

slab with n = 1 could be used as a "perfect" lens [3], a lens that, in principle, has infinite

resolution. The waves coming off subwavelength features of an object are evanescent

waves; they have an exponential spatial decay. The ability of the perfect lens to re-

solve subwavelength features relies on the negative index slab’s ability to amplify those

evanescent waves [15, 16, 17].

Several authors took issue with Pendry’s original paper [18, 19, 20] because he reaches

his conclusion by calculating the reflection and transmission coefficients in a way that

makes them appear to diverge. Although the issue was eventually sorted out [21, 22, 23]

and the divergences turned out to not be an issue, I think it is easier to understand

evanescent wave amplification by considering transfer matrices such as Eq. 2.26, the

transfer matrix for a single interface.

We can see the divergences of the reflection and transmission coefficients derived
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from Eq. 2.26. If we set n = −1, and therefore η2 = −1, we see that the denominators of

Eqs. 2.28 and 2.29 go to zero and the coefficients diverge. However, the transfer matrix

that these coefficients are derived from does not have any divergences and is nonsingular.

We can consider the transmission and reflection coefficients for a slab by using the well

behaved matrix in Eq. 2.26 with the transfer matrix for propagation through the slab

and the matrix for the second interface [24].

Consider system shown in Fig. 2.6. There we have a slab of thickness L with the

same positive index material on either side. The transfer matrix for this system is given

by

M = M12

eikzL 0

0 e−ikzL

M21 (2.54)

where M12 is the transfer matrix from into the slab, M21 is the transfer matrix out of the

slab, and kz is the component of the k vector in the direction of the optical axis of the

system. Note that we have not yet required the wave to be evanescent or that the slab

have a negative index. If we carry out the matrix multiplication we get

M =

 cos(kzL)+ i
2

(
η1Z1 cos(θ12,i)
η2Z2 cos(θ12,t)

+
η2Z2 cos(θ12,t)
η1Z1 cos(θ12,i)

)
sin(kzL) i

2

(
η1Z1 cos(θ12,i)
η2Z2 cos(θ12,t)

− η2Z2 cos(θ12,t)
η1Z1 cos(θ12,i)

)
sin(kzL)

−i
2

(
η1Z1 cos(θ12,i)
η2Z2 cos(θ12,t)

− η2Z2 cos(θ12,t)
η1Z1 cos(θ12,i)

)
sin(kzL) cos(kzL)− i

2

(
η1Z1 cos(θ12,i)
η2Z2 cos(θ12,t)

+
η2Z2 cos(θ12,t)
η1Z1 cos(θ12,i)

)
sin(kzL)


(2.55)

Setting n = −1 requires us to set η1 = η = −η2 and Z1 = Z2 = Z. Adding in the

condition that the wave be evanescent means that kz = iκ. Putting these together into

Eq. 2.55 gives us

M =

cos(iκL)− i sin(iκL) 0

0 cos(iκL) + i sin(iκL)

 =

eκL 0

0 e−κL

 (2.56)
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Eq. 2.56 can then be used to find the transmission coefficient

t =
E+

3

E+
1

= eκL. (2.57)

The divergences and amplification can be interpreted in terms of a phenomenon

called surface waves; waves that are confined to an interface and decay exponentially as

you move away from the interface [25, 26, 27, 24]2. The incident evanescent wave from

the subwavelength scale object drive a surface wave resonance, causing the divergence of

the reflection and transmission coefficients. The divergences are removed by adding the

second interface because the resonances excited on each interface are couple and work

together to produce the amplification in Eq. 2.57.

2.4 Approaches

Why aren’t there negative index materials? It turns out that the electric susceptibility is

orders of magnitude larger than the magnetic susceptibility at optical frequencies. Earlier

we discussed how the susceptibility relates the field in the material to the polarization

or magnetization. We can also relate the polarization and magnetization to the average

dipole moment of the constituent atoms

P = ε0χEE = N〈d〉; M =
χM

µ0
B = N〈µ〉 (2.58)

where N is the atomic/ionic density, d is the electric dipole moment and µ is the mag-

netic dipole moment NOT the permeability. The notation is sort of confusing in this

context, but µ is the symbol that is often used for the magnetic dipole moment in the

2Reference [24] uses a definition of surface waves that leads them to conclude that (what they define
as) surface waves are not the cause of evanescent wave amplification. This differs from other authors [16]
and seems to be purely a difference of terminology and not anything physical. Besides this confusing
point, [24] is a very good reference
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literature. We can use these relations to get the susceptibilities in the form

χE =
N〈d〉
ε0E

; χM =
N〈µ〉µ0

B
(2.59)

The average of the dipole moments can be approximated by considering a typical

magnitude for the dipole operators multiplied by the coherence between the states in-

volved in the response, acquired from the density matrix. A typical value for the electric

dipole moment is the electron charge times the Bohr radius, d = ea0. For the magnetic

dipole moment, we can use the Bohr magneton, µB. The coherence is itself proportional

to the dipole moment, as well as the driving field. Putting these things together gives us

〈d〉 = ea0ρcoherence ∼ (ea0)
2E; 〈µ〉 = µBρcoherence ∼ µ2

BB. (2.60)

Using Eqs. 2.59 and 2.60, we can find the ratio of the susceptibilities

χE

χM
=
〈d〉
ε0E

B
µ0〈µ〉

=
(ea0)

2E
ε0E

B
µ0µ2

BB
=

1
α2 (2.61)

where α is the fine structure constant. Eq. 2.61 shows us that a typical electric response is

5 orders of magnitude larger than a typical magnetic response. Since the permeability of

a material is typically assumed to be equal to the free space value, any implementation

of a negative index material will require a substantial increase in the magnetic response.

This is the main challenge in producing a negative index material.
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2.4.1 Metamaterials

Figure 2.7: An example of a split-ring resonator metamaterial. The split rings have an

inductance and capacitance giving them both a magnetic and electric response. This

allows split-ring resonator metamaterials to have a negative index. Cutting edge meta-

materials can create unit cell sizes on the scale of 100 nm. Fun aside: can you see the

optical illusion in the figure?

A circuit can be engineered to have a large response to the magnetic field of a signal via

its inductance. If we add in some capacitance, then we have a circuit that responds to

both the electric and magnetic fields. If we were to then shrink this circuit down so that

it was much smaller than the wavelength of the signal and create a large array of these

circuits, then we would have an area of space with a large effective electric and magnetic

response. This is the strategy that metamaterials have made use of in the pursuit of

negative index materials.

An example of the canonical metamaterial geometry is shown in Fig. 2.7, called the

split-ring resonator [28]. The loop structure gives the resonator its inductance and the

gap gives it a capacitance, thus giving each unit cell an electric and magnetic response.
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The responses can be engineered by changing the geometry of the unit cells: the gap

size, loop size, wire thickness, etc. If the wavelength of the incident electromagnetic

signal is much larger than the unit cells of the metamaterial, then the metamaterial will

have an effective permittivity and permeability determined by the electric and magnetic

responses of the unit cells. Although many metamaterials have been based on the split-

ring resonator geometry, many other successful geometries have been developed as well

[29, 30, 31].

The development of metamaterials has enjoyed great success. While the first metama-

terials operated in the GHz range, modern metamaterials have pushed the boundaries

of negative indices into the green range of the visible spectrum [32]. Despite these suc-

cesses, metamaterials have several limitations. One is that as the metallic unit cell gets

smaller, Ohmic losses increase, preventing the refracted light from penetrating too far

into the material. There are also both practical and fundamental limitations to the maxi-

mum resonant frequency that a metamaterial can produce. From the practical viewpoint,

the unit cell size, and thus the highest resonance frequency, can only be made so small.

The cutting edge manufacturing techniques can produce unit cells on the order of 100

nm [33]. In addition to limiting the wavelengths at which a negative index occurs, the

unit cell size also puts a limit on performance of certain applications such as the perfect

lens; a perfect lens will not be able to resolve features smaller than the unit cell size

[15, 16]. In addition, as the resonance frequency of the unit cells is pushed higher and

higher, the resonance saturates [31]; the bandwidth decreases while the imaginary part

of the index of refraction increases. This saturation leads to another limit on the fre-

quency at which a negative index can be achieved based on the metamaterial geometry

and the plasma frequency of the metal that it is constructed from.

The main goal that the work in this thesis is aimed at is producing an "atomic" meta-

material, an atomic crystal, such as a rare-earth doped crystal, in which the electric and

magnetic responses have been manipulated in order to produce a negative index. Atomic
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metamaterials have the potential to overcome the limitations of traditional metamaterials

discussed above. Quantum interference techniques can be used to limit the absorption

of an atomic system. In addition, the unit cell size is set by the unit cell of the crystal,

typically on the order of 1 nm, allowing for negative indices to be observed at much

higher frequencies than traditional metamaterials.

2.4.2 Atomic Approach: External Polarization and Magnetization

One of the important properties of a negative index material is that ~k, ~E, and ~H for a

left-handed triad. We can produce these left-handed waves by forcing the vectors to for

the left-handed triad by driving the polarization and magnetization of the system [34]. If

we take a “normal” right-handed material and induce a polarization and magnetization

in it we get

~k× ~E = µ0ω(~H + ~Mext) (2.62)

~k× ~H = −ω(ε0~E + ~Pext) (2.63)

where ~Mext = −2~H and ~Pext = −2ε0~E are the magnetization and polarization that are

driven by external sources. With these we get

~k× ~E = −µ0ω~H (2.64)

~k× ~H = εω~E (2.65)

which are the relations that give us a left-handed triad.

Since the challenge is to induce a magnetization, we want to know what polarization

we would need to induce for whatever magnetization we are capable of producing.

Consider a material with a very small magnetic, but nonzero so we can still induce some

magnetization, response so that µ ≈ µ0. The ratio of the externally driven polarization
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Figure 2.8: Left handed scheme in Eu. On the left is the level scheme to induce the

magnetic response in the europium ions. This scheme would use the levels from our

experiments in chapters 5 and 6. The right hand side shows our scheme to induce the

necessary electric response. This response comes from the second order electric response

of the host crystal. Taken from [34].

to the externally driven magnetization is then

|~Pext|
| ~Mext|

=
n2 + 1

2cn
. (2.66)

This externally driven scheme can be implemented in the way shown in Fig. 2.8

using the crystal that the experiments in this thesis were carried out in, europium doped

yttrium orthosilicate (Eu:YSO). This scheme uses the 527 nm magnetic dipole 7F0 →5D1

transition in the europium ions as the source of the magnetic response. The electric

response would come from the bulk response of the host crystal. The scheme in Fig. 2.8

uses second order processes where 1055.5 nm light us used to externally polarize and

magnetize the crystal, which in turn generates the 527 nm left-handed light.
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Figure 2.9: Energy level diagram of the chirality scheme. Because strong magnetic re-

sponses are hard to come by all on their own, it would be even harder to find a magnetic

and electric response at the same frequency and of comparable strength. Therefore this

scheme engineers an electric response via Raman transitions. The two Raman transi-

tions, involving Ec1 and Ec2 produce an electric response with low absorption at the

desired frequency. The magnetic response is derived from a two level transition that is

enhanced by the crosscoupling beam Ω2m. Taken from [35].

2.4.3 Atomic Approach: Chirality

Another possible scheme for a negative index atomic metamaterial is shown in Fig. 2.9

[35, 36, 37]. This scheme differs from the externally driven scheme in that the extra laser

beams are used to set up a coherent state in the system that will then respond with a

negative index when another beam is sent in.

At the center of this scheme is something called magneto-electric crosscoupling, or

chirality [38, 39]. This means that instead of the polarization being purely induced by

the electric field and the magnetization being produced solely by the magnetic field, the

magnetic field can induce a polarization and the electric field can produce a magnetiza-
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tion. In this way the magnetic response can be enhanced by the electric response. This

is accomplished through the beam labeled Ω2m in Fig. 2.9 which couples the magnetic

transition |g〉 → |m〉 to the electric transition |g〉 → |2〉. A former student on this project,

Dan Sikes, ran simulations for this scheme to find the how the index of refraction varied

with frequency. Plots of the real and imaginary parts of the index of refraction versus

frequency can be found in Fig. 2.10. Details of this scheme can be found in Dan’s thesis

[37].

Another important aspect of this scheme is that it contains an electric response that

has been engineered to be at the same frequency as the magnetic response. This is

accomplished by the two Raman transitions involving the beams Ec1 and Ec2. The reason

for having two Raman transitions is that one is absorptive, the one involving Ec2, and

one is amplifying, the one involving Ec1. Having an absorptive and amplifying Raman

transition gives control over the overall absorption in the system, and the fact that these

are Raman transitions gives control over the frequency of the response [40, 41].

A drawback of this scheme is that it requires a larger magnetic dipole moment for the

|g〉 → |m〉 transition than the externally driven scheme requires for left-handed waves.

The possibility of implementing this scheme in terbium is explored towards the end of

this thesis.
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Figure 2.10: The real (blue, solid) and imaginary (red, dashed) parts of the index of

refraction for an idealized atomic system using the chirality scheme shown in Fig. 2.9.

Taken from Dan Sikes’s thesis [37].
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Chapter 3

Crystal Field Theory

Originally, I had planned to use this chapter as a place to go into some detail about

the free ion Hamiltonian and how to construct its eigenstates, before talking about the

effects of the crystal field. This was something that I thought would be useful for future

students working on this project, particularly when trying to use the free ion states to

calculate the effects of the crystal field. However, it was not clear to me how to start

talking about this topic without the discussion going on for pages and pages and that it

would be best to leave the details to the references1. There are many references on the

subject [42, 43, 44, 45]. My goal here is to give a brief overview of the general properties

of free ions that will hopefully give future students some direction when diving into the

literature and be useful when considering the effects of the crystal field.

3.1 Free Ions

There are different ways to formulate the theory of the free ion. However, modern

models are typically based on the work done by Racah in the 1940’s [46, 47, 48, 49], where

he formulated things in terms of group theory. This formulation greatly "simplified" the

calculations and made it possible to analytically study multi-electron ions, such as rare

1"Really Zach, after that last chapter?"
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H1 Coulomb interaction
H2 Spin-orbit interaction
H3 Crystal interaction
H4 External magnetic fields
H5 Magnetic hyperfine interactions
H6 Higher order magnetic terms

Table 3.1: Typical interactions included in the ionic Hamiltonian.

earth ions.

That being said, there are still a couple of ways that the Hamiltonian for a free ion

is presented. The one that I think is easiest to understand is the one discussed by Judd

[43]. The Hamiltonian that Judd uses includes many of the finer scale interactions and

is written as

H = H1 + H2 + (H3) + H4 + H5 + H6. (3.1)

The typical magnitude of the terms in the above equation decreases as you move to the

right. These terms are described in Tab. 3.1. The crystal field term has been included

in parenthesis as a reminder that we are currently considering free ions and to place

its typical magnitude between the spin-orbit and hyperfine terms. Almost all of the

contributions to the energy levels and transition strengths of the free ions come from the

first two terms of Eq. 3.1 and will be the focus of this section.

The full form of the Coulomb Hamiltonian is

H1 = −∑
i

[
h̄

2me
∇i +

Ze2

ri

]
+ ∑

i<j

e2

rij
. (3.2)

This Hamiltonian is generally handled by making the central field approximation (CFA).

In the CFA, H1 is written in terms of the nuclear Coulomb potential and another central

field constructed for each electron by averaging over the position of all the other elec-

trons. The noncentral part of H1, the interactions between electrons, is then added as a
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perturbation. The central part of the Hamiltonian is

Hcent = ∑
i

[
h̄2

2me
∇i +

Ze2

ri
+ U(ri)

]
(3.3)

and the perturbing, noncentral part is

V1 = H1 − Hcent = ∑
i<j

[
e2

rij
−U(ri)

]
(3.4)

where the sums are over all the electrons in the ion.

The central potential U(r) can be constructed through self-consistent field methods

[42] and is done numerically. The electron interaction term, however, can be quite cum-

bersome to do numerically. This is where the group theory and other formulations

come in. The 1/rij term can be expanded into spherical harmonics using the spherical

harmonic addition theorem

1
rij

= ∑
k

rk
<

rk+1
>

Pk(cos(w)) (3.5)

= ∑
k

rk
<

rk+1
>

k

∑
q=−k

(−1)qC(k)
−q(θi, φi)C

(k)
q (θj, φj) (3.6)

= ∑
k

rk
<

rk+1
>

k

∑
q=−k

(−1)q(C(k)
−q)i(C

(k)
q )j. (3.7)

The operators in this formula are single electron operators. The electron states in

real atoms, though, are often multi electron states, such as the 4 f states in europium

ions. In order to compute the matrix elements of the operator in Eq. 3.5, we must break

up these multi electron states into their single electron pieces. This is one place where

group theory comes in. Using group theory, Eq. 3.5 can be broken up into two electron

interaction terms, three electron interaction terms, and so on [43, 42].
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The Hamiltonian for spin orbit coupling is

H2 =
N

∑
i=1

h̄2

2m2c2ri

dU(ri)

dri
~si ·~li =

N

∑
i=1

ξ(ri)~si ·~li. (3.8)

Similar to the Coulomb interaction, the operators in Eq. 3.8 are single electron operators.

Also similar to the Coulomb interaction, we can use operator techniques to evaluate

the dot product term, which is the angular part of the problem. The radial part is

parameterized for each configuration as

ζnl =
∫ ∞

0
R2

nlξrdr (3.9)

where Rnl is the radial part of the wavefunction for a particular configuration.

H1 and H2 are the interactions used by Robert Cowan’s code [42], the atomic struc-

ture code we used to calculate wave functions and energies for our europium ions. The

resulting eigenstates are states of definite total J and parity. These states then have the

expected selection rules ∆J = 0,±1 except for J = 0→ J = 0, transitions between config-

urations, 4 f 6 → 4 f 55d1 in europium ions, are electric dipole transitions, and transitions

within a configuration, 4 f 6 → 4 f 6 for europium ions, are magnetic dipole or electric

quadrupole transitions.

The eigenstates of a free ion are generally not pure LS states. However, the lan-

thanides are still fairly close to the LS coupling regime, and there is typically one LS

state that is a dominant component of the free ion state. The free ion state is labeled by

this dominant component. For example, the 7F0 ground state of our europium ions is

not a state with L = 3 and S = 3, but is instead

7F0 =0.968|7F0〉+ 0.0016|5D0〉+ 0.1659|5D′0〉 − 0.1815|5D′′0 〉 (3.10)

where the states on the right are pure LS states. The above decomposition was calculated
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by Ofelt [1] by hand. The states outputed by Cowan’s code have many more components,

but those given in Eq. 3.10 and Ofelt’s paper have the vast majority of the contributions.

Another thing to note about Eq. 3.10 is that there are three pure LS states labeled

|5D0〉. Each of these pure LS states is still a combination of six single electrons. When

the six-electron states are constructed from the single electron states, we want the final

six-electron state should be an eigenstate of the J operator and antisymmetric under

exchange of any two of the six electrons. As it turns out, there can be several ways

to combine the six single-electron to get the same six-electron LS state. To distinguish

between these different combinations, we introduce a new quantum number called the

seniority number. The three |5D0〉 states each have a different seniority number denoted

by ′.

3.2 Crystal Fields

The crystal field is handled by expanding the potential experienced by the ion’s elec-

trons due to the surrounding crystal charge distribution into spherical harmonics. The

potential

V = −
N

∑
i

eiρ(~R)
|~R−~ri|

dτ, (3.11)

where i is the label for the electrons in the ion and ρ(~R) is the crystal charge density at

location ~R from the center of the ion, becomes

V =
N

∑
i

∑
k

k

∑
q=−k

Bk
qC(k)

q (θi, φi) (3.12)
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where

Bk
q = −e

∫
(−1)qρ(~R)Ck

−q(θ, φ)
rk
<

rk+1
>

dτ. (3.13)

[50, 51, 43, 44]. Another common formulation of the crystal field has the factor rk in Eq.

3.13 separate from the definition of Bk
q and the field is parameterized as Ak

q〈rk〉 instead.

Unfortunately, both Bk
q and Ak

q are referred to as crystal field parameters in the literature.

The Bk
q and Ak

q〈rk〉 are related to each other by a constant numerical factor of the order

1-10. These relations can be found in [50].

Although the crystal field will perturb the energies of the states of the ions to some ex-

tent, the main effects we are interested in are the effects on transition strengths. Because

the crystal reduces the spatial symmetry to that of the dopant cite, J is now technically

not a good quantum number and there will be some amount of mixing of states with

different J. As we will see later, this mixing can be used to explain discrepancies be-

tween our calculation of the dipole moment of the transition in our experiment and our

measured value.

In addition, the crystal field is, in general, made up of even and odd components

resulting in mixing of states with different parity. The result of this mixing is what

are known as forced electric dipole transitions. These are transitions that are nominally

between states of the same configuration, which we would expect to be magnetic and not

electric, but the states have some small amount of another, opposite parity configuration

mixed in allowing for the electric dipole nature of the transition.

3.3 Judd-Ofelt Theory

In this section is a derivation of the results of Judd-Ofelt theory [52, 53]. A lot of the

sources in the literature don’t have a lot of detail, so this explicit derivation will hopefully

be useful for future students. The results, techniques, and formula are also relevant for
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some of the effects we observe in our experiments.

The way the crystal field is often dealt with, and the way Judd and Ofelt dealt with

it in their original formulation of Judd-Ofelt theory, is to split the field up into even and

odd parity components

Vcrys = Veven + Vodd. (3.14)

Since the states of the free ion have definite parity, this splitting of the crystal field can be

used to see which components of Eq. 3.12 are involved in different types of interactions.

Although this is the original route of Judd and Ofelt, I took the route Wybourne [44]

takes, which is to split the Hilbert space up into a single-configuration subspace and an

ever-other-configuration subspace.

3.3.1 Introduction

Judd-Ofelt theory is an attempt to understand the presence of forbidden transitions

in rare-earth doped crystals such as intraconfiguration electric dipole transitions. The

theory does this by expanding the crystal perturbation into an even and an odd part.

The even part mixes the free-ion energy levels within a configuration and the odd part

mixes free-ion energy levels from different configurations. The intraconfiguration electric

dipole transitions are caused by the odd part of the crystal field. Judd-Ofelt theory, as

we will see, is a second order theory.

The rather audatious assumptions of Judd-Ofelt theory are:

1. All excited configuration states are degenerate

2. The energy separation between configurations is large compared to intraconfigu-

ration levels. Therefore the wavefunction denominators from second order pertur-

bation theory are equal.
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These assumptions allow for a substantial simplification of transition strength calcula-

tions, as well as relatively easy to interpret results. Despite how drastic the assumptions

might seem in some cases, Judd-Ofelt has enjoyed significant success in the 60 years

since it was formulated [54, 55].

Much of this derivation is based on [44], however [55] is also a good reference ([42] is

also chock-full of useful equations). In order to consider intra verses interconfiguration

interactions, we will want to be able to split our Hilbert space up into two parts; one

part is a single configuration, and the other part is all the other configurations. We begin

by constructing the projection operators

P = ∑
n
|gn〉〈gn| (3.15a)

Q = ∑
l
|el〉〈el| (3.15b)

where |gn〉 are the free-ion energy levels of the ground configuration and |en〉 are the

free-ion energy levels of all the excited configurations. Together these give us

P⊗ IQ + IP ⊗Q = P + Q (3.16)

where IP and IQ are identity operators with the same dimension as P and Q respectively

and the last equality is for simplicity of notation.

We can use the operator in Eq. 3.16 with a perturbation, V, to get

(P + Q)V(P + Q) = PVP + QVQ + PVQ + QVP (3.17)

where the first two terms on the right are intraconfiguration interactions and the second

two are interconfiguration interactions. Judd-Ofelt theory is concerned with the second

two terms.
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3.3.2 Incorporating Double Perturbation Theory

There are two interactions to consider when working with Judd-Ofelt theory, the crystal

perturbation and the transition inducing perturbation (laser beam). We will therefore

have to make use of double perturbation theory. The second order transition matrix

element between an initial state |ψ(0)
i 〉 and a final state |ψ(0)

f 〉 is given by

∑
m 6=i,k 6= f

 〈ψ(0)
f |D

(1)
ρ |ψ

(0)
m 〉〈ψ

(0)
m |V|ψ

(0)
i 〉

E(0)
m − E(0)

i

+
〈ψ(0)

f |V|ψ
(0)
k 〉〈ψ

(0)
k |D

(1)
ρ |ψ

(0)
i 〉

E(0)
k − E(0)

f

 . (3.18)

Now we replace V with the operator in Eq. 3.17. Since D(0)
ρ is odd for electric dipole

transitions, we will only need to consider the interconfiguration parts of Eq. 3.17, giving

us

∑
l

 〈ψ(0)
f |D

(1)
ρ |el〉〈el|V|ψ

(0)
i 〉

E(0)
l − E(0)

i

+
〈ψ(0)

l |V|el〉〈el|D
(1)
ρ |ψ

(0)
i 〉

E(0)
l − E(0)

f

 (3.19)

where, since |ψ(0)
f 〉 and |ψ(0)

i 〉 are in one configuration and |el〉 are in another, we do not

have to worry about restricting the sum over l.

3.3.3 Incorporating the Judd-Ofelt Assumptions

When we incorporate the assumptions of Judd-Ofelt theory into Eq. 3.19, we can factor

the denominators outside of the sum to get

1
Ee − Eg

∑
l

[
〈ψ(0)

f |D
(1)
ρ |el〉〈el|V|ψ

(0)
i 〉+ 〈ψ

(0)
l |V|el〉〈el|D

(1)
ρ |ψ

(0)
i 〉
]

(3.20)

Where Ee is the energy of the excited configuration and Eg is the energy of the ground

configuration. We can now use the fact that the excited configurations form a complete

basis of a subspace of the full Hilbert space and use the closure theorem to sum over the
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excited states.The result is

〈ψ(0)
f |D

(1)
ρ V|ψ(0)

i 〉+ 〈ψ
(0)
f |VD(1)

ρ |ψ
(0)
i 〉

Ee − Eg
(3.21)

3.3.4 Evaluating the Matrix Elements

The operators in Eq. 3.21 can both be expressed as tensor operators. Taking this view

allows us to use the many useful identities that have been developed for evaluating

such operators. We will make use of the identity for multiplying two tensor operators

together

T(k1)
q1 W(k2)

q2 = ∑
KQ

(−1)k1−k2−Q[K]
1
2

k1 k2 K

q1 q2 Q

[T(k1) ×W(k2)
](K)

Q
(3.22)

where the T and W will eventually be replaced with the crystal field and dipole opera-

tor. We will also make use of the unit tensor operators. These operators are defined so

that their reduced matrix element is 1 when certain selection rules are met and 0 other-

wise, making them convenient for separating out specifics of an interaction and deriving

general results. They are defined by

〈n′′l′′||u(k)(ll′)||n′′′l′′′〉 = δ(n; , n′′l′′)δ(n′l′, n′′′l′′′), (3.23)

and an important property of theirs is

[
u(k1)(4 f , n′l′)× u(k2)(n′l′, 4 f )

](K)
Q

= (−1)K[K]
1
2

k2 K k1

f l′ f

 u(K)
Q (4 f , 4 f ). (3.24)
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We can use Eqs. 3.15 and 3.17 to re-express the interconfigurational part of the crystal

field perturbation,

Vcrys = ∑
k,q

Bk
q ∑

i
rk

i C(k)
q,i , (3.25)

as

QVcrysP = ∑
kq

Bk
q〈n′l′|rk

i 〉〈l′||C(k)|| f 〉u(k)
q,i (n

′l′, 4 f ) (3.26)

where i denotes one of the electrons in the potential, Bk
q are the crystal field parameters,

and 〈l′||C(k)|| f 〉 can be evaluated using

〈αl||C(k)||α′l′〉 = δ(α, α′)(−1)l[l, l′]
1
2

 l k l′

0 0 0

 . (3.27)

The interconfigurational dipole moment operator becomes

PD(1)
ρ Q = E ∑

i
〈4 f |ri|n′l′〉〈 f ||C(1)||l′〉u(1)

ρ,i (4 f , n′l′) (3.28)

where E is the amplitude of the electric field. Combining Eqs. 3.26 and 3.28 gives us

D(1)
ρ Vcrys = ∑

kq
Bk

q ∑
i
〈4 f |ri|n′l′〉〈n′l′|rk

i |4 f 〉〈 f ||C(1)||l′〉〈l′||C(k)|| f 〉u(1)
ρ,i (4 f , n′l′)u(k)

q,i (n
′l′, 4 f )

(3.29)
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which, after applying Eqs. 3.22 and 3.24, becomes

D(1)
ρ Vcrys =∑

kq
Bk

q ∑
i
〈4 f |ri|n′l′〉〈n′l′|rk

i |4 f 〉〈 f ||C(1)||l′〉〈l′||C(k)|| f 〉

×∑
KQ

(−1)K+1−k−Q[K]

1 k K

ρ q Q


k K 1

f l′ f

 uK
Q,i(4 f , 4 f )

=∑
kq

∑
i

∑
KQ

(−1) f+l′+K+1−k−Q[ f , l′, K]〈4 f |ri|n′l′〉〈n′l′|rk
i |4 f 〉Bk

q

×

 f 1 l′

0 0 0


l′ k f

0 0 0


1 k K

ρ q Q


k K 1

f l′ f

 uK
Q,i(4 f , 4 f ).

(3.30)

We can follow a similar procedure for the second term in the numerator of Eq. 3.21 to

get

VcrysD(1)
ρ =∑

kq
∑

i
∑
KQ

(−1) f+l′+K+k−1−Q[ f , l′, K]〈4 f |ri|n′l′〉〈n′l′|rk
i |4 f 〉Bk

q

×

l′ 1 f

0 0 0


 f k l′

0 0 0


k 1 K

q ρ Q


1 K k

f l′ f

 uK
Q,i(4 f , 4 f ).

(3.31)

We can then use the symmetry property of the 3-J symbols

 j1 j3 j2

m1 m3 m2

 = (−1)j1+j2+j3

 j1 j2 j3

m1 m2 m3

 (3.32)
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and the fact that the 6-J symbols are symmetric under column interchange to rewrite Eq.

3.31 as

VcrysD(1)
ρ =∑

kq
∑

i
∑
KQ

(−1) f+l′+K+1−k−Q[ f , l′, K]〈4 f |ri|n′l′〉〈n′l′|rk
i |4 f 〉Bk

q

× (−1)2( f+l′+k+1)+K

 f 1 l′

0 0 0


l′ k f

0 0 0


1 k K

ρ q Q


k K 1

f l′ f

 uK
Q,i(4 f , 4 f ).

(3.33)

We can now see that the only difference between Eqs. 3.30 and 3.33 is the phase

factor (−1)2( f+l′+k+1)+K. For the sum in Eq. 3.21 to be nonzero, K must be even. In

addition, since we have already established that the interconfiguration interactions will

only involve the odd components of the crystal field, k must be odd. Since l′ = 4 and

f = 3 for typical situations, the 3-J symbols further restrict the allowed values of K to

less then 7, but since K must be even, the condition becomes K ≤ 6.

One of the main results of Judd-Ofelt theory is to explain the existence of electric

dipole transitions within a configuration. The operator in Eq. 3.33 is effectively a second

order electric dipole operator. In addition, this operator can be written in terms of uK
Q

where K is 2, 4, or 6. This means that the selection rules for Judd-Ofelt electric dipole

transitions requires ∆J ≤ 6, as opposed to the usual selection rule. For transitions

involving states with J = 0, such as the 7F0 →5D1 transition in europium ions, this

selection rule is restricted to ∆J =2, 4, or 6.
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Chapter 4

Eu:YSO

The index of refraction depends on the density of resonantors and the linewidths of those

resonators. In order to produce a negative index of refraction we need a high density,

narrow linewidth, and both an electric and magnetic response. As we’ve discussed,

strong magnetic transitions at optical frequencies are very rare. However, rare earth ions

are known to have such transitions. The narrowest linewidths can be achieved with laser

cooled atoms. However, despite their narrow linewidths, these vapors do not have a high

enough density for our needs. In order to have densities high enough we need a solid.

"But Zach," you might say, "how do you get narrow linewidths in a solid?" Fortunately

for us, there is a special family of solids that not only have high densities, but also have

linewidths not too far off from those achievable with atomic vapors: rare-earth doped

crystals.

The rare earth metals are the lanthanide metals from the periodic table and have a

partially filled 4 f shell. Electrons in the 4 f shell, or configuration, benefit us because

their large angular momentum makes it possible for them to have strong magnetic tran-

sitions. Also, due to the large number of electrons that can occupy f configurations

(14), some rare earths have thousands of transitions just within the 4 f configuration [56].

Since all these transitions are between n = 4 and l = f states, the electric response is
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suppressed, making it all the more likely that one of those thousands of transitions will

be a strong magnetic transition. In addition, due to the strong interaction between the

electrons, many of these transitions within the 4 f configuration are in the visible range,

some even extending into the UV.

Although the 4 f shell is the highest energy of the unexcited rare earths, some of

the other configurations actually have larger spatial extents. An example of this can be

seen in Fig. 4.1. The trends shown in Fig. 4.1 are typical of all the rare earths. When

the rare earths are doped into a crystal they typically lose three electrons, one electron

from the 4 f shell and the two from the 6s shell. This still leaves the 5s and 5p shells

laying beyond the 4 f shell. The effect of this is that the 4 f shell is shielded from much

of the perturbation from the crystal and leaving the 4 f configuration with exceptionally

narrow transitions within the solid.



50

Figure 4.1: The radial charge density for Gd3+. Although the scale for europium will

be slightly different, the overall structure is the same. Reprinted figure with permission

from [57] Copyright 1962 by the American Physical Society.

There are several reasons we chose the crystal Eu:YSO. We chose the dopant, Eu,

because Zach Simmons, a previous student who worked on this project, used Cowan’s

code to identify a strong magnetic dipole transition from the ground state in the optical

region, 527.5 nm. Although there are other rare earths with strong magnetic dipole tran-

sitions from the ground state, Eu:YSO had the advantage of already having been studied.

While we were working on the Rabi flopping experiment, another group showed that

the transition we were using was indeed a magnetic dipole transition [58], although

they used a different host crystal. The crystal we are using, YSO, has drawn interest

for quantum memory applications on a 580 nm forced electric dipole transition. Due to

the reasons discussed above, this quantum memory transition has an extremely narrow

linewidth and long coherence time. In addition, there had already been a study done on
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the transition we are interested in, although they did not explore the magnetic nature of

the transition.

In addition to these principle reasons, Eu:YSO has additional benefits. One is that

replacing the Y with Eu produces only a small perturbation on the host crystal. Also,

the crystal produces very small magnetic effects. 89Y has a nuclear spin of 1/2 and a

small nuclear magnetic moment of µ = −0.137µN. The magnetic isotope of Si has a

small abundance, 4.7%, nuclear spin 1/2, and small nuclear moment of µ = −0.555µN.

Oxygen has a negligible abundance of magnetic isotopes [59]. The lack of magnetic

nature of the host crystal means that there should be even less perturbation from the

crystal on our transition.

4.1 YSO Properties

4.1.1 General Properties

Another important property is the symmetry of the crystal. It’s crystal symmetry is

described by the monoclinic space group C6
2h [60]. The symmetry of the overall host is

important to know because it will limit us in our ability to polarize the crystal. Mono-

clinic crystals do not have inversion symmetry and therefore cannot be used for SHG,

at least not without any tricks. When we dope the YSO with Eu, the Eu replaces the Y.

There are two inequivalent sites that the Eu can replace the Y, each with symmetry C1

(i.e. no symmetry). This lack of symmetry is important because it means that there will

basically be no degeneracy in the Eu’s energy levels. It will also produce an anisotropic

response when interacting with our laser [45].

Another important property of the two sites that we need to consider is their in-

equivalency. We will call the sites “site 1” and “site 2”. The literature is not consistant

as to which site is called site 1 and which is called 2. The convention that we use is

followed by [61], [62], and [63], and the opposite labeling is used by [59] and [64]. It is



52

Figure 4.2: The crystallographic and optical axes of YSO. Image taken from [45].

important to be aware of this distinction and which labeling convention is being used.

The inequivalency arises due to the different coordination number of the Eu ions (the

number of oxygen atoms that they interact with). The coordination number of site 1 is 6

while the coordination number of site 2 is 7 [45].

The lattice parameters are reported in [60]. They are a = 12.50Å, b = 6.72Å, and

c = 10.42Å. The angle between a and c is β = 102.68°and b is normal to both a and c.

The optical axes are not completely aligned with the crystalographic axes. The c axis is

11.35°from D2 axis and the a axis is 23.8°from the D1 axis, both angles are in the same

direction. The b crystalographic axis is in the same directions as the b optical axis.

4.1.2 Optical Properties

As previously mentioned, there are three distinct optical axes. These are summarized in

Tab. 4.1. An important note is that the quantization axis of the Eu3+ ions is aligned with
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Optical Axis Principle Index Orientation Our Crystal
b nx ‖ 〈010〉 10 mm

D1 ny ⊥〈010〉 5 mm
D2 nz ⊥〈010〉 4 mm

Table 4.1: The correspondence between the optical axes and our crystal was reported in

our order quote from Scientific Materials Corp. The orientation and identity of the b axis

as the nx axis was reported in [65]. The correspondence between the D1 and D2 axes and

the ny and nz axes was reported in the Scientific Materials data sheet, but it has been

difficult to verify this elsewhere.

the D2 axis.

Beach [65] also reported the Sellmeier coefficients for YSO for wavelengths between

435.8 nm - 643.8 nm. They used an Abbe refractometer and fit the data to the form

n2 = A +
B

λ2 + C
+ Dλ2

where λ is in µm. The results of this experiment are reproduced in Tab. 4.2.

A B C D
nx 3.0895 0.0334 0.0043 0.0199
ny 3.1173 0.0283 -0.0133 0.00
nz 3.1871 0.03022 -0.0138 0.00

Table 4.2: The results of the Sellmeier measurements found in Beach [65]
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4.2 Eu Properties

4.2.1 The Free Ion
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Lower Energy Levels of Eu

Figure 4.3: The lowest electronic energy levels of free Eu3+ calculated with Cowan’s

code. The black levels are from the lowest configuration, 4 f 6, and the red levels are from

the first excited configuration, 4 f 5 5d1

The 4 f 6 shell of the europium ion has thousands of energy levels. Specifically, since

Eu+3 has six electrons in the fourteen available 4 f states, there are (14
6 ) = 3003 states

just within the 4 f configuration. Many of these states, along with some from the 4 f 55d1

configuration, can be seen in Fig. 4.3.

The highest energy states of the 4 f 6 configuration extend well into the UV. However,

we are concerned with the very lowest few energy levels, shown in Fig. 4.4. The transi-

tion we are interested is the 7F0 →5 D1 transition at 527 nm. The transition 7F0 →5 D0 at

580 nm has drawn a lot of attention for quantum memory applications.

Europium occurs in two stable isotopes, one with atomic weight 151 and another
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at 153. These isotopes also differ in their nuclear magnetic dipole moment and electric

quadrupole moment which are summarized in Tab. 4.3. The experiments discussed later

in this thesis involve the hyperfine structure of europium. The hyperfine splitting, when

doped into the crystal is dominated by the quadrupole interaction leading to the 153

isotope to have larger hyperfine splittings [66].

151Eu
153Eu

Nuclear
Magnetic
Dipole
Moment
(µN)

3.47 1.53

Nuclear
Quadrupole
Moment
( f m2)

90.3
241.2

Table 4.3: The nuclear magnetic dipole moment and quadrupole moment of the Eu

isotopes [67].

4.2.2 In YSO

Although the 4 f shell is largely shielded from the crystal field by the 5s and 5p electrons,

the crystal field does still affect the 4 f energy levels; in many cases these effects are

critical to understanding the behavior of the system. Although the overall symmetry

of the crystal is C6
2h, the symmetry of the dopant sites is C1 [68]. With such a low

symmetry, all crystal field coefficients with k ≤ 6 are expected to be nonzero which will

have important consequences for transition strengths.

Linewidths and Decay

In the free ion, Cowan’s code calculates the decay rate of the 5D1 state to be less than 10

Hz and it decays directly to the 7F manifold. The picture in the crystal is very different,
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Figure 4.4: On the left are the electronic energy levels of Eu3+ and their decay channels

that are relevant to our experiment. The green arrow represents the exciting beam, the

dark gray arrows represent nonradiative decay, and the yellow to red arrows represent

radiative decay. On the right is the actual green beam and fluorescence from our crystal.

and the decay mechanism are depicted in Fig. 4.4. The crystal opens up a new, phonon-

mediated, non-radiative, decay channel from the 5D1 state down to the 5D0 state. The

5D0 state then decays radiatively down to the 7F manifold. The ions are return to the

ground 7F0 state from the other 7F states through some more non-radiative transitions.

These decay mechanisms result in bright orange fluorescence when our crystal is excited

with a green, 527 nm, beam, shown on the right of Fig. 4.4. Previous students in the

Yavuz group, Nick Brewer and Zach Simmons, measured the decay rates in this decay

channel through fluorescence spectroscopy [45, 69]. They did this by sending in a short

green pulse and monitoring the time dependence of the fluorescence. The results are

shown on the left side of Fig. 4.5. The increase in fluorescence is due to the decay

from 5D1 to 5D0. The decrease in decay occurs as the 5D0 state empties out into the 7F

manifold. The results of this experiment determined the lifetime of the 5D1 state is 33 µs
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and the lifetime of the 5D0 state is on the order of 1 ms. Although 33 µs is not as small as

the 0.1 seconds predicted by Cowan’s code for the free ion, it is still exceptionally long

for a transition in a solid.

It is important to note that the linewidth experiments shown in Fig. 4.5 were done

with the crystal at 4.5 K. These linewidths have a strong temperature dependence and

are substantially wider at room temperature. However, once the crystal is below 7-8K,

the linewidths bottom out. See Chapter 5 in Zach’s thesis [45] and the references within

for more information about this temperature dependence.

Although the individual europium ions have a homogeneous linewidth of 33 kHz,

corresponding to the 5D1 state’s 33 µs lifetime, we must also take into account the inho-

mogeneous linewidth. Each ion in the crystal sees a slightly different perturbation from

the crystal due to imperfections in the crystal. The result of this is that, instead of a 33

kHz wide absorption line, we observe a composite 1.6 GHz absorption line [70], seen on

the right side of Fig. 4.5. We made the measurements shown on the right in Fig. 4.5 by

sweeping our laser over the transition and monitoring the absorption.

The 7F0 →5 D0 Transition

You might be looking at this transition with a bit of incredulity. We have already dis-

cussed how many of the transitions between states within the 4 f 6 configuration are

allowed because of their magnetic nature. We have also discussed how there can be

electric dipole transitions within this configuration according to Judd-Ofelt theory.

However, this appears to be a J = 0→ J = 0 transition which is not allowed for mag-

netic dipole transitions or electric dipole transitions, forced or otherwise. To understand

this transition, we must remember that the state labels are not actually pure LS states,

but rather superpositions with the label coming from the dominant LS term. In the free

ion, all the other components of the state will have the same J as the dominant term due

to spherical symmetry. However, the crystal breaks this symmetry and can mix J states.
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Figure 4.5: (left) Fluorescence measurement of the homogeneous linewidth. The increase

in the fluorescence signal is indicative of the 5D1 lifetime, and the decrease in fluores-

cence is can be used to find the 5D0 lifetime. (right) The inhomogeneous linewidth. Both

of these plots were taken with the crystal at 4.5 K. The linewidths are substantially larger

at room temperature.

Just like how Judd-Ofelt theory uses the odd components of the crystal field expansion

to explain electric dipole transitions via mixing with excited configuration states, we

can use the even components to mix states within the same configuration with different

J values. This is the case with the 7F0 →5 D0 transition. In this case, the B2
0 crystal

field component mixes the nearby 7F2 state into the 7F0 state, thus allowing for a forced

electric dipole transition.

The general case of this mixing mechanism was first discussed by Wybourne [71],

and it’s application to the 5D0 →7F0 transition in europium ions was first investigated by

Tanaka [72]. This transition has since found applications in quantum memory protocols

due to its very narrow linewidth [73] and long coherence times [63, 74]

Stark Splitting

The upper state of our transition, 5D1, in Eu has total angular momentum J = 1. Due

to the presence of the crystal electric field, this level is split into three nondegenerate
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Stark levels. The wavelengths and wavenumbers for transitions to these states from the

7F0 state are given in Tab. 4.4 for both YSO sites. The transition that we will be using in

our experiment is the lower state at site 2. This is because the spectroscopy done in [61]

shows this to be the strongest transition. The next closest state, the lower state for site 1,

is 113 GHz away, so there is not much danger of interfering with any of the other Stark

levels, from either site.

Stark Levels

Level Site 1 (nm, cm−1) Site 2 (nm, cm−1)

Upper 525.73, 19021 525.85, 19017

Middle 526.45, 18995 526.40, 18997

Lower 527.64, 18952.223 527.54, 18955.977

Table 4.4: Wavelength and wavenumber for the three Stark levels at each site in YSO [61].

Hyperfine Structure

The lower stark level of site 2 of the 5D1 state and the ground state, 7F0, are each split

into three hyperfine levels corresponding to mI = ±1/2, ±3/2, and ±5/2, and can be

found in Fig. 4.6. Note that the scale of this splitting is substantially smaller than the

splitting of the mJ states. In addition, although the decay rate from the 5D1 state to the

7F0 state is on the order of 1 ms, the decay rates between hyperfine levels of the 7F0 state

are on the order of days [59].
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Figure 4.6: The levels on the left are the 7F0 hyperfine states with splitting δ1 and δ2. The

levels on the right are the 5D1 hyperfine states with splitting δ3 and δ4. All values are in

MHz.

The magnitude for each of these splittings for each isotope at each site can be found

in Tab. 4.5. Due to numerous perturbations including magnetic and quadrupole interac-

tions [63, 66], these are not eigenstates of the nuclear magnetic dipole moment operator.

The mixing of the pure mI states results all nine possible transitions from the 7F0 state

to the 5D1 state to be allowed. The relative strengths of these transitions for the 5D0

state were determined by Lauritzen [64]. Although we can use Lauritzen’s results as an

approximation for our transition, due to the similarities between the 5D0 and 5D1 states,

the ordering of the upper state splittings, δ3 and δ4, is not known. This is because the

inhomogeneous linewidth is much broader than the hyperfine splittings and thus makes

it difficult to isolate the splittings.
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Site 1 Site 2

Splitting 151Eu 153Eu 151Eu 153Eu

δ4 57 144 43 114

δ3 57 148 71 183

δ2 34.5 90 29.5 76.4

δ1 46.2 119 57.3 148

Table 4.5: Frequency splittings of the hyperfine levels of the 7F0 and 5D1 states for both

isotopes and crystal sites in MHz. The data for the upper states came from [61] and the

data for the lower states can be found in [62]. Additional information about the lower

states in site 1 can be found in [64] and [63].
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Chapter 5

Magnetic Response and Rabi Flopping

Although we had strong evidence to think that the 7F0 →5 D1 transition is a magnetic

dipole transition, we did not know how strong of a transition it was. Zach had done

some work with Cowan’s code and another code, RELIC (Rare Earth Level Intensity

Calculation), and the two programs gave matrix elements that differed by an order of

magnitude. In addition, we are well aware of the fact that the crystal field can have

substantial effects on transition strengths, as is the case with the 7F0 →5 D0 transition.

Therefore, we needed to measure the dipole moment ourselves.

In addition to not having a good idea of the magnitude of the dipole moment, the

chirality scheme requires establishing coherence between the two states involved in the

magnetic dipole transition. The level of coherence will also depend on the magnitude of

the dipole moment. Coherence had never been observed on a magnetic dipole transition

at optical frequencies before, so this would add some novelty to our experiments.

A good experiment that can determine the dipole moment of our transition and

demonstrate coherence between the two states is Rabi flopping. We have already talked

about the susceptibility, which is a steady state quantity that depends on the dipole

moment. Rabi flopping is a transient phenomenon that occurs on the way to the steady

state susceptibility.
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|1〉

|2〉

ωp

}δωp

Figure 5.1: A Simple Rabi flopping energy level diagram. The probe beam has frequency

ωp and has a detuning from resonance of δωp = (ω2 −ω1)−ωp.

Rabi Flopping Toy Model

To better understand Rabi flopping, let’s consider a two level system with no decay

interacting via a magnetic dipole interaction with a monochromatic beam, shown in Fig.

5.1. The Hamiltonians of the free system and the perturbing beam are

Ĥ f ree =

h̄ω1 0

0 h̄ω2

 Ĥint = h̄

 0 Bµ cos(ωpt)

Bµ∗ cos(ωpt) 0

 (5.1)

where B is the magnetic field, assumed to be real for simplicity, µ is the magnetic dipole

moment of the transition and ωp is the frequency of the beam. For electric dipole inter-

actions, we would simply substitute B and µ for their electric counterparts.

Transforming to the interaction picture and adopting the rotating wave approxima-

tion (RWA), the full Hamiltonian becomes

ĤI,RWA = h̄

 0 Ω
2

Ω∗
2 δωp

 (5.2)

Ω = Bµ
h̄ is the Rabi frequency and δωp = (ω2 − ω1) − ωp is the beam detuning from

resonance.

Any arbitrary state of the system can be given by |Ψ〉 = c1(t)|ψ1〉+ c2(t)|ψ2〉 where
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|ψ1〉 and |ψ2〉 are the ground and excited eigenstates of the free Hamiltonian, respec-

tively, and c1(t) and c2(t) are their time dependent amplitudes. Putting this state and

the Hamiltonian in Eq. 5.2 into the Schrödinger equation, we get

ih̄

ċ1

ċ2

 = h̄

 0 Ω
2

Ω∗
2 δωp


c1

c2

 (5.3)

If we assume the system starts in the ground state by setting c1(t = 0) = 1 and c2(t =

0) = 0, then the particular solutions to Eq. 5.3 are

c1(t) = e−i
δωp

2 t
(

cos
(

Ω̃t
2

)
+

iδωp

Ω̃
sin
(

Ω̃t
2

))
(5.4)

and

c2(t) = −i
Ω
Ω̃

e−i
δωp

2 t sin(
Ω̃t
2
) (5.5)

where Ω̃ =
√

Ω2 + δω2
p.

The excited state population of our two-level system can be seen in Fig. 5.2. There, we

see that the peak population in the excited state decreases as the detuning of the beam

increases. We also see that the frequency of the oscillations increases as δωp increases.

The simplest way to measure the dipole moment, µ, of this transition is to tune the

beam so that δωp = 0 and the frequency of oscillation is equal to the Rabi frequency,

Ω̃ = Ω. Then we measure the frequency of oscillations as the intensity of the beam is

varied. Since Ω ∝ B and B ∝
√

I, we expect the oscillation frequency to vary as Ω ∝ µ
√

I.

If there is no decay in the system, the transient effects will obviously not go away.

We can incorporate decay into the two level model and find our way to the steady state
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Figure 5.2: The excited state population for our two-level, non-decaying example. As δωp

becomes larger, the peak excited state population decreases and the oscillation frequency

increases.

solution by adding a phenomenological decay rate to the Hamiltonian

Ĥ = h̄

 0 Ω
2

Ω∗
2 δωp − iΓ

 . (5.6)

This sort of phenomenological model causes the population to decay out of the sys-

tem. The result is that the oscillations in Fig. 5.2 are modified by an exponential decay

envelope.

We can find the steady state solution by using the Liouville-Von Neumann equation,

ρ̇ = − i
h̄
[Ĥ, ρ] (5.7)
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with our two-level Hamiltonian with the phenomenological decay. This gives us

ρ̇ = − i
h̄

 ρ21Ω− ρ12Ω∗ (ρ22 − ρ11)Ω− (iΓ− δωp)ρ12

(ρ11 − ρ22)Ω∗ + (iΓ− δωp)ρ21 ρ12Ω∗ − ρ21Ω

 (5.8)

‘ By setting the time derivative to zero, we find the steady state coherence to be

ρ12 =
(ρ22 − ρ11)Ω

iΓ− δωp
. (5.9)

5.0.1 Rabi Flopping Setup and Procedure

Figure 5.3: The experimental setup for our Rabi flopping experiment

To access the 7F0 → 5D1 transition in our experiment, we start with a costum-built

infrared external cavity diode laser (ECDL) set up in the Littrow configuration [75]. The

output of the ECDL has a wavelength of 1055 nm with a linewidth of about 0.5 MHz

and optical power of 25 mW. Part of the output of the ECDL is picked off and sent to

an ultra-low expansion (ULE) cavity that serves as a frequency reference. The ULE is

also used for the Pound-Drever-Hall locking method [76] which ultimately gives us an

absolute frequency stability of 50 kHz. More information on the locking system can be

found in Zach Simmon’s thesis [45].

The ECDL output is then amplified to an optical power exceeding 5 W using a fiber
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Figure 5.4: The setup used to overlap the Rabi and probe beams. The Rabi beam, coming

in from the right, was retroreflected onto itself using the mirror M3. Then, M1 and M2

were used to overlap the probe beam with the Rabi beam. The beams were considered

overlapped when a bull’s eye interference pattern could be seen.

amplifier. We frequency-double the fiber amplifier output using cavity-based second har-

monic generation with a 2-cm-long periodically-poled nonlinear crystal (PPKTP) with a

poling period adjusted for phase matching at 1055 nm and temperature controlling with

a temperature stability at the level of 1 mK. The SHG from the PPKYP crystal was en-

hanced by putting the PPKTP crystal in a ring cavity. One of the mirrors of this SHG

cavity was mounted on a piezoelectric transducer which is used to lock the SHG cav-

ity to the amplifier output using the Hansch-Couillaud method [77]. Using this set-up

we are able to produce green light at a wavelength of 527.5 nm with an optical power

exceeding 1.5 W. More information on our SHG setup cam be found in Nick Brewer’s

thesis [69].

The green output from the doubling cavity is then split into two beams. Each beam
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goes through an acousto-optic modulator (AOM) for frequency and timing control. The

AOMs have a center frequency of 80 MHz. The beams are focused through the AOMS

with a waist of 400 µm giving them a turn-on-time of about 50 ns.

We use a 3-mm-long Eu:YSO crystal which is housed in a continuous-flow liquid

helium cryostat, and cooled to a temperature of 4.5 K. The crystal is cut such that light

propagates along the b crystallographic axis and the magnetic-field of the laser is aligned

with the D1 axis. The maximum power of the coupling beam at the cryostat is 300 mW,

and its waist is 56 µm. The total power in the coupling beam was monitored with a

calibrated photodiode. Since the beam profile of the coupling beam is Gaussian, the

coupling beam’s spatial intensity profile will induce a spatially varying Rabi frequency

in the crystal. In order to sample the center part of the coupling beam where the Rabi

frequency is most uniform, we focus the probe beam, which has a power of less than 1

pW, down to 18 µm.

The probe and coupling beam are sent into the cryostat in a counterpropagating

configuration. This was done so that a pickoff could be used to select the probe beam

for detection and minimize background from the coupling beam. In order to ensure

the counterpropagating beams were overlapped, we used the setup in Fig. 5.4. First we

used the mirror to retroreflect the coupling beam and ensure that it was overlapped with

itself. Then, we used separate mirrors not shown in the diagram to walk the probe beam

until we saw a bull’s eye interference pattern, indicating the two beams were overlapped.

The pulse sequence we used is shown in Fig. 5.5. With the cryostat at 4.5 K, the

sequence starts with a powerful Rabi pulse. The length of this pulse is varied from shot

to shot and lasts from 0 - 2 µs. 15 µs after the end of the Rabi pulse is a 5 µs probe pulse.

Ideally, we would send in the probe pulse immediately after the Rabi pulse. However,

there is some fluorescence that occurs after the Rabi pulse is turned off that we do

not fully understand. We add in the 15 µs delay to avoid detecting this fluorescence.

After each shot we reset the atoms by increasing the temperature of the cryostat to 20
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Figure 5.5: The Rabi flopping pulse sequence. Taken from [69].

K and then bringing the temperature back down to 4.5 K using the computer controlled

temperature controller for the cryostat.

The timing of the experiment was coordinated by a computer controlled pulse gener-

ator. The pulse generator was used in conjunction with RF switches to control the timing

of the AOMs. The RF generators that drove the AOMs were also computer controlled,

which allowed us to control the power of the beams. The signal was monitored with a

photon counting module which was gated with the pulse generator. The signal from the

photon counter was monitored on an oscilloscope, and the data was read from the scope

to the computer via GPIB.

5.0.2 Results

We proceed with a discussion of our Rabi flopping measurements [70]. With the ions

starting in the ground state 7F0 (equally populating the three hyperfine levels), we apply

a Rabi flopping laser pulse of certain duration to the ions. Due to the interaction with

the Rabi flopping laser, the ionic population starts to flow coherently back and forth

between the ground and excited levels. Depending on the duration of the Rabi pulse,
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the ions may be left in any one of the levels or in a superposition of the two at the end of

the pulse. After the Rabi flopping laser is turned-off, we turn-on a counter-propagating

weak probe pulse and measure the transmission of the probe through the crystal with a

photon-counter. Using this set-up, the Rabi flopping of the ions is then revealed by the

transmission of the probe laser beam, through stimulated absorption and emission.

Fig. 5.6 shows the normalized transmission of the probe laser through the crystal as

the duration of the Rabi pulse is varied. For each pulse duration, each data point is an

average of ten experiments with the error bar denoting the standard deviation of the set.

We observe a clear Rabi flopping cycle with a flopping frequency approaching 1 MHz.

The Rabi flopping quickly dephases after about two cycles due to two main reasons: (i)

We perform this experiment using the whole inhomogeneously broadened ensemble. As

a result, the Rabi laser is only resonant with a small fraction of ions. Off-resonant atoms

flop at faster rates but with a much reduced contrast which contributes to the dephasing

of the Rabi cycle. (ii) Since we do not perform any optical pumping between hyperfine

levels, Rabi flopping happens simultaneously between each ground and excited hyper-

fine level combination, i.e., there are nine different simultaneous excitations. The spread

of the magnetic-dipole matrix element between respective transitions also contributes to

the fast dephasing of the Rabi cycle [64].
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Figure 5.6: The transmission of the probe laser beam through the crystal as the duration

of the Rabi pulse is varied. We observe a clear Rabi cycle with a frequency approach-

ing 1 MHz. The Rabi oscillation quickly dephases due to a number of processes such

as the variation of the magnetic-dipole matrix element among various hyperfine transi-

tions. The solid line is a numerical simulation that solves the density matrix for a large

number of atoms whose whose absolute transition frequencies are spread through the

inhomogeneous profile, causing different hyperfine transitions to be resonant with the

laser. The lower plot shows the inferred magnetization from the same simulations. See

text for details.

Because we observe only about two cycles, there is significant uncertainty in the

observed Rabi frequency from a single flopping experiment. For accurate measurement

of the magnetic dipole matrix element, we perform the Rabi flopping measurement of

Fig. 5.6 at various Rabi pulse intensities. Fig. 5.7 shows the observed Rabi frequency as

a function of laser intensity for 23 Rabi flopping measurements. For each measurement,

the vertical error bar represents the uncertainty of the deduced Rabi frequency for that

specific flopping experiment. The insets show six specific Rabi flopping experiments as

the laser intensity is varied from 5630 W/cm2 to 1510 W/cm2. From the square-root fit

to the observed data values (the solid line in the main plot) we deduce the magnetic-

dipole matrix element to be µ = (0.063± 0.005)µB for the magnetic field oriented along
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the quantization axis of the crystal (the D1 crystallographic axis).

As we discussed before, the 4 f electronic configuration of rare-earth ions are typi-

cally in the intermediate coupling regime, i.e., neither LS-coupling nor jj-coupling ac-

curately describes the wavefunctions. Using intermediate-coupled wavefunctions of the

free ion and well-known methods of Racah algebra, calculations give a theoretical value

of µ = 0.096µB for the magnetic dipole matrix element. The calculated theoretical value

is therefore within 50% of the measured experimental value of the matrix element. At

the end of this chapter we discuss a possible explanation for the discrepancy between

our measured value and this calculated value.
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Figure 5.7: The observed Rabi flopping frequency as the laser intensity is varied for 23

different Rabi flopping experiments. From the square-root fit to the data points (the solid

line), we deduce a magnetic-dipole matrix element of µ = (0.063± 0.005)µB. The insets

show six specific flopping experiments (probe transmission vs Rabi pulse duration) as

the laser intensity is varied from 5630 W/cm2 to 1510 W/cm2.

Using the measured value of the magnetic-dipole matrix element, we performed den-

sity matrix simulations of the system. For this purpose, we take 80,000 ions, spread their

transition frequencies between ±0.5 GHz to incorporate the inhomogeneous profile, nu-
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merically solve the time-domain evolution of the density matrix for each ion using the

Liouville equation

ρ̇ = − i
h̄
[Ĥ, ρ̂]− 1

2
{Γ̂, ρ̂}, (5.10)

and calculate the ensemble-averaged response. For the time-domain evolution, we in-

clude all six hyperfine levels of the 7F0 → 5D1 transition, using the relative magnitudes

of the dipole matrix elements from [64], as well as the 5D0 level; i.e., the size of the den-

sity matrix ρ̂ is 7× 7. Our model takes into account (i) interaction with the laser pulse,

(ii) non-radiative relaxation from the 5D1 level to 5D0 level at a rate Γ (homogeneous

linewidth), and (iii) the spread of the transition frequencies due to the inhomogeneous

broadening. See Nick’s thesis for more details on the simulations [69].

The solid line on the left in Fig. 5.6 shows the calculated difference between the

population of the excited hyperfine levels and the ground hyperfine levels, < ρ̂excited >

− < ρ̂ground > (we use the notation < ... > to mean average over the inhomogeneously

broadened ensemble), as the Rabi pulse duration is varied. The numerical simulation

accurately produces the frequency and the contrast observed in the Rabi flopping ex-

periment. In the plot on the right in Fig. 5.6, we calculate the inferred magnetization

of the ensemble, by extracting the coherences (the off-diagonal density matrix elements)

from the same numerical simulations, M = N < ρ̂o f f−diagonal > µ (the quantity N

is the ionic density). The ensemble-averaged magnetization reaches a peak value of

M = 5.5× 10−3 A/m and then sharply drops. This peak magnetization is equivalent to

a current loop of area 1 cm2 with a current of 1 mA running through it, but the current

is oscillating at 570 THz.

We can use our measured value of the magnetic dipole moment to extrapolate the

magnetic susceptibility of this transition. The results are shown in Fig. 5.8. This extrap-

olation was done by taking the susceptibility formula in Eq. 2.59 with the specific form
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Figure 5.8: The susceptibility we inferred from our measurements and simulations.

of the coherence for Rabi flopping, Eq. 5.9, as the homogeneous linewidth. Then, this

homogeneous lineiwdth is convolved over the inhomogeneous linewidth to give the plot

in Fig. 5.8.

Although this susceptibility is small, it is still enough to produce left-handed waves

with the externally driven scheme. With our measured value of the magnetization, the

relation

|~P|
| ~M|

=
N2 + 1

2cn
, (5.11)

and the results of [34], an external polarization of ~Pext ≈ 2× 10−11 C/m2 would produce

left-handed waves with intensity on the order of 100 nW/cm2. This level of polarization

is well within the realm of possibility of a typical host crystal with a second order re-

sponse, and the left-handed wave intensity is also reasonable to detect. In addition, the

chirality scheme only needs a mangetic susceptibility of about 10−2 to produce a nega-
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Figure 5.9: The setup that we used to verify the magnetic nature of our transition. The

half-wave plate was used to align either the electric or magnetic field with the axis of

rotation of the crystal which is also one of the crystal’s optical axes. As the crystal is

rotated, the field that is parallel to the axis of rotation remains aligned with that optical

axis, while the other field changes its orientation. The fluorescence was then collected

with a high NA lens and a long-pass filter was used to cut out any scattered green light.

tive index of refraction. Although we are not at that level either, the magnetic response

can be enhanced by either finding a stronger transition or increasing the ionic density.

5.0.3 Magnetic Dipole Verification

We next discuss how we have verified that the electrons interact with the magnetic field

of the laser during the 7F0 → 5D1 excitation. We note that we cannot use the method

outlined in Ref. [58]. This is because our experiment uses a ∼mm scale crystal, and as

a result, we cannot utilize the unique magnetic-field profile of a tightly focused radially
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polarized laser.

Instead, we have studied angle dependent fluorescence from the crystal with light

propagating along each crystallographic axis and for two orthogonal polarizations (S

and P polarized). This measurement was performed using a thicker crystal with dimen-

sions 4 mm×5 mm×10 mm and outside the cryostat (i.e., at room temperature) so that

we had access to all propagation axes of the crystal. The main idea behind this measure-

ment is depicted in the schematic shown in Fig. 5.9 and results are shown in Fig. 5.10 and

5.11. Consider S polarized light propagating along a certain axis of the crystal, as shown

in part (a) of Fig. 5.10. The laser excites the crystal and we record the total fluorescence

using a high-numerical-aperture lens and a photo-detector (not shown in Fig. 5.10). If

the excitation is due to interaction with the magnetic-field, as the crystal is rotated along

the axis shown, we would expect a change in the amount of excitation (and therefore the

amount of fluorescence recorded). This is because, the crystal is highly anisotropic and

as the crystal is rotated, the angle between the magnetic field and the crystallographic

axes would change. For this geometry, we would not expect variation in the fluorescence

if the excitation is due to the electric-field since its orientation with respect to all axes

remains unchanged. For P polarized light [part (b) in Fig. 5.10], the roles of the electric

and magnetic fields would be reversed. The plot in Fig. 5.10 shows this measurement

for light propagating along the D1 axis of the cystal with the crystal rotated around the

b axis. The measurement conclusively shows that the fluorescence changes when the

direction of the B-field is varied and therefore proves the magnetic-dipole nature of the

excitation.

We have performed the angle-dependent fluorescence measurements with light prop-

agating along the other axes of the crystal. Similar to the measurements of Fig. 5.10, for

light propagating along a specific crystal axis, we record the total fluorescence as the

crystal is rotated for two polarizations of light. These measurements are shown in the

below figure. For each propagation axis, the fluorescence changes when the direction of
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Figure 5.10: Fluorescence from the crystal as a function of the angle of incidence for S-

polarized (changing ~B orientation), and P-polarized (changing ~E orientation) light. The

beam is propagating along the D1 axis and the crystal is rotated around the b axis. The

fluorescence signal is normalized to take into account both the change in the Fresnel

reflection losses from the surfaces and the path-length change of the beam as the crystal

is rotated. The large increase in the fluorescence for S-polarized light is due to a change

of the direction of the angle of the magnetic field with the crystallographic axes. In

contrast, when the angle of the electric field is varied (P-polarized), there is negligible

change in the fluorescence. This shows that during 7F0 → 5D1excitation, light interacts

with the magnetic field of light instead of the electric field.
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Figure 5.11: Total fluorescence from the crystal as a function of the angle of incidence for

light propagating along the D2 axis and rotation around the b axis (left) and propagation

along the b axis and rotation around the D1 axis (right) of the crystal. Similar to Fig.

5.10, S - polarization corresponds to the changing ~B orientation and P - polarization

corresponds to changing ~E orientation.

the magnetic field is changing, and stays relatively constant when the direction of the

electric field is varied. The data points for part (c) and (d) in Fig. 5.11 suffer from the

technical limitations due to long propagation distance in the crystal.

5.1 Calculation of the Magnetic Dipole Moment

We can get an idea for a theoretical value of the magnetic dipole moment of our transition

by using the tensor operator methods. We can start with the states calculated by Ofelt

[1]

|7F0〉 = 0.9680|7F0〉LS + 0.0016|5D0〉LS + 0.1659|5D′0〉LS − 0.1815|5D′′0 〉LS (5.12a)

|5D1〉 = −0.2096|7F1〉LS − 0.2066|5D1〉LS + 0.7162|5D′1〉LS − 0.5561|5D′′1 〉LS. (5.12b)
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The subscript LS in Eqs. 5.12 denote eigenstates of the LS basis and ′, ′′ denote seniority

number. If one uses Cowan’s code [42] to find the states, there will be more LS terms.

However, their amplitudes will be very small and will contribute very little to the final

result. This was checked computationally. These states, along with the magnetic dipole

operator

µ̂ = −µB(J + S), (5.13)

where we have assumed g = 2, can be used with the Wigner-Eckart theorem

〈αJMJ |T
(k)
q |α′ J′M′J〉 = (−1)J−MJ

 J k J′

−MJ q M′J

 〈αJ||T(k)||α′ J′〉 (5.14)

and

〈SLJ||(J + S)(1)||S′L′ J′〉 =δSLJ,S′L′ J′

√
J(J + 1)(2J + 1)

+δSL,S′L′(−1)S+L+J+1
√
(2J + 1)(2J′ + 1)S(S + 1)(2S + 1)

L S J

1 J′ S


(5.15)

to give us a magnetic dipole moment of

µ = −0.0955µB (5.16)

This is obviously pretty different than the 0.063±0.005µB that we got from our Rabi

flopping experiments.

The calculations above, however, use the free-ion states. These states do not account

for crystal field effects which will modify the LS expansion amplitudes and potentially

mix in new LS states.
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5.1.1 J-Mixing and the Eu3+ Dipole moment discrepancy

The main affect caused by the crystal field that is not accounted for by other perturba-

tions is known as J-mixing. The states of the free ion are calculated with full spherical

symmetry. Therefore, J is still a good quantum number. However, when the ion is placed

in the crystal field, the spherical symmetry is broken and is reduced to that of the point

group of the dopant cite. As we have discussed, the crystal field effects can be incorpo-

rated into the Hamiltonian as a perturbation. For the 4 f → 4 f transitions in rare earth

ions, the expansion is

V =
6

∑
k=0,even

k

∑
q=−k

Bk
qCk

q . (5.17)

The nonzero values of Bk
q are determined by the crystal field symmetry.

The effects of the crystal field can be incorporated into the transition strength by

using second order double perturbation theory. The two second order contributions are

〈ψ(1)
g |D

(1)
ρ |ψ

(0)
e 〉 = ∑

n 6=g

〈ψ(0)
g |Vcrys|ψ(0)

n 〉〈ψ
(0)
n |D

(1)
ρ |ψ

(0)
e 〉

E(0)
n − E(0)

g

(5.18a)

〈ψ(0)
g |D

(1)
ρ |ψ

(1)
e 〉 = ∑

n 6=e

〈ψ(0)
g |D

(1)
ρ |ψ

(0)
n 〉〈ψ

(0)
n |Vcrys|ψ(0)

e 〉

E(0)
n − E(0)

e

. (5.18b)

where the |ψ(0)〉 states are the states of the free ion with J as a good quantum number.

|ψ(0)
g 〉 is the initial state, |ψ(0)

e 〉 is the final state, and |ψ(0)
n 〉 are the intermediate states that

will be mixed into the initial and final states of the transition. D(1)
ρ is the dipole moment

operator with rank 1 and polarization ρ.

The matrix matrix elements can be evaluated using the Wigner-Eckart theorem. For

Eq. 5.18a we have



81

〈ψ(0)
g |Vcrys|ψ(0)

n 〉 = 〈SLJMJ |Vcrys|S′′L′′ J′′M′′J 〉

= (−1)J−MJ

 J k J′′

−MJ q M′′J

 〈SLJ||Vcrys||S′′L′′ J′′〉

〈ψ(0)
n |D

(1)
ρ |ψe(0)〉 = 〈S′′L′′ J′′MJ””|D(1)

ρ |S′L′ J′M′J〉

= (−1)J′′−M′′J

 J′′ 1 J′

−M′′J ρ M′J

 〈S′′L′′ J′′||D(1)
ρ ||S′L′ J′〉

(5.19)

Putting these together gives us

〈ψ(0)
g |Vcrys|ψ(0)

n 〉〈ψ
(0)
n |D

(1)
ρ |ψe(0)〉 = (−1)J+J′′−MJ−M′′J

 J k J′′

−MJ q M′′J


 J′′ 1 J′

−M′′J ρ M′J


× 〈SLJ||Vcrys||S′′L′′ J′′〉〈S′′L′′ J′′||D(1)

ρ ||S′L′ J′〉.

(5.20)

The matrix elements for Eq. 5.18b are

〈ψ(0)
g |D

(1)
ρ |ψ

(0)
n 〉 = 〈SLJMJ |D

(1)
ρ |S′′L′′ J′′M′′J 〉

= (−1)J−MJ

 J 1 J′′

−MJ ρ M′′J

 〈SLJ||D(1)
ρ ||S′′L′′ J′′〉

〈ψ(0)
n |Vcrys|ψe(0)〉 = 〈S′′L′′ J′′MJ””|Vcrys|S′L′ J′M′J〉

= (−1)J′′−M′′J

 J′′ k J′

−M′′J q M′J

 〈S′′L′′ J′′||Vcrys||S′L′ J′〉

(5.21)
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which together gives us

〈ψ(0)
g |D

(1)
ρ |ψ

(0)
n 〉〈ψ

(0)
n |Vcrys|ψe(0)〉 = (−1)J+J′′−MJ−M′′J

 J 1 J′′

−MJ ρ M′′J


 J′′ k J′

−M′′J q M′J


× 〈SLJ||D(1)

ρ ||S′′L′′ J′′〉〈S′′L′′ J′′||Vcrys||S′L′ J′〉.

(5.22)

We can get additional restrictions on the crystal field terms by considering the 3-J

terms in Eqs. 5.20 and 5.22. Using the rules of 3-J symbols, the restrictions are

 J k J′′

−MJ q M′′J


 J′′ 1 J′

−M′′J ρ M′J


J′ − 1 ≤ J′′ ≤ J′ + 1 M′′J = M′J + ρ (5.23a)

J′′ − J ≤ k ≤ J′′ + J q = MJ −M′′J (5.23b)

J′ − J − 1 ≤ k ≤ J + J′ + 1 q = M′′J −M′J − ρ (5.23c)

for Eq. 5.20 and

 J 1 J′′

−MJ ρ M′′J


 J′′ k J′

−M′′J q M′J


J − 1 ≤ J′′ ≤ J + 1 M′′J = MJ − ρ (5.24a)

J′′ − J′ ≤ k ≤ J′′ + J′ q = M′′J −M′J (5.24b)

J − J′ − 1 ≤ k ≤ J + J′ + 1 q = MJ −M′J − ρ (5.24c)

for Eq. 5.22. The unprimed quantities correspond to the ground state, the primed

quantities correspond to the excited states, and the double prime states are the states

that are being mixed in by the crystal field.
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For YSO, the dopant cite has C1 symmetry. With such low symmetry, we would

expect all of the crystal field parameters with k < 6 to be nonzero. However, we can

plug in the relevant parameters from 7F0, 5D1, and linearly polarized light into Eqs. 5.23

and 5.24 to get

0 k J′′

0 q M′′J


 J′′ 1 1

M′′J 0 0

 &

0 1 J′′

0 0 M′′J


 J′′ k 1

M′′J q 0

 . (5.25)

We see from Eq. 5.25 that the only allowable values for k are 0 and 2 and that the only

allowable value for q is zero. This means that the only state that can be mixed in (to

second order) is the 7F2 state.

The crystal field parameter Bk
q are typically on the order of a few hundred inverse

centimeters [50]. If we take a value of B2
0 = 500 cm−1 and the fact that 7F2 is 1173 cm−1

above 7F0, according to Cowan’s code, with Eqs. 5.18 to find a new value of the magnetic

dipole moment of

µ = −0.0694µB. (5.26)

Of course there are numerous effects within the crystal that could also be affecting the

dipole moment and an actual measurement of the crystal field parameters for YSO would

be needed to be conclusive. However, this calculation shows that, with typical values of

the crystal field parameters, we can get our dipole moment calculation much closer to

our measured value.
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Chapter 6

Magnetic Response and Susceptibility

6.1 Manipulating the Magnetic Response Through Linear

Optics: Spectral Hole Burning

As we have already discussed, although the (homogeneous) linewidth of an individual

europium ion in YSO is 33 kHz, each ion experiences a slightly different Stark shift. This

variation causes a variation in the center frequencies of the homogeneous lines. The

result of this variation is a composite linewidth, called the inhomogeneous linewidth,

composed of the 33 kHz lines of all the ions in our crystal with their center frequencies

shifted here and there around the center of the inhomogeneous line.

The experiments described in the previous chapter were performed using the entire

inhomogeneous line. The linewidth of the inhomogeneous broadening is 1.6 GHz, sub-

stantially wider than the homogeneous linewidth and the europium hyperfine splittings.

The fact that the inhomogeneous line is wider than the hyperfine splitting makes it im-

possible to use a single beam at a single frequency to address transition from a particular

ground hyperfine state to a particular excited hyperfine state. From here on, I will refer

to all the 7F0 hyperfine states as just the ground states and the 5D1 hyperfine states as

just the excited states since these are the only electronic levels being addressed by our
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Figure 6.1: All the transitions induced by a single laser beam in Eu:YSO. Each set of six

states is referred to as an ion class. All the ions in an ion class experience a similar Stark

shift and therefore has similar transition frequencies between the ground and excited

states. Because the inhomogeneous broadening is wider than the hyperfine splittings in

europium, a single beam will end up addressing nine different ion classes, one ion class

for each possible transition.

lasers.

The transitions induced by a single laser beam can be seen in Fig. 6.1. Each of the

nine sets of six energy levels is referred to as an ion class and correspond to transitions

in different europium ions. The thing that defines an ion class is that each member

ion of the class experiences a similar Stark shift and will therefore have the same set of

transition frequencies between the ground and excited states. Since this set of frequencies

changes from ion to ion, when a single beam is turned on at a fixed frequency, this beam

will end up addressing the nine ion classes shown in Fig. 6.1 corresponding to the nine

possible combinations of ground and excited states.

If the beam in Fig. 6.1 is intense enough and left on for a long enough time, the
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Figure 6.2: After a single beam at a fixed frequency has interacted with the nine ion

classes, the nine ground states that were addressed by the beam will have been emptied

out and the population pumped to the other two ground states in each ion class. In the

figure above, we have a single beam whose frequency is being swept over a single ion

class with one ground state empty and the other two with excess population. Whenever

the empty ground state is connected to an excited state by the beam there will be a drop

in absorption; when a ground state with excess population is connected to an excited

state there will be additional absorption.

ground state of each ion class that is addressed by the beam will be emptied out and the

population will be pumped to the other two ground states of that ion class. Because the

ground state lifetimes in Eu:YSO are very long at cryogenic temperatures, this popula-

tion distribution will persist. Now, lets consider a single ion class with this population

distribution and sweep the frequency of a single beam over it. This scenario is shown in

Fig. 6.2. When the sweeping beam connects the emptied state to one of the three excited

states there will be an decrease in absorption of the beam. However, when the sweeping

beam connects one of the states with excess population to an excited state there will

be increased absorption. The result is that this ion class will produce spectral holes,

or reductions in absorption, at three frequencies and spectral antiholes, or increases in

absorption, at six more frequencies for a total of nine spectral features. Since each of the

nine ion classes will produce nine spectral features, we will have a total of 81 spectral fea-

tures1. Since there are two isotopes of europium in our crystal with different hyperfine

1Some of these features wind up at the same frequencies so the total number of unique frequencies is
slightly less than 81.
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splittings, there turns out to be double the number of spectral features. All the possible

spectral features for our crystal are shown in Fig. 6.3. All ion classes will produce a

spectral hole at the frequency of the fixed frequency beam, known as the burning beam.

This hole is the one at zero detuning in Fig. 6.3 and is referred to as the spectral hole.

Figure 6.3: All the spectral features produced by a single beam for our crystal with

roughly equal amounts of the two stable europium isotopes. The peaks correspond to

antiholes and the dips are holes. The larger peaks/dips correspond to spectral features

from different ion classes that have the same frequency. This plot assumes equal transi-

tion strengths and branching ratios for all transitions and decay paths. If this were not

the case, then the holes and antiholes would lose the uniformity according to the relative

transition strengths and decay paths [64].

An example of a real spectral hole can be seen in Fig. 6.4. Note that we have been

saying spectral hole despite the fact that all of our data shows the spectral holes as

peaks. This is because we got use to using the terminology from the literature and never
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Figure 6.4: Example of the transmission of the spectral hole. Zero detuning corresponds

to the frequency of the beam that burned the hole.

bothered to change it. I will continue that tradition throughout this thesis. To produce

this figure, a beam, called the burning beam, was turned on at a single frequency. Then,

the frequency of a much weaker beam was swept over the hole and the transmission

was monitored. In practice these two beams were the same beam, and the power and

frequency of the beam was controlled with an AOM.

The depth and width of of the spectral hole can be controlled by the intensity of the

burning beam and the burn time. Examples of the variation of the depth and width of

the spectral holes versus burn time can be seen in Fig. 6.5. The data in Fig. 6.5 was taken

with a burning beam intensity of 40 mW/cm2. The timescales in the plots can be varied

by changing the intensity of the burning beam.

Instead of using a beam with a high intensity or burn for a really long time, broad

spectral features can be produced by burning a spectral trough. An example of a spectral

trough can be seen in Fig. 6.6. This spectral trough was produced by sweeping the

burning beam’s frequency over 14 MHz. Although this technique can produce broad

spectral features, the width must not extend to the closest antiholes, or else the burn
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Figure 6.5: The spectral hole depth and width versus burn time. This data was taken

with a burning beam intensity of 40 mW/cm2. The timescales can be changed by chang-

ing the intensity of the burning beam.

beam will pump population back into the trough as it sweeps.

Nilsson’s Ion Class Selection Procedure

We can go from burning a spectral hole to isolating a single ion class for experiments

using a procedure called ion-class selection (ICS) introduced by Nilsson as a way to use

rare-earth ions such as Eu:YSO [78] and Pr:YSO [79] in quantum memory applications.

In fact, Eu:YSO has had quantum memory protocols demonstrated in it with coherence

times of up to six hours [80]. However, the Eu:YSO transition that has been used was

the electric dipole 7F0 →5D0 transition.

ICS is able to isolate a single ion class by exploiting the fact that none of the hyperfine

splittings in an ion class are equal. This means that we can use three beams with the

proper frequencies to address a particular ion class. This is depicted in Fig. 6.7 where

the beams will be referred to as the probe beam (green), the coupling beam (blue), and

the repump beam (red). The naming of the beam is suggestive of the typical names

of the beams involved in EIT with the addition of the repump beam to control the

population. We can see from Fig. 6.7 that only one ion class has all three ground states

addressed by the beams. All the other ion classes have at least one ground state that is
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Figure 6.6: An example of a spectral trough. This trough was burned by sweeping the

burn beam’s frequency over 14 MHz using an AOM.

not addressed. This unaddressed state will accumulate population, taking that ion class

out of the picture. In order for this procedure to be successful, there must be at least two

of the upper states involved. The particular states we have chosen were chosen so that

the probe and coupling beams would share an upper state in preparation for our EIT

experiments.

Each of the beams involved in ICS will interact with nine ion classes, many of which

are not shown in Fig. 6.7. To check that truly only one ion class is selected, take a

look at the tables in Appendix A.3. Consider the coupling beam in Fig. 6.7 which is

76.4 MHz below the probe beam. We can look at the ion class of the spectral features

produced by the coupling beam at +76.4 MHz. We can do the same thing for the repump

beam. Comparing these two ion classes shows will show that there is a unique ion class

selected from the point of view of the coupling beam, and this ion class is the same ion

class selected from the point of view of the probe beam or of the repump beam.

Now that we know that selecting an ion class is possible, how do we actually do it?

The first step of Nilsson’s procedure is to turn all three beams on and sweep out a trough
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Figure 6.7: The three beams used to select a single ion class. The beams are called the

probe beam (green), coupling beam (blue), and repump beam (red). The ion class all

the way to the left is the only ion class that has all of its ground states addressed by the

beams. All other ion classes have at least one unaddressed ground state that winds up

accumulating all the population of that ion class.

with each beam. This step isolates the ion classes over a broader frequency span, thus

reducing interference from ion classes that are nearby in frequency. Because all three

beams are on at the same time, the population of the selected ion class will be roughly

evenly distributed among the three ground states, depending on the beam intensities,

transition strengths, and branching ratios.

The second step of Nilsson’s procedure involves sweeping the probe and coupling

beams while the repump beam is off. This transfers the population in the ground states

addressed by the probe and coupling beams to the ground state addressed by the re-

pump beam. The result is a spin polarized state in the ions of the selected ion class.

The last step of Nilsson’s procedure is to transfer population from the repump
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Figure 6.8: The experimental schematic. We begin with a 1055 nm ECDL locked to a ULE

reference cavity and whose linewidth is monitored by a Mach-Zender interferometer.

The beam is then amplified by a fiber amplifier, and frequency doubled in a PPKTP based

ring cavity. The 527.5 nm light output is split into three beams, the probe, coupling, and

repump beam. The timing, power, and frequency of the three beams are controlled by

AOMs. The coupling and repumper beams are then overlapped while the probe beam

propagates parallel to them but displaced by 2 mm. The parallel beams are then focused

into the crystal at a small enough angle that they are overlapped within the 1 cm crystal.

After the crystal, the coupling and repumper beams are blocked. The probe beam is sent

through a fiber into an enclosed box to block scattered light. After leaving the fiber, the

probe beam is passed through a 550 nm shortpass filter to block fluorescence from the

crystal and then focused onto a photodiode for detection. ECDL: external-cavity diode

laser, PBS: polarizing beam splitter, ULE: ultra-low expansion, PDH: Pound-Drever-Hall,

AOM: acousto-optic modulator, λ/2: half-wave plate, λ/4: quarter-wave plate.
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Figure 6.9: The result of Nilsson’s ion-class selection procedure; an absorption peak

due to a single ion class in a transmission window in the inhomogeneous line. The

highlighted peak was then used for EIT and slow light experiments. There is also a

spurious peak on the right, suggesting that there might be some unidentified crystal

perturbations splitting the probe state.

ground state back to the probe ground state at a single frequency. This is done by

turning on the repump and coupling beam at a fixed frequency with the probe beam off.

The proper frequency spacing between the repump and coupling beam can be found

by considering the spacings between the ground and excited states addressed by each

beam.

The experimental setup we used for ion-class selection is shown in Fig. 6.8, and

is very similar to the setup we used for Rabi flopping. However, in this setup, the

green output from the doubling cavity is split into three beams which we call the probe,

the coupling, and the repumper. These three beams are used for ion-class selection,

optical pumping, and EIT. Each beam goes through an acousto-optic modulator (AOM)

for precise frequency and timing control, which is computer controlled just like the
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Rabi flopping experiment. The probe beam AOM uses a double-passed configuration

to achieve a wider tuning range of the probe frequency with relatively little variation

of its power. Each beam is spatially filtered through a single mode fiber (not shown in

Fig. 6.8) before they are combined and focused inside the Eu:YSO crystal. The spot size

of the beams at the focus is W0 = 45 µm (1/e2 intensity radius). The probe laser crosses

the other two beams at an angle of 15 mrad for ease of detection after the crystal. We

use a 10-mm-long Eu:YSO crystal which is housed in a continuous-flow liquid helium

cryostat to cool to a temperature of 4.5 K. Cooling is needed to reduce phonon-induced

relaxation rates which critically determines homogeneous optical linewidths.

The detectors in Fig. 6.8 are set up to give us absolute transmission for the probe

beam. In order to do this, we detuned the laser at the ECDL by several tenths of a

nanometer while the cryostat was at 4.5 K in order to get signals on the incident and

transmitted probe photodiodes. This gave us a conversion factor between the incident

and transmitted beam for 0% absorption by the crystal because all the losses are due to

losses from mirrors, lenses, or reflections off of surfaces. We can then use this conversion

along with the incident and transmitted signals during the experiment to get the absolute

transmission of the probe beam. The photodiodes monitoring the probe beam are high-

speed photodiodes in order to capture the details of the short EIT pulses.

The results of Nilsson’s procedure can be seen in Fig. 6.9. There we see an absorption

peak due to a single ion class in a transmission window. This peak was then used for

our EIT and slow light experiments, which are described later in this chapter. Fig. 6.9

also shows a spurious peak to the right of the selected peak. This peak suggest that

there are some unidentified perturbations that are splitting the two-fold degeneracy of

the probe ground state. I would speculate that this splitting is due to some crystal field

mixing, however the origins of this peak will be left for future investigations.
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6.2 Manipulating the Magnetic Response Through Non-

linear Optics: Electromagnetically Induced Transparency

6.2.1 Introduction

Electromagnetically induced transparency (EIT) is, like spectral hole burning, is a way to

manipulate the susceptibility. However, unlike spectral hole burning, and Rabi flopping

for that matter, EIT is a three-level nonlinear process where the susceptibility at the

frequency of interest is modified by the presence of a beam at another frequency. The

susceptibility modification of EIT is accomplished through interference between different

excitation/decay channels that end in the same state.

EIT was first observed by Steve Harris’s group in strontium vapor [81] and then lead

vapor later that year [82]. These experiments built upon the theoretical work done by

Harris’s group [83, 84], as well as others’ work relating to population trapping [85] and

distortion of autoionizing states [86, 87]. Separately, Tewari and Agarwal [88] theoret-

ically studied EIT as a way to enhance nonlinear generation by controlling dispersion

and absorption. EIT has since been demonstrated in many systems including rare-earth

doped crystals such as Pr:YSO [89, 90] and even Eu:YSO [91] (these experiments used

electric dipole transitions).

EIT has several interesting phenomenon associated with it. As we will see in the

next section, the EIT susceptibility curve contains very steep slopes. These slopes can

result in extremely low group velocities. One the first of these slow light experiments

was even able to reduce the group velocity to 17 m/s [92]. These experiments were

then pushed even further to produce "stopped" light [93] in which the incident probe

pulse is mapped onto a linear combination of two of the EIT states by slowly turning

off the coupling beam. The probe beam can be retrieved by slowly turning the coupling

beam back on. Stopped light has also been observed in rare-earth doped crystals [94]
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Figure 6.10: On the left we have a two level system interacting with a probe beam with

an intensity characterized by a Rabi frequency of Ωp and detuned from the excited state

of ωp. We can modify the susceptibility of the system at the frequency of the probe beam

by adding in another state, denoted by |g2〉 on the right, and another beam, called the

coupling beam and denoted by Ωc on the right. ∆ωp is the same single photon detuning

as on the left and δω is the two- photon Raman detuning. Both ground states on the

right have nonzero dipole moments with the excited state. However, transitions between

the two ground states are forbidden.

and has been explored for use in quantum memory applications [95]. In addition to

stopped light, there is also stationary light. Stationary light occurs when there are two

counterpropagating coupling beams that set up a standing wave pattern in the system.

This standing wave pattern sets up a periodic structure in the material, resulting in

photonic bandgaps that can be controlled with the coupling beams. If one of these

bandgaps is turned on while the probe pulse is in the system, then the probe pulse

can become trapped. Stationary light was first explored theoretically in [96] and then

observed in rubidium atoms shortly after [97]. These stationary light pulses can be made

to interact with each other [98], and these interactions can be set up in such a way that

they can be modeled as Dirac spinors [99, 100, 101].
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6.2.2 Theory of EIT

We saw in the two level case that when the beam is turned on the population begins

sloshing between the ground and excited states; the system undergoes Rabi flopping.

Over time, the decay processes cause the sloshing to settle down and the system ap-

proaches a steady state with most population in the ground state and a little bit in the

excited state.

Our analysis of two level systems ignored interactions with any other energy levels.

However, if we include a third state and a second beam, shown in Fig. 6.10, something

interesting happens. The second beam, called the coupling beam, will cause sloshing

between the excited state and the third state. This sloshing between the excited state and

third state will interfere with the probe beam induced sloshing between the excited state

and the first state, resulting in a modification of the response of the system to the probe

beam.

The Hamiltonian for the free three level system is

Ĥ f ree =


h̄ωg1 0 0

0 h̄ωg2 0

0 0 h̄(ωe − iΓe/2)

 (6.1)

where Γe is the decay rate from the excited state out of the system. The two ground states

do not decay, which is a good approximation for the hyperfine levels of our europium

ions. The interactions between the two beams and the three level system are given by

Ĥint = −h̄


0 0 Bpµg1e cos(ωpt)

0 0 Bcµg2e cos(ωct)

Bpµeg1 cos(ωpt) Bcµeg2 cos(ωct) 0

 (6.2)

where Bp, ωp, Bc, and ωc are the magnetic field amplitudes and frequency of the probe
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and coupling beam, respectively, and µij is the magnetic dipole moment between states

i and j. Note that the dipole moment between the two ground states is zero, which is

also (approximately) the case in europium ions. When we combine Eqs. 6.1 and 6.2,

transform to the interaction picture, and make the rotating wave approximation, we get

ĤI,RWA = −h̄


0 0 Ωp

2

0 δω Ωc
2

Ωp
2

Ωc
2 ∆ωp − iΓe/2

 (6.3)

where ∆ωp = (ωe −ωg2)−ωp is the single photon detuning between g1 and the excited

state, and δω = (ω2 − ω1) − (ωp − ωc) is the two photon detuning between the two

ground states.

Something interesting happens with this Hamiltonian when the beams are resonant.

If we take ∆ωp = δω = 0, the eigenvalues and eigenvectors, in the free atom basis, of

Eq. 6.3 are

λ0 = 0,


Ωc
Ω
−Ωp

Ω

0

 ; λ± = − iΓ
2
± Ω̃,

1√
2


Ωp
λ±

Ωc
λ±

1

 (6.4)

where Ω =
√

Ω2
p + Ω2

c and Ω̃ =
√
−Γ2/4 + Ω2. In the rotating wave approximation,

one of the eigenvalues is zero. The state with this eigenvalue is called the dark state

because transitions to the excited state do not occur, rendering a system in this state

transparent. This state is a superposition of the two free atom ground states with a set

phase relation between them. The particular amplitudes and phases in the dark state are

what allow the sloshing discussed above to produce total destructive interference.

We can find the steady state susceptibility using the same method that we used for
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the two level system. We first plug Eq. 6.3 into

ρ̇ = − i
h̄
[H, ρ]. (6.5)

After carrying out the matrix multiplication and setting the time derivatives to zero, we

make the assumption that the probe beam is weak, or, in other words, the population

remains in |g2〉 (ρg1g1 ≈ 1, ρ + g1g2 ≈ ρee ≈ 0). See Appendix C for more details. Solving

for ρg1e gives us

ρg1e =
2δωΩp

4δω∆ωp − 2iδωΓe −Ω2
c

(6.6)

In a real system, there will be dephasing between the two ground states. This de-

phasing will end up making the destructive interference between the sloshing from the

two ground states less efficient and reduce the darkness of the dark state. The dark state

will still be dark, but dephasing makes it impossible to completely eliminate absorption.

We can incorporate dephasing, and close the system while we’re at it, by using

ρ̇ = − i
h̄
[Ĥ, ρ] + ∑

i
ΓiD[ci]ρ (6.7)

instead of Eq. 6.5, where the sum is over all the decay channels. D is known as the

Lindblad superoperator, an operator that acts on operators, and can be expressed as

D[c]ρ = cρc† − 1
2
{c†c, ρ} (6.8)

The c’s are operators that can represent dephasing or are operators that cause population

that has decayed to be added back into the system (Appendix C). If we make the same

assumptions about EIT that we did before (ρg1g1 ≈ 1, ρg2g2 ≈ ρee ≈ 0) and follow the

steps in Appendix C to solve for the steady state solution for ρg1e. The result is very
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similar to Eq. 6.6 except δω is replaced with δω − iγg2/2, where γg2 is the dephasing

rate of |g2〉, and Γe is replaced by γe = Γeg1 + Γeg2 + Γe, where Γei is the decay rate from

|e〉 to ground state i and Γe is the dephasing rate of |e〉. Putting all this together gives us

the coherence between |g1〉 and |e〉

ρg1e =
2δωΩp − iγg2Ωp

4δω∆ωp − γg2γe −Ω2
c − 2i(γg2∆ωp + δωγe)

. (6.9)

Figure 6.11: Examples of the EIT susceptibility with no ground state dephasing and dif-

ferent coupling beam Rabi frequencies (left) and the same coupling beam Rabi frequency

but different ground state dephasing (right). The dashed lines are the imaginary parts

of the susceptibility and the solid lines are the real parts. The dip in the imaginary part

at zero detuning corresponds to an increase in transparency. The steep slope in the real

part is what causes slow light.

Fig. 6.11 shows the significant ways in which the EIT susceptibility depends on the

coupling beam Rabi frequency and the dephasing rates. The left two plots show that the

main effect of the coupling beam is to split the two level susceptibility into two peaks.

Analogies have been drawn between this splitting and the splitting that occurs when two

classical oscillators are coupled together. This analogy has been used to come up with



101

examples of "classical EIT" [102]. There are two important take aways from the effects

of the coupling beam intensity. One is that, at zero detuning, the imaginary part of the

susceptibility goes to zero, which results in the absorption of the probe beam going to

zero as well. Although in our discussion of the dark state we set both ∆ωp and δω to

zero, it can be shown that zero absorption only requires that the two photon detuning be

zero. Typically, EIT experiments are carried out by fixing the frequency of the coupling

beam and sweeping the probe frequency. This sets a fixed relationship between ∆ωp and

δω which is typically tuned so that the single and two photon detunings are zero at the

same probe frequency.

The other important take away from the left side of Fig. 6.11 is the steepness of

the real part of the susceptibility at zero detuning. As we discussed earlier, the group

velocity of a wave packet depends on the slope of the index of refraction. The steepness

of the real part of the susceptibility and the lack of absorption around this steep section

has been used for coherent slow light experiments. The slowness of the light can be

controlled by changing the coupling beam intensity. As the intensity of the coupling

beam decreases, the steepness of the real part of the susceptibility increases and the

slower the packet will move. Of course, as the coupling beam intensity decreases, the

transmission window decreases as well, limiting the possible bandwidth of the slow

moving packet. However, reducing the couping intensity until it reaches zero has been

used to "stop" light. In these stopped light experiments, the state of the probe beam is

mapped onto |g2〉 as the coupling beam is slowly turned off (see Eq. 6.4 as Ωc → 0). The

information can be retrieved by turning the coupling beam back on. Slow/stopped light

has been incorporated into quantum memory protocols.

The important take away from the right side of Fig. 6.11 is that dephasing between

the two ground states reduces the darkness of the dark state. The more dephasing there

is the more absorption of the probe beam will be observed. In any real system, there

will be dephasing between the ground states, including Eu:YSO, and this will be one of
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Figure 6.12: The turn-on time of the probe AOM (left) and the background noise on

the probe signal due to the coupling beam (right). The background measurement was

done by recording the probe signal with the coupling beam on and off. These measure-

ments were taken at room temperature to avoid any influence from the sharp cryogenic

transitions.

the limitations of our EIT experiments.

Adiabatic Turn On

The typical starting point for an EIT experiment has the population of the system in |g1〉.

To successfully observe EIT, one must get from the state |g1〉 to the dark state. If the two

beams are suddenly turned on, the components of |g1〉 that overlaps with the bright

states (the two states in Eq. 6.4 that are not the dark state) will undergo Rabi flopping

until these states decay into the dark state and EIT is observed.

A quicker, more efficient way to get to the dark state starts with turning on the cou-

pling beam by itself. By finding the eigenvectors and eigenvalues of Eq. 6.3 under these

conditions, we would find that one of the eigenvectors is the same as |g1〉. This is known

as coherent population trapping. By slowly turning on the probe beam, the system will

adiabatically transition from the coherently trapped state to the EIT dark state. This

adiabatic process is aided by the fact that the probe beam is weak. Despite having to
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turn on the probe beam slowly, this process is typically faster than waiting several decay

times for the Rabi oscillations of the bright states to die away. See Appendix C for more

details about adiabatic turn on.

6.2.3 EIT Experiment

5D1

7F0

527 nm

76 MHz

148 MHz

± 1
2

± 3
2

± 5
2

± 1
2

± 3
2

± 5
2

114 MHz

183 MHz

probe
coupling

repumper

Figure 6.13: The energy levels and beams that we used for our EIT experiment. The

ordering of the upper hyperfine splittings is not known.

The setup in Fig. 6.8 was also used for our EIT experiment and the energy levels involved

can be seen in Fig. 6.13. In order to successfully observe EIT, the rise time of the probe

AOM cannot exceed the limit required for adiabatic turn on. The rise time of the AOM

is shown on the left side of Fig. 6.12. There we see that the probe beam’s steepest rise

takes place over about 75 ns when the power rises by about 60 % of the maximum value.

The power in the probe beam was about 30 µW and that of the coupling beam was 23

mW. Taking these values and using C.28, we see that the probe beam rise time is 4-5
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Ion class selection Optical pumping EITState initialization

Figure 6.14: The pulse sequence used for EIT. The x axis is not to scale; Nilsson’s proce-

dure, which constitutes the first three sections (ion class selection, optical pumping and

state initialization) take on the order of 1 minute, and the EIT section takes on the order

of 100 µs. This pulse sequence was repeated many times to obtain an average signal.

times larger than the lower limit, allowing us to observe EIT.

The right side of Fig. 6.12 shows the background due to the coupling beam on the

probe signal. The probe signal is small to begin with, and on top of that we are looking

for a relatively small change in that signal. In order to be able to observe this small

change, we need to make sure that the coupling beam background on the probe signal is

small enough so that it doesn’t was out the EIT signal. In Fig. 6.12, we see that the probe

signal with the coupling beam on (red data) is right on top of the probe signal with the

coupling beam off (blue data). In addition, the difference between these two signals is

approximately constant across the frequency range we are looking at.

For EIT, with the ions selected and initialized to the | ± 1/2〉 hyperfine state, we turn
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Figure 6.15: Normalized probe transmission with the coupling laser beam (shown as

data points) and without it (shown as a dashed line). With the coupling laser, there

is splitting of the line (Autler-Townes splitting), with slight but observable increase in

the transmission at line center. The solid red line is a fit to the data points using the

well-known EIT-lineshape. The bottom plot is the calculated real part of the magnetic

susceptibility under the conditions of EIT.
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on both probe and coupling laser pulses. To allow adiabatic preparation of the dark state,

we turn on the coupling laser beam before the probe, and then measure the transmission

of a weak probe laser pulse through the crystal. Similar to the transmission experiment

of Fig. 6.9, we use a 40-µs-long probe laser pulse, and chirp the probe frequency during

the pulse so that the whole frequency response is obtained in a single experiment. The

full pulse sequence for a single EIT shot is shown in Fig. 6.14.

Fig. 6.15 shows normalized probe transmission with and without the coupling laser

beam. As expected, with the coupling laser, there is a splitting of the line (Autler-

Townes splitting), with slight but observable increase in the transmission at line center.

The solid red-line is a fit to the data points using the well-known EIT-lineshape for the

susceptibility [103]:

χM =
Nµ2

ε0h̄
δω + iγ

(δω + iγ + iΓ/2)(δω + iγ)− |ΩC|2
. (6.10)

Here, we have taken the coupling laser beam to be exactly resonant between the relevant

levels. Γ is the population decay rate of the excited level, and γ is the dephasing rate

between the two ground hyperfine states. The quantity δω is the frequency detuning

of the probe laser beam from the excited level (which is also the two photon Raman

detuning since the coupling laser is assumed to be resonant), and ΩC is the Rabi fre-

quency of the coupling laser beam. The best fit gives a coupling laser Rabi frequency of

ΩC = 2π × 350 kHz and a Raman dephasing rate of γ = 2π × 150 kHz. The physical

mechanism for this large Raman dephasing rate is currently an open question.

The bottom plot in Fig. 6.15 is the calculated change in the real part of the magnetic

susceptibility due to EIT. We can modify the real part of χM by ≈ 10−6. These experi-

ments extend previous EIT and quantum coherence experiments that were observed in

rare-earth doped crystals to interactions with the magnetic field of light.

The data of Fig. 6.15 is obtained using a coupling laser power of 23 mW (beam
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intensity of 723 W/cm2 at the focus). Using the inferred value of the coupling laser Rabi

frequency from the fit (ΩC = 2π × 350 kHz), we calculate the magnetic-dipole matrix

element for the specific hyperfine transition to be µ = (0.10± 0.01)µB (µB is the Bohr

magneton). This is reasonably consistent with the hyperfine-averaged matrix element

measurements of our previous Rabi flopping experiments [70].

6.3 Slow Light

Using the selected ensemble, we have been able to observe linear group velocity re-

duction. Fig. 6.16(a) shows the propagation of a 1/4 µs-long probe laser pulse whose

frequency is detuned by 0.8 MHz from the peak of the narrow absorption resonance. In

addition to significant reshaping of the pulse, we observe a group delay of 127 ns while

propagating through the crystal. This group delay corresponds to a group velocity of

vg = 7.8× 104 m/s, which is 3800 times slower than the speed of light in free space.

Note that this group delay is not that which is typically associated with EIT. Rather, it

is due to the large dispersion of the two level linear transition. We also performed this

slow-light experiment with 5 µs pulses. Fig. 6.16(b) shows that there is much less distor-

tion to the longer pulse. This and the longer delay time are likely due to the narrower

bandwidth of the longer pulse. To our knowledge, this is the first observation of group

velocity reduction using interaction with the magnetic field of light.
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Figure 6.16: (a) The propagation of a 1/4 µs-long probe laser pulse whose frequency is

detuned by 0.8 MHz from the narrow absorption resonance. We observe a group delay

of 127 ns while propagating through the crystal, corresponding to a group velocity of

vg = 7.8× 104 m/s≈ c/3800.

(b) The propagation of a 5 µs-long probe pulse with the same detuning. The longer

pulse shows little distortion, however we consistantly observed longer delays for the

longer pulses. This is likely due to the narrower bandwidth of the longer pulses.
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Chapter 7

Future Work

7.1 Host Crystal

We have shown that Eu:YSO has a magnetic response at optical frequencies and we have

shown that this response can be manipulated. The next steps will then be to determine

what sort of electric response can be added in in order to implement our externally

driven scheme. This scheme laid out in [34, 69] acquires its electric response from the

nonlinear electric response of the host crystal.

Because large magnetic responses are so rare at optical frequencies, the focus at the

beginning of this project was on the magnetic response. This lead us to Eu:YSO, which

was expected to have a large magnetic response and had previous work to build on.

Unfortunately, YSO is not conducive to the second harmonic generation required for

the externally driven scheme. For second harmonic generation to be possible, the crystal

must have a nonzero second order susceptibility ξ(2). Similar to selection rules for atomic

transitions, we can use the symmetry of the crystal to determine which elements of the

second order susceptibility tensor will be zero or nonzero. If the crystal’s symmetry

group contains an inversion center, i.e. if the crystal is centrosymmetric, then all the

elements of the second order susceptibility tensor will be zero and there will be no
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second harmonic generation [104]. Unfortunately, YSO is centrosymmetric.

Our first idea to work around the lack of second order response was to produce what

are known as electric field induced second harmonics, or EFISH. This method creates an

effective second order response out of the third order response. By using a DC field as

one of the three fields in the third order response, the inversion symmetry of the crystal

is broken. This effective second order response can be written as

χ
(2)
e f f (2ω) = χ(3)(2ω; ω, ω, 0)EDC. (7.1)

This response would then generate second harmonic light with an intensity of

I =
4(χ(2)

e f f )
2(2ω)2 I2

f undL2

n1n2n3ε0c3 (7.2)

where L is the length of the crystal, I f und is the intensity of the fundamental beam with

frequency ω, and ni are the principle indices of refraction for the anisotropic crystal

[104]. Unfortunately, with a typical third order response and a reasonable amount of

power in the fundamental beam (even the 10 W output of our fiber amplifier), EFISH

does not result in a practical level of polarization.

Another, more promising approach would be to simply use another host crystal. We

have seen that, despite having all crystal field parameters nonzero, YSO’s crystal field

perturbation on the europium dopant does not ruin the magnetic nature of the 7F0 →5D1

transition. Since the crystal field parameters of different crystals are typically of the same

order, we could reasonably expect that just about any other host crystal would preserve

the magnetic nature of our transition of interest. This opens up the possibility of using

a different host crystal with an inversion center.

Another benefit of switching to another host crystal is the possibility of switching

to what is known as a stoichiometric crystal. Although rare-earth doped crystals have

very small inhomogeneous broadenings when compared to other solids, the fact that the
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inhomogeneous line is much broader than the homogeneous line results in a substantial

reduction in the effective density of dopant ions. owever, it has been demonstrated that

using rare earths in these stoichiometric crystals can result in inhomogeneous linewidths

as narrow as 25 MHz [105]. Thus, if our laser beam were to address all ions within

1 MHz of line center, then a stoichiometric crystal would allow us to address a sub-

stantially higher density of ions than a standard doped crystal, assuming the total ion

concentrations are the same.

7.2 Eu

In order to refine our measurements and better plan out future experiments, it will be

useful to have a better understanding of europium’s hyperfine structure in YSO. One

way to accomplish this is through a method known as Raman-heterodyne spectroscopy

[106, 63].In Raman-heterodyne spectroscopy, the hole burning laser beam is accompanied

by a variable frequency RF field. The frequency of the RF field is swept over the inho-

mogeneous linewidth. At specific frequencies corresponding to the hyperfine splittings

of the ground or excited states, the RF and optical beams will be tuned to a two-photon

resonance and Raman scattering will occur. The Raman generated optical light is then

detected on a high-speed detector along with the incident optical light, and the beam

frequency between the two can be used to indicate Raman resonance. Such a technique

can be used to identify the ordering of the upper state hyperfine splitting. It would also

provide us a way to probe the hyperfine structure in a way that would allow us to study

the spurious peak shown in Fig. 6.9.

In addition to identifying the order of the upper state splittings Raman-heterodyne

spectroscopy can be used to measure other properties of the hyperfine states. Longdell
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Figure 7.1: The energy level diagram and fields of the chirality scheme.

[106] models the static hyperfine interactions as

H = ~B ·M ·~I +~IQ~I (7.3)

where ~B is an external magnetic field, ~I is the nuclear spin vector, M is an effective

Zeeman tensor, and Q is an effective quadrupole tensor. By adding Helmholtz coils to

our experiment and measuring the Raman-heterodyne spectrum as the magnitude and

direction of the magnetic field are varied, we can determine all the parameters of M and

Q as well as their orientation. This information can then be used to find the calculate the

mixing of the eigenstates of the nuclear magnetic moment operator as well as transition

amplitudes between ground and excited hyperfine states.



113

7.3 Tb

Another future direction for the project could be to investigate the feasibility of imple-

menting the chirality scheme in a terbium doped crystal. According to Cowan’s code,

the7F6 →5F5 transition in Tb has a larger magnetic dipole reduced matrix element than

the 7F0 →5D1 transition in Eu. In addition, the 4 f 7 5d1 configuration of Tb is closer in

energy to the 4 f 8 configuration than the 4 f 5 5d1 configuration in Eu is to the 4 f 6. If we

are able to use this transition to produce a negative index of refraction, it would be the

shortest wavelength, 282 nm, at which a negative index was observed by a fairly large

margin.

At the core of the chirality scheme is the idea of coupling together the electric and

magnetic responses, altering the polarization and magnetization:

P = ε0χEE +
ξEB

cµ0
B (7.4)

M =
ξBE

cµ0
E +

χM

µ0
B (7.5)

where the ξ are the magneto-electric cross-coupling coefficients. A system with this sort

of cross-coupling will have an index of refraction

n =

√
εµ− (ξEB + ξBE)2

4
+

i
2
(ξEB − ξBE). (7.6)

See Dan Sikes’s thesis for a detailed derivation [37]. By coherently adjusting the χ’s

and the ξ’s, we can obtain a negative index of refraction with a much weaker magnetic

response than we would need with no cross-coupling [38, 39].

The response of the chirality scheme can be expressed in terms of the following four
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paramters [35, 36]

αEE = 2h̄ap +
h̄|b1|2|EC1|2
δω1 + iγ1

+
h̄|b1|2|EC1|2(

δω2 − iγ2 − |Ω2m|2
4(δωB−iγm)

) (7.7)

αBB =
|µgm|2

h̄(δωB − iγm)
+

|µgm|2

4h̄(δωB − iγm)2
(

δω2 − |Ω2m|2
4(δωB−iγm)

− iγ2

) |Ω2m|2 (7.8)

αEB =
b2µ∗gm

(δωB − iγm)
(

δω2 − iγ2 − |Ω2m|2
4(δωB−iγm)

)Ω2mEC2 (7.9)

αBE =
b∗2µgm

(δωB − iγm)
(

δω2 − iγ2 − |Ω2m|2
4(δωB−iγm)

)Ω∗2mE∗C2. (7.10)

These parameters can be combined along with

κ = 1− N
1

3ε0
αEE − N

µ0

3
αBB − N2 µ

9ε0
(αEBαBE − αEEαBB) (7.11)

to give the susceptibilities and cross-coupling coefficients

χE = N
1

κε0

(
αEE +

[
N

µ0

3
(αEBαBE − αEEαBB)

])
(7.12a)

χM = N
µ0

κ

(
αBB +

[
N

1
3ε0

(αEBαBE − αEEαBB)

])
(7.12b)

ξEB = N
µ0c
κ

αEB (7.12c)

ξBE = N
µ0c
κ

αBE (7.12d)

where κ and the terms in square brackets are the local field corrections.

The detuning terms δω in the α parameters include AC Stark shifts induced by the
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intense beams Ec1 and Ec2. It is assumed that the beams can be adjusted such that the

Raman Stark shifts can be compensated for and so that δωB = δω2 = −δω1.

The linewidths, represented by the γ’s, also contain effects from the intense Raman

beams. They are each broadened by a factor of

=
[

C|E|2
2

]
(7.13)

where C is the Raman coupling coefficient, represented by ap, b1, and b2 in the α param-

eters, and is given by

C =
1

2h̄2 ∑
e

dged∗e f

ωge −ωp − iΓe
. (7.14)

The sum in Eq. 7.14 is over all the excited states involved in the Raman transition. In

the case of terbium, this sum would be over the states of the excited configuration. ωge

is the frequency of the electric dipole transition to the excited configuration, ωp is the

frequency of the probe beam, Γe is the unbroadened linewidth of the excited state, dge is

the dipole moment between the ground and excited state, and de f is the dipole moment

between the excited state and the final state, which might be |g〉, |1〉, or |2〉. All of the

information needed to compute Eq. 7.14, except for the probe frequency, is outputted by

Cowan’s code.

7.3.1 Implementation in Tb

The lowest energy levels of Tb3+ are shown in Fig. 7.2. On the left are all the energy

levels below 100000 cm −1 above the ground state. The excited configuration is shown in

red. This Figure shows that, although most of the excited configuration states are very

far detuned from the ground state, there are a few outliers that are relatively low energy

when compared to Eu3+. On the right are the lowest few energy levels of the ground
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Figure 7.2: The lowest levels of the free terbium ion calculated with Cowan’s code.Energy

levels below 100000 cm−1 for the free terbium ion calculated with Cowan’s code. The

4 f 8 configuration states are black and the 4 f 75d1 configuration states are shown in red.

configuration. The states we are interested in are the 7F6 and 5F5 states.

Implementation of the chirality scheme in Tb is shown in Fig. 7.3. The magnetic

transition would be between the 7F6 →5F5 transition with a wavelength of 282 nm. Based

on the output of Cowan’s code (not including any crystal field mixing), the magnetic

dipole moment is µ = −0.09µB. The highly detuned electronic states that will be used

as the upper state in the Raman transitions, corresponding to state |e〉 in Fig. 7.1, are the

states of the 4 f 75d1 configuration. The relevant Raman coefficients are assumed to be

the same and are C = 3.6× 10−6 + 6.0× 10−12i, also based on calculations from Cowan’s

code. The lower states of the Raman transition, states |1〉 and |2〉 in Fig. 7.1, would be

hyperfine states of the 7F6 state.
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Figure 7.3: Our chirality scheme from Fig. 7.1 implemented in terbium ions, Tb+3. The

states of the 4 f 75d1 configuration take the place of |e〉, states |1〉 and |2〉 are hyperfine

states of the 7F6 state, and the 7F6 →5F5 at 282 nm takes the place of the magnetic

transition. Image taken from [37].

In order to run a realistic simulation, we must include an inhomogeneous broaden-

ing, as was done in [35, 36]. However, the dipole moments and Raman coefficients used

in those references are larger than those of terbium and allow for lower ionic densities

and broader inhomogeneous linewidths. Unfortunately, for rare-earth doped crystals,

in order to get an inhomogeneous linewidth small enough to implement the chirality

scheme, we would need to use very low densities [107, 108, 109]. However, rare-earth

ions in what are called stoichiometric crystals are known to have very narrow inhomo-

geneous broadenings, on the order of 25 MHz, at very high densities, around 4× 1027

m−3 [105, 110].

For the simulations presented here, we use the parameters mentioned above obtained
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from Cowan’s code, along with an inhomogeneous linewidth of 25 MHz and a terbium

density of 4× 1027 m−3. The linewidth of the upper Raman state was set to 322 MHz

(also from Cowan’s code). There is also an inhomogeneous broadening associated with

the hyperfine states that must be taken into account. These broadenings don’t have

much of an impact on our previous work because they are typically much smaller than

the optical inhomogeneous linewidth [111, 112, 113]. However, for our chirality scheme

simulations, we set the hyperfine, or Raman, inhomogeneous broadening to 50 kHz. Our

beam intensities are IC1 = 11.175 MW/cm2, IC2 = 18 MW/cm2, and Ω2m = 2π × 2.5

MHz.

An example index versus frequency sweep using these parameters can be seen in Fig.

7.4. There we see that the scheme produces a narrow transmission window (imaginary

part is near zero) around a region where the index of refraction dips below zero. Al-

though the index does not reach -1 in the transmission window, it is exciting that we can

get a negative index at all. So called near-zero index materials such as this have gotten

a lot of attention recently due to their interesting properties [114, 115] and applications

[116].

For our spectral hole burning and EIT experiments, we were able to make use of just

a small part of Eu:YSO’s inhomogeneous linewidth, effectively reducing the linewidth

of our system. Such a narrowing comes with a trade off though because only a small

fraction of the europium ions were in the distilled peak we used for our experiments.

Would such a trade off be worth it in our chirality scheme?

A potential answer to this question lies in Fig. 7.5. The two plots in the figure use

only a fraction of the inhomogeneous linewidth, as well as a corresponding fraction of

the ion density in the crystal. For example, if we are only using a 5 MHz inhomogeneous

linewidth, we would run the simulation with only one fifth of of the ions. Although this

simulates an inhomogeneous line with a square profile, it should still give us an idea of

what effects ion-class distillation will have on the chirality scheme.
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Figure 7.4: Index of refraction frequency sweep in Tb+3 in a stoichiometric crystal. The

parameters used to make this plot were taken from Cowan’s code and from typical

values for stoichiometric crystals. See text for details.

The parameters used for the two plots were the same However, the left plot shows

the real and imaginary part of the index of refraction when the real part is at a minimum

and the right plot shows the real and imaginary parts when absorption is at a minimum.

We see that we can, in fact, achieve an index of negative on. However, this comes at

the cost of high absorption. On the other hand, if we focus on where absorption is

low, we can still achieve a negative index suitable for near-zero index material applica-

tions. Based on these plots, it seems that the increased density has a greater benefit than

decreased linewidth. We can compare these plots with the plot in Fig. 7.6 where we

have not made any density adjustments. There we see, as we would expect, that if only

the inhomogeneous linewidth is decreased, then a more negative index of refraction is

achievable.

Although these results show that it might be possible to produce a negative index of

refraction with low absorption using terbium ions, there are some important points to
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Figure 7.5: The index of refraction versus inhomogeneous broadening with the density

adjusted to account for the narrower linewidth. On the left is the real and imaginary

part of the index of refraction at the point where the real part is most negative. On the

right, we have the real and imaginary parts for when absorption is at a minimum.

keep in mind. One is that we did not include crystal field mixing effects in the magnetic

dipole moment. This will likely reduce the magnetic dipole moment, just like it did with

europium. The effects of the crystal are also likely to broaden the optical transition’s

homogeneous linewidth. However, with a judicious choice of crystal, these effects could

be minimized. Going forward, we will need to further study stoichiometric crystals in

order to select a suitable crystal and to better understand the effects of the crystal on the

spectroscopic properties on terbium. It would also be interesting to include higher order

effects in the calculations done in [36]. Since the wavelength becomes elongated when

the |n| < 1, it is easier to achieve proper phase matching for these effects, which could

have an impact on the final result. Implementing these techniques will also require

improvements to our laser system in order to produce a narrower laser linewidth in

order to eliminate excess sources of noise and dephasing.
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Figure 7.6: The minimum index of refraction versus the inhomogeneous broadening

with no adjustments made to the density (all points in the plot were run with an ion

density of 4× 1027 m−3.)

7.4 Conclusion

Through the work presented in this thesis, we have made significant strides towards

producing an atomic metamaterial. One of the main challenges in producing such a

metamaterial is finding an atomic system that has a strong magnetic response at optical

frequencies. We have identified such a transition and measured its magnetic dipole mo-

ment via Rabi oscillations. In addition, we have acquired a better understanding of the

mixing mechanisms that a host crystal imparts on its dopants. This understanding will

be important going forward as we explore using other dopants and host crystals. We

have also demonstrated manipulation of the magnetic susceptibility of our crystal in a

linear way, via spectral hole burning, and in a nonlinear, coherent way via electromag-

netically induced transparency. Such manipulations are important for chirality schemes

that seek to enhance the magnetic response of a system through coherent coupling to



122

the electric response.

Over the past 20 years there has been an explosion in interest in negative index ma-

terials and materials with strong optical magnetic interactions. This explosion has been

driven by metamaterials such as the split-ring resonator, and many of the exotic appli-

cations predicted by theory have been realized via these traditional metamaterials. The

scale at which these metamaterials operate has also been pushed lower and lower over

the past couple of decades, allowing for operation at shorter and shorter wavelengths.

However, there are limitations to the shortest scale at which a traditional metamaterial

can operate. These limitations are both technological, such as our ability to manufacture

such small structures, and fundamental, as the frequency of operation begins to butt up

against the plasma frequency of the underlying material that the structure is made out

of. Our atomic metamaterial approaches offer the potential to overcome these limitations

by exploiting the naturally small length scales present in crystal structures.

Despite the challenges we face going forward, atomic metamaterials are an exciting

extension to the broader metamaterial community. In addition to extending established

metamaterial applications to shorter wavelengths and smaller length scales, atomic meta-

materials also offer an almost completely unexplored field in atomic and optical physics:

interactions and interference between electric and magnetic optical transitions. Our

group has already started exploring using this sort of interference to investigate things

such as electromagnetic duality [117] and axion detection [118]. Even Heinrich Hertz

couldn’t see all the applications of the radio waves he discovered. I’m excited to see

where the future takes this project.
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Appendix A

Spectral Hole Burning Details

Spectral hole burning can be tricky due to the large number of spectral features from

both isotopes and the fact that we are using three beams, each of which will produce its

own set of spectral features. In this appendix are sets of tables and diagrams which I

found useful in sorting out why we were seeing peaks when we didn’t expect to.

The class and transition labels in the tables are assigned as follows. The states are

labeled with state one being the lowest ground state and state six being the highest

excited state. The class label is determined by the two states connected by the beam

doing the spectral hole burning. As discussed in the main text, there are nine such

classes for each beam. The transition label refers to a particular transition within an ion

class and is also labeled by the two states connected by whatever beam is used to observe

the spectral holes.

The beam labels are the same labels used in Chapter 6. The tables in Secs. A.1 and

A.2 assume that the burning beam, which could be the probe, coupling, or repump

beams, is swept over a frequency range and produces spectral holes and antiholes with

the same width that the burning beam was swept over. Then, the frequency ranges of

these features are compared to the frequency ranges that the other two beams are being

swept over in order to see where they overlap.
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A.1 Troughs from Expected Upper State Splitting Order

A.1.1 Probe

Closest Beam Class Transition Frequency Range

C 2→6 3→5 -78.5 to -66.5

R 2→6 3→4 -149.5 to -137.5

C 1→5 3→5 -92.8 to 80.8

R 1→5 3→4 -163.8 to -151.8

Table A.1: The antitroughs produced by the regions of the probe sweep that are not

addressed by the repump.

If we compare the ranges in Tab. A.1 with the detuning of the beams we see that there

is indeed some overlap.

Probe BeamCoupling BeamRepump Beam

Class 2-6
3-53-4

Class 1-5
3-53-4

Figure A.1: Diagram showing the relation between the position (in frequency space) of

the sweeping beams and the antitroughs created to sweeping ± 6 MHz around the probe

frequency. The diagram is to scale with distance corresponding to frequency with left

is negative, or decreasing frequency and right is positive, or increasing frequency. The

first row shows the beam frequency with a sweep width of 12 MHz. The other rows

are organized as follows. The right column specifies the ion class. Only ion classes

with multiple antitroughs near the frequencies of the coupling and repump beams are

considered. The rest of the columns in each row display the frequency range of the

antitroughs. The transition that corresponds to that antitrough is indicated above each

line. These are all from the 151 isotope.
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A.1.2 Coupling

Closest Beam Class Transition Frequency Range

R1 1→4 2→4 -63.3 to -51.3

R2 1→4 3→4 -92.8 to -80.8

R1 1→5 2→5 -63.3 to -51.3

R2 1→5 3→5 -92.8 to -80.8

R1 1→6 2→6 -63.3 to -51.3

R2 1→6 3→6 -92.8 to -80.8

R1 2→6 3→5 -78.5 to -66.5

R2 2→6 1→4 -62.7 to -50.7

R 3→6 2→4 -90.5 to -78.5

P 3→6 1→6 80.8 to 92.8

P1 3→5 2→6 66.5 to 78.5

P2 3→5 1→5 80.6 to 92.8

Table A.2: The antitroughs produced by the regions of the probe sweep that are not

addressed by the repump.
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Probe BeamCoupling BeamRepump Beam

Class 1-4
2-43-4

Class 1-5
2-53-5

Class 1-6
2-63-6

Class 3-6
2-4 1-6

Class 2-6
3-5 1-4

Class 3-5
2-6 1-5

Figure A.2: Diagram showing the relation between the position (in frequency space)

of the sweeping beams and the antitroughs created to sweeping ± 4 MHz around the

coupling frequency. This diagram is organized the same way as Fig. A.1 except the an-

titroughs are 8 MHz wide due to the coupling beam only sweeping ± 4 MHz around the

coupling frequency. The reason for this smaller sweep can be understood by examining

the bottom class in the diagram, class 3-5. If the two antitroughs were 12 MHz wide

then they would both overlap with the sweeping probe beam (also 8 MHz). This would

prevent proper ion-class distillation. These are all from the 151 isotope.
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A.1.3 Repump

Closest Beam Class Transition Frequency Range

P1 3→4 2→6 137.5 to 149.5

P2 3→4 1→5 151.8 to 163.8

C 3→4 1→4 80.8 to 92.8

C1 3→5 1→5 80.8 to 92.8

C2 3→5 2→6 66.5 to 78.5

C1 2→4 3→6 78.5 to 90.5

C2 2→4 1→4 51.3 to 63.5

Table A.3: The antitroughs produced by the regions of the probe sweep that are not

addressed by the repump.

Probe BeamCoupling BeamRepump Beam

Class 3-5
1-52-6

Class 3-4
2-6 1-51-4

Class 2-4
3-61-4

Figure A.3: Diagram showing the relation between the position (in frequency space)

of the sweeping beams and the antitroughs created to sweeping ± 3 MHz around the

repump frequency. This diagram is organized the same way as Fig. A.1 except the an-

titroughs are 8 MHz wide due to the repump beam only sweeping ± 3 MHz around the

coupling frequency. The reason for this smaller sweep can be understood by examining

the middle class in the diagram, class 3-4. If the two antitroughs were 12 MHz wide

then they would both overlap with the sweeping probe beam (also 6 MHz). This would

prevent proper ion-class distillation. These are all from the 151 isotope.
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A.2 Troughs from Inverted Upper State Splitting Order

Because the ordering of the upper state splittings is not known, I have recreated the

tables and figures from Sec. A.1 with the two excited splittings flipped.

A.2.1 Probe

Closest Beam Class Transition Frequency Range

C 1→6 3→6 -92.8 to 80.8

R 1→6 3→5 -163.8 to -151.8

Table A.4: The antitroughs produced by the regions of the probe sweep that are not

addressed by the repump.

Probe BeamCoupling BeamRepump Beam

Class 1-6
3-63-5

Figure A.4: Diagram showing the relation between the position (in frequency space) of

the sweeping beams and the antitroughs created to sweeping ± 6 MHz around the probe

frequency. The diagram is to scale with distance corresponding to frequency with left

is negative, or decreasing frequency and right is positive, or increasing frequency. The

first row shows the beam frequency with a sweep width of 12 MHz. The other rows

are organized as follows. The right column specifies the ion class. Only ion classes

with multiple antitroughs near the frequencies of the coupling and repump beams are

considered. The rest of the columns in each row display the frequency range of the

antitroughs. The transition that corresponds to that antitrough is indicated above each

line. These are all from the 151 isotope.
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A.2.2 Coupling

Closest Beam Class Transition Frequency Range

R 3→6 2→4 -90.5 to -78.5

P 3→6 1→6 80.8 to 92.8

Table A.5: The antitroughs produced by the regions of the probe sweep that are not

addressed by the repump.

Probe BeamCoupling BeamRepump Beam

Class 3-6
2-4 1-6

Figure A.5: Diagram showing the relation between the position (in frequency space)

of the sweeping beams and the antitroughs created to sweeping ± 4 MHz around the

coupling frequency. This diagram is organized the same way as Fig. A.1 except the an-

titroughs are 8 MHz wide due to the coupling beam only sweeping ± 4 MHz around the

coupling frequency. The reason for this smaller sweep can be understood by examining

the bottom class in the diagram, class 3-5. If the two antitroughs were 12 MHz wide

then they would both overlap with the sweeping probe beam (also 8 MHz). This would

prevent proper ion-class distillation. These are all from the 151 isotope.
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A.2.3 Repump

Closest Beam Class Transition Frequency Range

P 3→4 2→6 137.5 to 149.5

C1 3→4 2→5 66.5 to 78.5

C2 3→4 1→4 80.8 to 92.8

P 3→5 1→6 151.8 to 163.8

C 3→5 1→5 80.8 to 92.8

Table A.6: The antitroughs produced by the regions of the probe sweep that are not

addressed by the repump.

Probe BeamCoupling BeamRepump Beam

Class 3-5
1-5 1-6

Class 3-4
2-62-5 1-4

Figure A.6: Diagram showing the relation between the position (in frequency space)

of the sweeping beams and the antitroughs created to sweeping ± 3 MHz around the

repump frequency. This diagram is organized the same way as Fig. A.1 except the an-

titroughs are 8 MHz wide due to the repump beam only sweeping ± 3 MHz around the

coupling frequency. The reason for this smaller sweep can be understood by examining

the middle class in the diagram, class 3-4. If the two antitroughs were 12 MHz wide

then they would both overlap with the sweeping probe beam (also 6 MHz). This would

prevent proper ion-class distillation. These are all from the 151 isotope.

A.3 All SHB Features
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Hole Frequencies

Eu 151 Eu 153

Frequency (MHz) Transition Class

-114.0 1→4 1→6

-114.0 3→4 3→6

-114.0 2→4 2→6

-71.0 3→4 3→5

-71.0 2→4 2→5

-71.0 1→4 1→5

-43.0 1→5 1→6

-43.0 3→5 3→6

-43.0 2→5 2→6

0 1→6 1→6

0 3→5 3→5

0 3→4 3→4

0 2→5 2→5

0 3→6 3→6

0 1→4 1→4

0 2→4 2→4

0 1→5 1→5

0 2→6 2→6

43.0 3→6 3→5

43.0 2→6 2→5

43.0 1→6 1→5

71.0 3→5 3→4

71.0 1→5 1→4

71.0 2→5 2→4

114.0 3→6 3→4

114.0 1→6 1→4

114.0 2→6 2→4

Frequency (MHz) Transition Class

-297.0 1→4 1→6

-297.0 2→4 2→6

-297.0 3→4 3→6

-183.0 1→4 1→5

-183.0 2→4 2→5

-183.0 3→4 3→5

-114.0 1→5 1→6

-114.0 2→5 2→6

-114.0 3→5 3→6

0 1→4 1→4

0 1→5 1→5

0 1→6 1→6

0 2→4 2→4

0 2→5 2→5

0 2→6 2→6

0 3→4 3→4

0 3→5 3→5

0 3→6 3→6

114.0 1→6 1→5

114.0 2→6 2→5

114.0 3→6 3→5

183.0 1→5 1→4

183.0 2→5 2→4

183.0 3→5 3→4

297.0 1→6 1→4

297.0 2→6 2→4

297.0 3→6 3→4
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Negative Antihole Frequencies

Eu 151 Eu 153

Frequency (MHz) Transition Class

-200.8 3→4 1→6

-171.3 2→4 1→6

-157.8 3→4 1→5

-143.5 3→4 2→6

-129.8 3→5 1→6

-128.3 2→4 1→5

-100.5 3→4 2→5

-100.3 2→5 1→6

-86.8 3→4 1→4

-86.8 3→5 1→5

-86.8 3→6 1→6

-84.5 2→4 3→6

-72.5 3→5 2→6

-57.3 2→4 1→4

-57.3 2→5 1→5

-57.3 2→6 1→6

-56.7 1→4 2→6

-43.8 3→6 1→5

-41.5 2→4 3→5

-29.5 3→4 2→4

-29.5 3→5 2→5

-29.5 3→6 2→6

-27.2 1→4 3→6

-15.8 3→5 1→4

-14.3 2→6 1→5

-13.7 1→4 2→5

-13.5 2→5 3→6

Frequency (MHz) Transition Class

-521.5 3→4 1→6

-445.1 2→4 1→6

-407.5 3→4 1→5

-373.4 3→4 2→6

-338.5 3→5 1→6

-331.1 2→4 1→5

-262.1 2→5 1→6

-259.4 3→4 2→5

-224.5 3→4 1→4

-224.5 3→5 1→5

-224.5 3→6 1→6

-220.6 2→4 3→6

-190.4 3→5 2→6

-148.9 1→4 2→6

-148.1 2→4 1→4

-148.1 2→5 1→5

-148.1 2→6 1→6

-110.5 3→6 1→5

-106.6 2→4 3→5

-76.4 3→4 2→4

-76.4 3→5 2→5

-76.4 3→6 2→6

-72.5 1→4 3→6

-41.5 3→5 1→4

-37.6 2→5 3→6

-34.9 1→4 2→5

-34.1 2→6 1→5
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Positive Antihole Frequencies

Eu 151 Eu 153

Frequency (MHz) Transition Class

13.5 3→6 2→5

13.7 2→5 1→4

14.3 1→5 2→6

15.8 1→4 3→5

27.2 3→6 1→4

29.5 2→4 3→4

29.5 2→5 3→5

29.5 2→6 3→6

41.5 3→5 2→4

43.8 1→5 3→6

56.7 2→6 1→4

57.3 1→4 2→4

57.3 1→5 2→5

57.3 1→6 2→6

72.5 2→6 3→5

84.5 3→6 2→4

86.8 1→4 3→4

86.8 1→5 3→5

86.8 1→6 3→6

100.3 1→6 2→5

100.5 2→5 3→4

128.3 1→5 2→4

129.8 1→6 3→5

143.5 2→6 3→4

157.8 1→5 3→4

171.3 1→6 2→4

200.8 1→6 3→4

Frequency (MHz) Transition Class

34.1 1→5 2→6

34.9 2→5 1→4

37.6 3→6 2→5

41.5 1→4 3→5

72.5 3→6 1→4

76.4 2→4 3→4

76.4 2→5 3→5

76.4 2→6 3→6

106.6 3→5 2→4

110.5 1→5 3→6

148.1 1→4 2→4

148.1 1→5 2→5

148.1 1→6 2→6

148.9 2→6 1→4

190.4 2→6 3→5

220.6 3→6 2→4

224.5 1→4 3→4

224.5 1→5 3→5

224.5 1→6 3→6

259.4 2→5 3→4

262.1 1→6 2→5

331.1 1→5 2→4

338.5 1→6 3→5

373.4 2→6 3→4

407.5 1→5 3→4

445.1 1→6 2→4

521.5 1→6 3→4



144

Appendix B

EuYSO Info

Here is a collection of data for Eu:YSO from various sources that would likely be useful

to have in one spot for future students working on this project.
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B.1 Eu:YSO Transitions

Transition Site 1 ν (cm−1) Site 1 λ (nm) Site 2 ν (cm−1) Site 2 λ (nm)

|7F0〉 → |7F1〉 203 49261.084 224 44642.857

|7F0〉 → |7F1〉 418 23923.445 409 24449.878

|7F0〉 → |7F1〉 506 19762.846 493 20283.976

|7F0〉 → |5D0〉 17240 580.046 17235 580.215

|7F0〉 → |5D1〉 18951 527.677 18955 527.565

|7F0〉 → |5D1〉 18994 526.482 18997 526.399

|7F0〉 → |5D1〉 19021 525.735 19016 525.873

|7F0〉 → |5D2〉 21384 467.639 21409 467.093

|7F0〉 → |5D2〉 21395 467.399 21424 466.766

|7F0〉 → |5D2〉 21414 466.984 21445 466.309

|7F0〉 → |5D2〉 21519 464.706 21494 465.246

|7F0〉 → |5D2〉 21537 464.317 21519 464.706

Table B.1: Transitions from the ground state according to [62].
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Transition Site 1 ν (cm−1) Site 1 λ (nm) Site 2 ν (cm−1) Site 2 λ (nm)

|5D1〉 → |7F0〉 18951 527.677 18955 527.565

|5D1〉 → |7F1〉 18748 533.39 18731 533.874

|5D1〉 → |7F1〉 18533 539.578 18546 539.2

|5D1〉 → |7F1〉 18445 542.152 18462 541.653

|5D1〉 → |5D0〉 1711 5844.535 1720 5813.953

|5D1〉 → |5D1〉 43 232558.14 42 238095.238

|5D1〉 → |5D1〉 70 142857.143 61 163934.426

|5D1〉 → |5D2〉 2433 4110.152 2454 4074.98

|5D1〉 → |5D2〉 2444 4091.653 2469 4050.223

|5D1〉 → |5D2〉 2463 4060.089 2490 4016.064

|5D1〉 → |5D2〉 2568 3894.081 2539 3938.558

|5D1〉 → |5D2〉 2586 3866.976 2564 3900.156

Table B.2: Transitions from |5D1〉 according to [62].
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B.2 Free Ion Energies

From Cowan’s code.

Level ν (cm−1)
7F0 0
7F1 374
7F2 1036
7F3 1888
7F4 2866
7F5 3921
7F6 5022

5D0 17374
5D1 18945
5D2 21508
5D3 24456
5D4 27747

3P1 37040

5K6 37573
5K7 38809
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B.3 Free Ion States [1]

B.3.1 The 7F Manifold

7F0 =0.968|7F0〉+ 0.0016|5D0〉+ 0.1659|5D′0〉 − 0.1815|5D′′0 〉

7F1 =0.9742|7F1〉 − 0.0027|5P1〉+ 0.0052|5D1〉+ 0.1472|5D′1〉 − 0.1645|5D′′1 〉+ 0.0263|5F1〉

+ 0.0162|5F′1〉

7F2 =0.9819|7F2〉 − 0.0025|5G2〉+ 0.0005|5S2〉 − 0.0147|5G′2〉 − 0.0035|5P2〉+ 0.0172|5G′′2 〉

+ 0.0108|5D2〉+ 0.1161|5D′2〉 − 0.1353|5D′′2 〉+ 0.0452|5F2〉+ 0.0289|5F′2〉

7F3 =0.9897|7F3〉 − 0.0327|5G3〉 − 0.0327|5G′3〉 − 0.0036|5P3〉+ 0.0309|5G′′3 〉+ 0.0180|5D3〉

+ 0.0219|5H3〉+ 0.0863|5D′3〉+ 0.0020|5H′3〉 − 0.0953|5D′′3 〉+ 0.0659|5F3〉+ 0.0499|5F′3〉

7F4 =0.9897|7F4〉+ 0.0126|5D4〉+ 0.0428|5D′4〉 − 0.0594|5D′′4 〉+ 0.0751|5F4〉+ 0.0435|5F′4〉

− 0.0028|5G4〉 − 0.0057|5G′4〉+ 0.0591|5G′′4 〉+ 0.0039|5H4〉

+ 0.0055|5H′4〉 − 0.0004|5 I4〉 − 0.0002|5 I′4〉

7F5 =0.9880|7F5〉+ 0.0723|5F5〉+ 0.0392|5F′5〉 − 0.0405|5G5〉 − 0.0847|5G′5〉+ 0.0886|5G′′5 〉

+ 0.0075|5H5〉+ 0.0096|5H′5〉 − 0.0010|5 I5〉 − 0.0005|5 I′5〉+ 0.0001|5K5〉

7F6 =0.9825|7F6〉 − 0.0676|5G5〉 − 0.1201|5G′6〉+ 0.1228|5G′′6 〉+ 0.0094|5H6〉+ 0.0106|5H′6〉

− 0.0014|5 I6〉 − 0.0006|5 I′6〉 − 0.0014|5K6〉 − 0.0001|5L6〉

(B.1)
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B.3.2 The 5D Manifold

5D0 =− 0.2381|7F0〉 − 0.1969|5D0〉+ 0.6893|5D′0〉 − 0.5390|5D′′0 〉

5D1 =− 0.2096|7F0〉+ 0.0012|5P1〉 − 0.2066|5D1〉+ 0.7162|5D′1〉 − 0.5561|5D′′1 〉 − 0.0536|5F1〉

− 0.0373|5F′1〉

5D2 =− 0.1624|7F2〉 − 0.0155|5G2〉+ 0.0037|5S2〉+ 0.0014|5G′2〉 − 0.0054|5P2〉+ 0.0038|5G′′2 〉

− 0.2104|5D2〉+ 0.7456|5D′2〉 − 0.5742|5D′′2 〉 − 0.0888|5F2〉 − 0.0724|5F′2〉

5D3 =− 0.1085|7F3〉 − 0.0437|5G3〉 − 0.0252|5G′3〉 − 0.0094|5P3〉+ 0.0196|5G′′3 〉 − 0.2036|5D3〉

+ 0.0146|5H3〉+ 0.7509|5D′3〉+ 0.0017|5H′3〉 − 0.5826|5D′′3 〉 − 0.1330|5F3〉 − 0.0881|5F′3〉

5D4 =− 0.0401|7F4〉+ 0.0107|5G4〉+ 0.0656|5G′4〉 − 0.0682|5G′′4 〉 − 0.1754|5D4〉 − 0.0544|5H4〉

+ 0.7419|5D′4〉 − 0.0542|5H′4〉 − 0.5783|5D′′4 〉0.0191|5 I4〉 − 0.1716|5F4〉+ 0.0052|5 I′4〉

− 0.1016|5F′4〉

(B.2)
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B.4 General Properties of Some Rare Earths (and Y and Si)

Isotope

Nuclear
Magnetic
Moment
(µN)

Nuclear
Quadrupole
Moment
(fm2)

I Abundance
(%)

151
63 Eu 3.47 90.3 5/2 47.8
153
63 Eu 1.53 241.2 5/2 52.2
141
59 Pr 4.28 -5.89 5/2 100
167
68 Er -0.56 356.5 7/2 22.3
143
60 Nd -1.065 -63 7/2 12.2
145
60 Nd -0.656 -33 7/2 8.3

Table B.3: Some properties of the isotopes of rare earths that are commonly used as

crystal dopants [67]. Note that some of these elements have unstable isotopes or isotopes

with zero nuclear quadrupole moment. These isotopes are not listed in the above table.

Isotope

Nuclear
Magnetic
Moment
(µN)

Nuclear
Quadrupole
Moment
(fm2)

I Abundance
(%)

89
39Y -0.137 - 1/2 100
29
14Si -0.555 - 1/2 4.7

Table B.4: Some nuclear properties of the constituents of YSO [67]. Although oxygen has

a stable isotope with a nonzero nuclear magnetic moment, its abundance is 0.038 %.

B.5 YSO

The chemical unit of YSO is Y2SiO5. Within each unit cell there are 4 chemical units

resulting in 8 Y’s. These 8 Y’s occupy two inequivalent sites in each unit cell, 4 Y’s in

each.
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The dopant ions replace Y. At 0.1% doping in YSO results in an average spacing of

dopant ions of 4.75 nm (the ion density is 9.35x1024 m−3).

B.6 153
63 Eu: Site 1

All information about site 1 is for the 7F0 →5D0 transition, which is a forced electric

dipole transition due to the crystal field.

Dipole Moment Oscillator Strength Wavelength

5x10−33 C m[64] 1.3x10−8 [59] 579.88 nm [119]

Optical T1 Optical T2 Optical Inhomogeneous Linewidth

2 ms [119] 0.477 ms [73] 8.6 Ghz [73]

Hyperfine T1 Hyperfine T2 Hyperfine Inhomogeneous Linewidth

>20 days [59] - -

90 MHz

119 MHz

1/2

3/2

5/2

7F0

260 MHz

194 MHz

5/2

3/2

1/2

5D0

Figure B.1: 153Eu site 1 hyperfine splittings for the 7F0 and 5D0 states.

The excited splittings can be found in [119, 64] and are known [64]. The ground state

splittings can be found in [62, 64].

B.7 153
63 Eu: Site 2

B.7.1 7F0 →5D1 Transition

This transition is a magnetic dipole transition.
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Dipole Moment Oscillator Strength Wavelength

0.063 µB [70] 6x10−8 [61] 527.5 nm [70, 61]

Optical T1 Optical T2 Optical Inhomogeneous Linewidth (4.5 K, 0.1% doping)

33 - 42 µs [70, 61] 56 µs [61] 1.6 Ghz [70]

Hyperfine T1 Hyperfine T2 Hyperfine Inhomogeneous Linewidth

>20 days [59] - -

76 MHz

148 MHz

1/2

3/2

5/2

7F0

183 MHz

114 MHz

5/2

3/2

1/2

5D1

Figure B.2: 153Eu site 2 hyperfine splittings for the 7F0 and 5D1 states.

The excited state splittings can be found in [61], and the ground state splittings can

be found in [62]. The ordering of the upper transitions is not known. However, I have

ordered them in analogy to the site 1 5D0 states.

B.7.2 7F0 →5D0 Transition

This transition is a forced electric dipole transition.

Dipole Moment Oscillator Strength Wavelength

5x10−33 C m[64] 1.3-3x10−8 [59, 64] 580.05 nm [119, 73]

Optical T1 Optical T2 Optical Inhomogeneous Linewidth

1.7 ms [119] 0.822 - 2.6 ms [73] 5.6 Ghz [73]

Hyperfine T1 Hyperfine T2 Hyperfine Inhomogeneous Linewidth

>20 days [59] - -
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76 MHz

148 MHz

1/2

3/2

5/2

7F0

274 MHz

160 MHz

5/2

3/2

1/2

5D0

Figure B.3: 153Eu site 2 hyperfine splittings for the 7F0 and 5D0 states.

The excited state splittings can be found in [119], and the ground state splittings can

be found in [62]. The ordering of the upper transitions is not known. However, I have

ordered them in analogy to the site 1 5D0 states.

B.8 151
63 Eu: Site 1

Dipole Moment Oscillator Strength Wavelength

- - 580.05 nm -

Optical T1 Optical T2 Optical Inhomogeneous Linewidth

- - -

Transition Hyperfine T1 Hyperfine T2 Hyperfine Inhomogeneous Linewidth

1/2↔ 3/2 >20 days [59] - 21 kHz [113]

3/2↔ 5/2 >20 days [59] - 38 kHz [113]

These are for the ground (7F0) hyperfine states. The T1 times are actually for site 2, but

I’ve assumed that they will be about the same for the site 1 transitions.

34.5 MHz

46.2 MHz

1/2

3/2

5/2

7F0

102 MHz

75 MHz

5/2

3/2

1/2

5D0

Figure B.4: 151Eu site 1 hyperfine splittings for the 7F0 and 5D0 states.
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The excited state splittings can be found in [113, 119, 63]. The ordering of the upper

states seems to be quite debatable. The 1/2 to 3/2 transition is 75 MHz and the 3/2

to 5/2 trasition is 102 MHz in [119, 63]. The frequencies and transitions are flipped in

[113]. I went with the ordering shown here mainly due to having a majority vote and

agreement between [119] and [64] about one of the 153 sites. It is interesting to note that

[63] reports the wrong wavelength for the transition. They report the Pr:YSO transition

wavelength (605.7 nm).

The ground state splittings can be found in [113, 63, 62].

B.9 151
63 Eu: Site 2

B.9.1 7F0 →5D0 Transition

29.5 MHz

57.3 MHz

1/2

3/2

5/2

7F0

108 MHz

63 MHz

5/2

3/2

1/2

5D0

Figure B.5: 151Eu site 2 hyperfine splittings for the 7F0 and 5D0 states.

The excited state splittings can be found in [119, 78], and the ground state splittings can

be found in [78, 62]. The ordering of the upper transitions is not known.

All optical properties (optical decay times, dipole moment...) are the same as for 153.

The change in isotope only affects the hyperfine properties.

B.9.2 7F0 →5D1 Transition

The only new information for this transition on this isotope that hasn’t been mentioned

in the 153 sections (optical properties) or the 5D0 transition section (ground state split-

ting) is the hyperfine splittings of the 5D1 state.
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43 MHz

71 MHz

5/2

3/2

1/2

5D1

Figure B.6: 151Eu site 2 hyperfine splittings for the 5D1 state.

Again, the order of the upper states is not known. However, we have reason to

believe that the ordering is that shown. This ordering has been infered by the excess

population present after ion-class distillation. It seems more plossible that this ordering

could produce that extra population.

B.10 141
60 Pr: Site 1

The transition typically used in Pr:YSO is the 3H4 →1D2 transition. Although I refer to

this site as site 1 , as does the literature, I’m not sure if it is the same site 1 as the Eu site

1.

Dipole Moment Oscillator Strength Wavelength

1.9x10−32 C m[120] 10−7 [120] 605.7 - 605.98 nm [90, 89, 112]

Optical T1 Optical T2 Optical Inhomogeneous Linewidth

164 µs [89, 95] 111 µs [89, 95] 4 Ghz [89]

Transition Hyperfine T1 Hyperfine T2 Hyperfine Inhomogeneous Linewidth

1/2↔ 3/2 100 s [112] 500 µs [95, 90] 30-50 kHz [112, 111]

3/2↔ 5/2 100 s [112] 500 µs [95, 90] 70-75 kHz [112, 111]
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10.2 MHz

17.3 MHz

1/2

3/2

5/2

3H4

4.8 MHz

4.6 MHz

5/2

3/2

1/2

1D2

Figure B.7: 141Pr site 1 hyperfine splittings for the 3H4 and 1D2 states.

These splittings can be found in [111, 120, 79, 90, 89] and [106]. There seems to be

some disagreement on the ordering of the upper states. Although the 4.6 MHz transition

is always between the 1/2 and 3/2 states and the 4.8 MHz transition is always between

the 3/2 and 5/2 states, some papers have the order of the states reversed from what I’ve

shown here. The references with the order reversed are [90, 89] and [106]. The references

with the same order that I’ve shown are [111, 120] and [79]. I chose to show the ordering

that I did because that is the ordering found in more recent papers.
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Appendix C

EIT Derivations

C.1 Derivation of the EIT Susceptibility

C.1.1 With Phenomenologically added Decay

In order to transform to the rotating frame, we will transform our system with a unitary

transformation Under the unitary transformation |Ψ〉 → U|Ψ0〉, where ih̄ ∂|Ψ0〉
∂t = H0|Ψ〉,

the Hamiltonian H for |Ψ〉 can be expressed in terms of H0 as

H = UH0U† + ih̄
∂U
∂t

U† (C.1)

The derivation goes as such:

H|Ψ〉 = ih̄
∂|Ψ〉

∂t

= ih̄
(

∂U
∂t

)
|Ψ0〉+ ih̄U

∂|Ψ0〉
∂t

=

(
ih̄

∂U
∂t

+ UH0

)
|Ψ0〉

=

(
ih̄

∂U
∂t

U† + UH0U†
)
|Ψ〉
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The unitary transformation that will be used can be written as the 3x3 matrix

U =


eiωat 0 0

0 eiωbt 0

0 0 eiωdt


The terms in the transformed Hamiltonian that do not include the perturbations can

be written

U†H0U + ih̄U
∂U†

∂t
= h̄


ω1 −ωa 0 0

0 ω2 −ωb 0

0 0 ω3 −ωd − iΓ3/2


where we have added in the decay term Γ3.

In this system there are two perturbing beams incident on the atom. The probe beam

connects |1〉 and |3〉 and the control beam connects |2〉 and |3〉. All dipole moments

except for the ones between these states are zero. Thus, the perturbation can be written

as

V = −


0 0 Ep cos(ωpt)〈1|r|3〉

0 0 Ec cos(ωct)〈2|r|3〉

Ep cos(ωpt)〈3|r|1〉 Ec cos(ωct)〈3|r|2〉 0


This perturbation can be written in terms of the Rabi frequency, Ω = Eµ/h̄ where µ is

the dipole moment between the two states, and complex exponents as

V = −h̄


0 0 Ωp

2 (eiωpt + e−iωpt)

0 0 Ωc
2 (eiωct + e−iωct)

Ωp
2 (eiωpt + e−iωpt) Ωc

2 (eiωct + e−iωct) 0

 (C.2)
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The transformed perturbation part of the Hamiltonian is given by

U†VU =

− h̄

 0 0
Ωp
2 (ei((ωd−ωa)+ωp)t+ei((ωd−ωa)−ωp)t)

0 0 Ωc
2 (ei((ωd−ωb)+ωc)t+ei((ωd−ωb)−ωc)t)

Ωp
2 (ei((ωa−ωd)+ωp)t+ei((ωa−ωd)−ωp)t) Ωc

2 (ei((ωb−ωd)+ωc)t+ei((ωb−ωd)−ωc)t) 0


If we pick ωa = ω1, ωb = ω1 + ωp − ωc, and ωd = ω1 + ωp, along with using the

rotating wave approximation (high frequency components average to zero), our trans-

formed Hamiltonian parts becomes

U†H0U + ih̄U
∂U†

∂t
= h̄


0 0 0

0 δω 0

0 0 ∆ωp − iΓ3/2



U†VU = h̄


0 0 −Ωp

2

0 0 −Ωc
2

−Ωp
2 −Ωc

2 0


with δω = ω2 −ωb and ∆ωp = ω3 −ωd. Thus the full transformed Hamiltonian is

H = h̄


0 0 −Ωp

2

0 δω −Ωc
2

−Ωp
2 −Ωc

2 ∆ωp − iΓ3/2

 (C.3)

The ω’s can be interpreted as follows:

• ωa = ω1: self explanatory.

• ωb = ω1 + ωp −ωc: represents a two photon process that starts in |1〉, is excited to

a detuned |3〉, and then is de-excited to a detuned |2〉.
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• ωd = ω1 + ωp: represent a single photon process that starts in |1〉 and ends in a

detuned |3〉.

• δω = ω2 −ωb: the detuning of the two photon process from |2〉.

• ∆ωp = ω3 −ωd: the detuning of the single photon process from |3〉.

These are not the only choices we could have made for the frequencies in the unitary

matrix. For example, The unitary matrix we used to set up our Rabi flopping simulations

was chosen so that all the diagonal elements were zero [69].

Because we are ultimately looking for the coherences between states, it will be con-

venient to work with the density matrix. Since the density matrix is defined as |Ψ〉〈Ψ|,

the matrix turns into

ρ = |Ψ〉〈Ψ| = U†|Ψ0〉〈Ψ0|U = U†ρ0U


ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

 =


e−iωat 0 0

0 e−iωbt 0

0 0 e−iωdt




ρ0,11 ρ0,12 ρ0,13

ρ0,21 ρ0,22 ρ0,23

ρ0,31 ρ0,32 ρ0,33




e−iωat 0 0

0 e−iωbt 0

0 0 e−iωdt



=


ρ0,11 ρ0,12ei(ωp−ωc)t ρ0,13eiωpt

ρ0,21e−i(ωp−ωc)t ρ0,22 ρ0,23eiωct

ρ0,31e−iωpt ρ0,32e−iωct ρ0,33


(C.4)

The density matrix and the Hamiltonian with phenomenological decay term are then

put into the equation of motion

ρ̇ = − i
h̄
[H, ρ].
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After carrying out the matrix multiplication, the time derivative of the density matrix is

given by

˙ρ11 =
iΩp

2
(ρ31 − ρ13)

˙ρ12 =
iΩp

2
ρ32 −

iΩc

2
ρ13 + iδωρ12

˙ρ13 =
iΩp

2
(ρ33 − ρ11)−

iΩ
2

ρ12 − (
Γ3

2
− i∆ωp)ρ13

˙ρ21 = −
iΩp

2
ρ32 +

iΩc

2
ρ13 − iδωρ12

˙ρ22 =
iΩc

2
(ρ32 − ρ23)

˙ρ23 =
iΩc

2
(ρ33 − ρ22)−

iΩp

2
ρ21 + (i∆ωp − iδω− Γ3

2
)ρ23

˙ρ31 = −
iΩp

2
(ρ33 − ρ11) +

iΩ
2

ρ12 + (
Γ3

2
− i∆ωp)ρ13

˙ρ32 = − iΩc

2
(ρ33 − ρ22) +

iΩp

2
ρ21 − (i∆ωp − iδω− Γ3

2
)ρ23

˙ρ33 =
iΩp

2
(ρ13 − ρ31) +

iΩC

2
(ρ23 − ρ32)

(C.5)

C.1.2 Susceptibility

We can find an expression for the susceptibility from the definition of the polarization,

P = ε0χẼ = N < µ >. Thus the expression for the susceptibility is

χ =
N < µ >

ε0Ẽ
(C.6)

where N is the density of atoms, Ẽ is the complex electric field, and < µ > is the

expectation value of the dipole operator.
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Expectation Value of the Dipole Operator

In the density matrix formulation, the expectation value of an operator, such as < µ >,

is given by

< µ > = Tr(ρµ) = Tr




ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33




0 0 µ13

0 0 µ23

µ31 µ32 0




= µ31ρ13 + µ32ρ23 + µ13ρ31 + µ23ρ32

Since all the time dependence of the expectation value for the dipole operator is in the

density matrix elements (C.4), we can use the orthogonality of the complex exponentials

and the relation Ẽ ∝< µ > to eliminate all but the ρ13 and ρ31 terms.

Finding the Density Matrix Elements

We will solve for the density matrix elements in the steady state (i.e. ρ̇ = 0) assuming that

most of the population remains in |1〉, the ground state (i.e. ρ11 = 1, and ρ22 = ρ33 = 0,

a.k.a weak probe beam, a.k.a. small rabi frequency). Since all we need are the density

matrix elements ρ13 and ρ31 and since the density matrix is Hermitian, we will solve for

the element ρ13 using elements (1, 2), (1, 3), and (3, 2) from C.5. Starting with element

(1, 2) we get

0 =
iΩp

2
ρ23 −

iΩc

2
ρ13 + iδωρ12

ρ12 =
1

δω

(
Ωc

2
ρ13 −

Ωp

2
ρ32

)
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From element (3, 2) we get

0 =
iΩp

2
ρ12 + (iδω + Γ3/2− i∆ωp)ρ32

ρ32 =
iΩpρ12

2i∆ωp − 2iδω− Γ3

Putting the result for ρ32 into the equation for ρ12 gives

ρ12 =
Ωc

2δω
ρ13 −

iΩ2
pρ12

2δω(2i∆ωp − 2iδω− Γ3)
=

Ωc

2δω
ρ13

where the last equality results from the weak probe beam (Ω2
p term drops out). We can

get another expression involving ρ12 and ρ13 from element (1, 3)

0 = −
iΩp

2
− iΩc

2
ρ12 − (

Γ3

2
− i∆ωp)ρ13

ρ13 =
−i

Γ3 − 2i∆ωp
(Ωp + Ωcρ12)

Combining the last two results and rearranging gives us the final expression for ρ13

ρ13 =
2δωΩp

4δω∆ωp − 2iδωΓ3 −Ω2
c

(C.7)

Explicit Form of the Susceptibility

Referring back to the relation P = ε0χẼ = N < µ > and taking the electric field to

be Eeiωpt, we can see that the corresponding part of the polarization that responds at

this frequency is Nµ31ρ0,13eiωpt. From here on out we will drop the 0 subscript from the

density matrix elements and find that the susceptibility corresponding to ρ13 is

χ13 =
Nµ13

ε0Ep
ρ13
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The electric field amplitude can be replaced with the Rabi frequency to get

χ13 =
Nµ31

ε0

µ13

Ωph̄
ρ13 =

N|µ13|2
ε0h̄Ωp

ρ13

since µ31µ13 = µ31µ∗31 = µ∗13µ13 = |µ13|2. Substituting in Eq. C.7 gives the final form of

the susceptibility

χ13 =
2N|µ13|2

ε0h̄
δω

4∆ωpδω−Ω2
c − 2iδωΓ3

(C.8)

with real and imaginary parts

<[χ13] =
2N|µ13|2

ε0h̄
4∆ωpδω2 − δωΩ2

c

(4∆ωpδω−Ω2
c)

2 + 4δω2Γ2
3

=[χ13] =
2N|µ13|2

ε0h̄
2δω2Γ3

(4∆ωpδω−Ω2
c)

2 + 4δω2Γ2
3

A particular case of interest is when δω = ∆ωp. From their definitions (δω = ω2−ω1−

ωp + ωc and ∆ωp = ω3−ω1−ωp) we see that ω3 = ω2 + ωc, i.e. the control beam is not

detuned and is constant. Therefore, both variables depend only on ωp and its detuning.

The real and imaginary parts of the response are

<[χ13] =
2N|µ13|2

ε0h̄
4∆ω3

p − ∆ωpΩ2
c

(4∆ω2
p −Ω2

c)
2 + 4∆ω2

pΓ2
3

(C.9)

=[χ13] =
2N|µ13|2

ε0h̄
2∆ω2

pΓ3

(4∆ω2
p −Ω2

c)
2 + 4∆ω2

pΓ2
3

(C.10)

C.1.3 With Lindblad Superoperators

The system discussed so far included a phenomenological decay by changing the upper

state frequency from a real number to a complex number. This is unsatisfying for several

reasons. One is that it does not allow for a closed system. The complex frequency adds



165

exponential decay to the time evolution. Another is that real systems can have decay

from more than just the upper state. Also, there can be dephasing, which destroys

coherence but does not cause population decay. Last, it would be nice to be able to

derive the decay. A common derivation starts with the Jaynes-Cummings and the density

matrix. The system is assumed to have no memory and the Born approximation is used

with the quantum Louiville equation. Although we will not go through a derivation,

some can be found in [?, ?]. The result is known as the Lindblad form of the master

equation.

The Lindblad form of the master equation can be written as

ρ̇ = − i
h̄
[Ĥ, ρ] + ∑

i
ΓiD[ci]ρ (C.11)

where the sum is over all the decay channels. D is known as the Lindblad superoperator

and can be expressed as

D[c]ρ = cρc† − 1
2
{c†c, ρ} (C.12)

As an example, we can take one of the most general closed system forms of our three-

level system. Population can decay from the upper state and end up in either of the

ground states. There is also dephasing of states |2〉 and |3〉. Eq. C.11 can be explicitly

rewritten for this particular case as

ρ̇ = − i
h̄
[Ĥ, ρ] + Γ31D[σ13]ρ + Γ32D[σ23]ρ + γ3D[σ3]ρ + γ2D[σ2]ρ. (C.13)

Γ31 and Γ32 are the population decay rates from state |3〉 to |1〉 and |3〉 to |2〉 respectively.

γ3 and γ2 are the dephasing rates of states 3 and 2 respectively. The σij matrices are

transfer matrices fro the state j to the state i and the σk matrices give the population of
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state k. They can be written as

σ13 =


0 0 1

0 0 0

0 0 0

 ; σ23 =


0 0 0

0 0 1

0 0 0

 ; σ3 =


0 0 0

0 0 0

0 0 1

 ; σ2 =


0 0 0

0 1 0

0 0 0

 (C.14)

Each of the decoherence (dephasing and population decay) terms in Eq. C.13 can be

written in matrix form as

Γ31D[σ13]ρ = Γ31


ρ33 0 −1

2 ρ13

0 0 −1
2 ρ23

−1
2 ρ31 −1

2 ρ32 −ρ33

 ; Γ32D[σ13]ρ = Γ32


0 0 −1

2 ρ13

0 ρ33 −1
2 ρ23

−1
2 ρ31 −1

2 ρ32 −ρ33



γ3D[σ3]ρ = γ3


0 0 −1

2 ρ13

0 0 −1
2 ρ23

−1
2 ρ31 −1

2 ρ32 0

 ; γ2D[σ2]ρ = γ2


0 −1

2 ρ12 0

−1
2 ρ21 0 −1

2 ρ23

0 −1
2 ρ32 0

 .

(C.15)

These matrices can be combined into a single decoherence matrix


Γ31ρ33 −γ2

2 ρ12 −Γ31+Γ32+γ3
2 ρ13

−γ
2 ρ21 Γ32ρ33 −Γ31+Γ32+γ3+γ2

2 ρ23

−Γ31+Γ32+γ3
2 ρ31 −Γ31+Γ32+γ3+γ2

2 ρ32 −(Γ31 + Γ32)ρ33

 (C.16)

If we make the same assumptions about EIT that we did before (ρ11 = 1, ρ22 = ρ33 =

0) and add Eq. C.16 to Eq. C.5 we see that this effectively replaces each of the frequency

terms, (δω, ∆ωp, etc.) with a complex number. We then derive an expression for ρ13

following the same procedure that we used with Eq. C.16 except with Eq. C.5 added.

By doing this we get a new form of Eq. C.7 with δω replaced with δω − iγ2/2 and Γ3

replaced with Γ31 + Γ32 +γ3. Using the notation of [103] (γ21 = γ2, γ31 = Γ31 + Γ32 +γ3),
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Ωc

Ωp

Ω

θ

Figure C.1: The Rabi frequencies Ωp, Ωc, and Ω =
√

Ω2
p + Ω2

c represented as a right

triangle.

Eq. C.7 becomes

ρ13 =
2δωΩp − iγ21Ωp

4δω∆ωp − γ21γ31 −Ω2
c − 2i(γ21∆ωp + δωγ31)

. (C.17)

The susceptibility then becomes

<[χ13] =
N|µ13|2

ε0h̄
2δω(4δω∆ωp − γ21γ31 −Ω2

c) + 2γ21(γ21∆ωp + δωγ31)

(4δω∆ωp − γ21γ31 −Ω2
c)

2 + 4(γ21∆ωp + δωγ31)2

=[χ13] = −
N|µ13|2

ε0h̄
4δω(γ21∆ωp + δωγ31)− γ21(4δω∆ωp − γ21γ31 −Ω2

c)

(4δω∆ωp − γ21γ31 −Ω2
c)

2 + 4(γ21∆ωp + δωγ31)2

(C.18)

which if δω = ∆ωp, becomes

<[χ13] =
N|µ13|2

ε0h̄
8∆ω3

p + 2γ2
21∆ωp − 2Ω2

c ∆ωp

(4∆ω2
p − γ21γ31 −Ω2

c)
2 + 4∆ω2

p(γ21 + γ31)2

=[χ13] = −
N|µ13|2

ε0h̄
4γ31∆ω2

p + γ2
21γ31 + γ21Ω2

c

(4∆ω2
p − γ21γ31 −Ω2

c)
2 + 4∆ω2

p(γ21 + γ31)2

(C.19)

C.2 Adiabatic Theorem

Notice that Ω =
√

Ω2
p + Ω2

c is reminiscent of a right triangle.

For now we will ignore decay, so the eigenvectors of Eq. ?? are

|ψ0〉 =


Ωc
Ω
−Ωp

Ω

0

 =


cos θ

− sin θ

0

 ; |ψ±〉 =
1√
2


±Ωp

Ω

±Ωc
Ω

1

 =
1√
2


∓ sin θ

∓ cos θ

1

 (C.20)
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or, in terms of the free atom basis functions,

ψ0 = cos θψ1 − sin θψ2

ψ+ = −sin θ√
2

ψ1 −
cos θ√

2
ψ2 +

1√
2

ψ3

ψ− =
sin θ√

2
ψ1 +

cos θ√
2

ψ2 +
1√
2

ψ3.

(C.21)

In general, the atoms will be in a state described by

ψ(t) = A0(t)ψ0(t) + A−(t)ψ−(t) + A+(t)ψ+(t) (C.22)

where the states are time dependent because θ can be time dependent. The action of the

Hamiltonian on this state at any particualr time is to multiply each basis state by the

corresponding eigenvalue,

H(t)ψ(t) = −Ω(t)A−(t)ψ−(t) + Ω(t)A+(t)ψ+(t). (C.23)

The time derivative of the state is given by

dψ(t)
dt

=

(
Ȧ0 +

A−θ̇√
2
− A+θ̇√

2

)
ψ0 +

(
Ȧ− −

A0θ̇√
2

)
ψ− +

(
Ȧ+ +

A0θ̇√
2

)
ψ+ (C.24)

. Eqs. C.23 and C.24 are related to each other by the Schrödinger equation dψ/dt =

−iHψ. That relationship can be reexpressed in matrix form as


Ȧo

Ȧ−

Ȧ+

 =


0 − θ̇√

2
θ̇√
2

θ̇√
2

iΩ(t) 0

− θ̇√
2

0 −iΩ(t)




A0

A−

A+

 . (C.25)

As the probe beam is turned on we want the atoms to remain in the ground state.

Using Eq. C.25, we can see that the condition fr this is that the contributions to states
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ψ− and ψ+ from the off diagonal elements are small compared to the contributions from

the diagonal elements.

θ̇ << Ω(t). (C.26)

Another way to think of this is that A− or A+ are rotating through the complex plane

at a rate of Ω(t). With the off-diagonal elements present, there will be additional con-

tributions proportional to θ̇. However, if θ̇ changes slowly as compared to the time A±

takes to rotate through the complex plane (Ω(t)), then in one rotation the off-diagonal

element contributions have constant magnitude but phases relative to A± that are uni-

formly distributed between 0 and 2π. Therefore, these contributions will sum to zero.

Using θ = tan−1(Ωp/Ωc), Eq. C.26 becomes

d
dt

(
Ωp
Ωc

)
1 +

(
Ωp
Ωc

)2 << Ω(t) (C.27)

However, we have the additional conditions, at least in our case, that Ωc is a constant

and is much larger than Ωp at all times. Therefore the adiabatic condition simplifies to

dΩp

dt
<< Ω2

c . (C.28)
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Appendix D

Magnetic Dipole Verification: Standing

Waves

D.1 A Brief Introduction: What were we trying to do?

Back in late 2015 and early 2016, we were working on a Rabi flopping experiment on an

optical transition that we suspected was a magnetic-dipole transition with the intention

of characterizing the transition’s interaction with the magnetic field of our beam. We

used an intense green laser at 527 nm to induce the flopping behavior and observed the

transmission after various durations of flopping. However, it is well known that Rabi

flopping can occur due to interactions with the electric field as well. Thus, there was

still the need to conclusively verify that our transition was indeed a magnetic-dipole

transition and we weren’t seeing any electric effects. The fate of the lab was in the

balance.

D.2 How did we try to do this?

The short answer is several different ways. The long answer is:
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Figure D.1: Visualization of the beams. Each beam is described by a propagation di-

rection n̂, electric field ~E, and a magnetic field ~B. The beams are propagating in the yz

plane with the z-axis bisecting the angle between propagation directions.

D.2.1 Standing waves

Our first few attempts at identifying the nature of the transition were centered around

an interesting property of standing waves. Imagine two beams of the same frequency

that cross each other at an angle 2θ. Without loss of generality, we can put a coordinate

system in such that the beams are propagating in the yz plane and each beam’s k-vector

is an angle θ from the z-axis. See Fig. D.1.

In the figure, n̂, ~E, and ~B are the propagation direction, elecric field vector, and

magnetic field vector, respectively1. We assume that the beams have the same amplitude

and the electric fields are both pointing out of the page. The same analysis can be done

with the magnetic field pointing out of the page. In this case one would get the same

results except the electric and magnetic fields would be switched. In general, there can

1We assume right-handed waves throughout.



172

also be a phase difference between the two beams. We have for the electric fields

~E1 = E0ei(kn̂1·~r−ωt) x̂ (D.1a)

~E2 = E0ei(kn̂2·~r−ωt+φ) x̂ (D.1b)

From Fig. D.1 we see that the propagation directions can be written as

n̂1 = sin θŷ + cos θẑ (D.2a)

n̂2 = − sin θŷ + cos θẑ (D.2b)

When we add the electric fields together we get

~E1 + ~E2 = E0ei(k cos θz−ωt)(eik sin θy + e−i(k sin θy−φ))x̂

= E0ei(k cos θz−ωt)eφ/2(eik sin θy−φ/2 + e−i(k sin θy−φ/2))x̂

= 2E0ei(k cos θz−ωt+φ/2) cos(k sin θy− φ/2)x̂

(D.3)

We can find the direction of the magnetic field using Faraday’s law, n̂ × Ê = ω~B.

Note that we are only considering the direction of the fields here, not the magnitude.

The specific relation between the amplitudes of the electric and magnetic fields is not the

important part; we only need to know that the electric field amplitude is much larger

than the magnetic field amplitude. From this equation, we can see that the directions of

the magnetic fields are

B̂1 = cos θŷ− sin θẑ (D.4)

B̂2 = cos θŷ + sin θẑ (D.5)
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so the full magnetic fields are

~B1 = B0ei(kn̂1·~r−ωt)(cos θŷ− sin θẑ) (D.6a)

~B2 = B0ei(kn̂2·~r−ωt+φ)(cos θŷ + sin θẑ) (D.6b)

which when added together give

~B1 + ~B2 = 2B0ei(k cos θz−ωt+φ/2)[cos θ cos(k sin θy− φ/2)ŷ + 2i sin θ sin(k sin θy− φ/2)ẑ].

(D.7)

Taking the real parts of Eqs. D.3 and D.7 gives us the physical fields,

<[~E1 + ~E2] = ~E =2E0 cos(k cos θz−ωt + φ/2) cos(k sin θy− φ/2)x̂ (D.8)

<[~B1 + ~B2] = ~B =2B0 cos(k cos θz−ωt + φ/2) cos θ cos(k sin θy− φ/2)ŷ

+2B0 sin(k cos θz−ωt + φ/2) sin θ sin(k sin θy− φ/2)ẑ.
(D.9)

Eqs. D.8 and D.9 can be more easily understood by considering two completely

antiparallel beams (θ = π/2). Assuming φ = 0 for simplicity, the fields in this case are

~E = 2E0 cos(ωt) cos(ky)x̂ (D.10)

~B = −2B0 sin(ωt) sin(ky)ẑ (D.11)

This is a very interesting result! It shows that, when the beams are counterpropagating,

the spatial maxima of the electric and magnetic fields are π/2 out-of-phase (so are the

temporal maxima, but those will average out in the experiment). If our crystal really did

only respond to the magnetic field, we could, in principle, see a standing wave of crystal

fluorescence (orange) alternating with the green of our laser due to scattering (our eye

and cameras are more sensitive to the electric field).

The challenge with seeing the standing wave pattern of these antiparallel beams is
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that it is extremely small. In fact, it is by necessity right at the diffraction limit. However,

the size of the standing wave pattern can be increased by decreasing θ from π/2, or,

in other words, transition the beams from antiparallel to parallel. As this is done, the

counterpropagating component of the k-vector, the y component, begins to decrease

corresponding to a larger effective wavelength in the y direction. The caveat is that as θ

is decreased the magnetic field gains a component in the y direction. This component

is in phase with the electric field and grows as θ is decreased. Therefore we must strike

a balance; find a value of θ with an out-of-phase magnetic field standing wave pattern

that is large enough to image but isn’t washed out by the in-phase component of the

magnetic field.

D.2.2 What Do We Expect to See?

An important question to ask is "just how big is this standing wave going to be?" That’s

a good question Zach, let me fill you in.

The counterpropagating component of the wave vector for both the electric and mag-

netic fields is given by ky = k sin θ = 2πn sin θ/λ where n is the index of refraction of the

crystal and λ is the free space wavelength of the laser. We must keep in mind, though,

that it is the intensity we will be observing. Thus, we must square the field amplitudes

which corresponds to doubling the wavevector. This final intensity standing wave pat-

tern can be thought of as having an effective k-vector of 2π/λstanding with a length scale

of λstanding. Equating these wavevectors gives us the relation

2n sin θ

λ
=

1
λstanding

. (D.12)

Since we have an idea of how small of an object we can image, we can set this and solve
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Figure D.2: Plot of the ratio of the components of the magnetic field, By/Bz. The plot on

the left shows the relation becoming linear for large standing wave patterns and the plot

on the right is zoomed in to show to show the lower limit behavior.

Eq. D.12 for θ as a function of λstanding,

θ = arcsin

(
λ

2nλstanding

)
. (D.13)

The next thing we need to consider is the relative amplitudes of the magnetic field

components. What we want is to be able to destinguish fluorescence caused by the

magnetic field from any fluorescence that might be caused by the electric field. Because

one of the magnetic field components is in phase with the electric field, we must be

careful in attributing the source of the fluorescence. Since the beams are oscillating

much faster than the response time of our detectors, the terms cos2(k cos θz− ωt) and

sin2(k cos θz−ωt) will average out and cancel. Thus the amplitude ratios are

By

Bz
= cot θ = cot

(
arcsin

(
λ

2nλstanding

))
. (D.14)

This equation can be expanded around small values of 1/λstanding to show the limiting
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behavior of the ratio as λstanding becomes large.

cot

(
arcsin

(
λ

2nλstanding

))
≈

2nλstanding

λ
− λ

4nλstanding
+ ... (D.15)

For our values of n and λ this is equal to2

6.83λstanding −
0.073

λstanding
+ ... (D.16)

Plots of Eq. D.14 can be seen in Fig. D.2 depicting this linear behavior. Just for reference,

the expansion of θ for large λstanding is given by

θ ≈ λ

2nλstanding
+ ... =

0.146
λstanding

+ ... (D.17)

D.2.3 Standing Wave Experiment Variant 1: Crisscrossed Beams

The idea for this experiment was to try and image the standing wave pattern with the

beams almost copropagating (θ small). To see the magnetic field pattern, a long pass

filter was used to block the green light and let through the orange fluorescence. The

electric field pattern would be seen using a short pass filter that blocked the orange. In

theory, by comparing the recorded intensity patterns of the electric and magnetic field,

we would be able to see if the orange pattern lined up with the green pattern like we

expect. The imaging was done with a ccd camera.

We used an Air Force resolution target to get an idea of how small of a pattern could

be seen using a short focal length lens. Based on the resolution target, the smallest object

that could be resolved with the camera/lens combo was about 5 µm. From Eq. D.14,

this means that the ratio of the in-phase to the out-of-phase components of the magnetic

field was 34.2, which corresponds to an angle of θ = 0.029 or 1.7°. However, since we

2All lengths are in µm
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Camera
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Crystal

Lens

Figure D.3: The experimental setup. A different filter was used depending on whether

we were trying to observe the electric or magnetic fields. The camera was connected to

a computer through a BNC cable. The camera was a Watec ccd camera originally meant

for closed circuit security recording.

would actually be measuring intensities, the ratio we would expect to observe with the

camera was 34.22 = 1170. The experimental setup can be seen in Fig. D.3.

Using this setup we weres able to see standing wave patterns. In fact, the electric

field standing wave was pretty easy to see; we actually had to use ND filters to cut down

on the brightness, see Fig. D.4. The magnetic field, however, was harder to see. The

in-phase component of the magnetic field, right side of Fig. D.4, was barely visible. The

factor of 1170 reduction in intensity from the small crossing angle made it impossible

to see the out-of-phase component. Better results could have potentially been obtained

with a better camera. The Watec camera used in this setup did not allow for ISO control

(the ISO automatically adjusted). The camera we used also didn’t have any cooling

mechanism or use any other noise reduction methods. We did not try this particular

setup with the camera from the localization experiment.
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Figure D.4: Images taken with the setup in Fig. D.3. The left side of this figure is the

electric field standing wave after going through an ND filter and the right side is the

in-phase magnetic field pattern. The out-of-phase pattern could not be imaged this way.

D.2.4 Standing Wave Experiment Variant 2: A New Hope?

With the setup from the previous section looking like it wasn’t going to work, we decided

to change things up a bit. Although we couldn’t image the standing wave when θ = π/2

directly, we still might be able to distinguish the intensity maxima from the minima. The

idea was to place a very small aperture between the crystal and the lens in order to select

a small slice of the standing wave. Although we might not be able to resolve the aperture,

we know what part of the standing wave the light is coming from. The amount of light

getting through an aperture of width w is given by

∫ x+w

x
sin2(kθ)dθ =

w
2
− 1

2k
(sin(x + w) cos(x + w)− sin(x) cos(x)) (D.18)

where k is the wavevector of the standing wave pattern and x is the position of the

aperture. If this expression gives the in-phase component, the out-of-phase component

is given by

w
2
+

1
2k

(sin(x + w) cos(x + w)− sin(x) cos(x)) (D.19)
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Both of these expressions are in arbitrary units. See Fig. D.5 for more details.

We went through numerous iterations of this experiment while we smoothed out all

the issues that came up. In order to get a decent signal, there must be a balance between

having a large enough out-of-phase signal, having fine enough control over the aperture

location, and not having an aperture width that is a multiple of the standing wave scale

(Eqs. D.18 and D.19 are zero in this case), see Fig. D.5. In the last iteration we overcame

these difficulties by using a 1 µm slit glued to a piezo and set θ = 0. With θ = 0 the

out-of-phase component is maximized and using a slit instead of of a pinhole increased

the signal. Putting it on a piezo meant that we could have very fine control over the

displacement of the slit. The piezo also, at least in theory, helped us overcome another

problem. Since our standing wave was so small, even small mechanical vibrations could

throw off our measurements. The piezo would allow us to move the slit faster than

these vibratons. The presence of vibrations also required us to measure the magnetic

and electric field standing waves at the same time. We did this by using a beam splitter,

a couple of filters, and a couple of photon counters, see Fig. D.6.

Dispite our best efforts, we were not able to see the magnetic field standing wave.

The conclusion was that there were two reasons for this: the signal was too small and

there were too many vibrations caused by driving the piezo. However, we were able

to see the electric field, although just barely. This was confirmed by blocking the beam

and seeing the signal on the oscilloscope change. If we were to try this again, the best

bet would be to try a larger value of θ to increase the amplitude of the out-of-phase

component as suggested in Fig. D.5.
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Figure D.5: The expected in-phase and out-of-phase signals for different values of θ with

the same size aperture. In both plots, the out-of-phase signal is divided by the intensity

ratio. Using a small value of θ can lead to a high contrast for the in-phase signal,

however due to the large ratio of intensities, the contrast of the out-of-phase signal is

much smaller (left). At a larger angle, the out-of-phase component has higher contrast

at the expense of lower contrast for the in-phase component and a much shorter signal

period, which requires finer control of the aperture (right)
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Piezo

Photon Counter

Photon Counter

Filters

Beam Splitter

1 μm slit

Figure D.6: Experimental Setup. The actual setup included some mirrors to align the

fibers. The piezo was driven at many different frequencies. As we changed the driving

freqency, it became apparent that there was some resonance with the table, which added

to the noise in the signal. This setup was on a separate table from the table with the laser

and SHG cavity on it. This was to prevent the piezo vibrations from adding more noise

by disrupting the incoming laser.
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Appendix E

Measurement of the Index of Refraction

using the Free Spectral Range of a

Fabry-Perot Cavity

Our externally dirven scheme for negative indices calls for a second order electric re-

sponse induced in the host crystal. In order to properly induce this second order re-

sponse and produce the second harmonic, we must accurately know the indices of re-

fraction at the fundamental frequency, in this case 1055 nm. The Sellmeier coefficients for

YSO were reported in [65]. However, their measurements were only taken out to about

650 nm. Although we do not expect there to be any resonances between 650 nm and

1055 nm and could likely just use the equations from [65] (or use another host crystal),

we started looking into ways in which we could measure the index ourselves.

In this appendix, I go through a scheme I came up with to use a technique that

precisely measures the free spectral range of a Fabry-Perot cavity to measure the index

of refraction of our crystal. The introduction goes through a qualitative description of

why we need to know the indices for SHG. Then I go through an over view of Fabry-

Perot cavities, followed by a description of a technique for measuring the free spectral
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range. Last I go through a quantitative calculation to determine what sort of precision

we could expect from this method.

E.1 Introduction

In general, the index of refraction is frequency dependent. The result of this is that

frequency components of different frequencies propagate with different velocities. One

consequence of this dispersion is that a short pulse, which is composed of many fre-

quency components, will spread out in time as it propagates through the material.

The aspect of the index of refraction that draws our attention is its involvement in

second harmonic generation (SHG). As a wave with a particular frequency, which we

will refer to as the fundamental frequency, propagates through a material it produces

a polarization in that material that oscillates at the fundamental frequency. Since this

polarization wave is driven by the electromagnetic wave it will propagate with the same

velocity as the electromagnetic wave. Due to nonlinearities in the materials response the

polarization wave will also have frequency components that are twice the fundamental

frequency, a frequency which we will refer to as the second harmonic frequency. Because

it is composed of oscillating charges, the polarization wave will emit electromagnetic

waves of its own that oscillate at the same frequency as the polarization. Thus the

polarization wave will generate electromagnetic waves at the second harmonic frequency

which, due to dispersion, will propagate at a velocity different from the velocity of the

electromagnetic wave that generated the polarization in the first place. At any given

point in an isotropic medium, this discrepancy in velocities, and therefore phases, will

lead to destructive interference between the second harmonic light being generated at

that point and second harmonic light that was generated upstream sometime in the past

[104].

One can get around this destructive interference by using an anisotropic material such
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as YSO. In an anisotropic medium the index of refraction is direction and polarization

dependent. Consider a beam of light with a particular polarization, the fundamental

beam, propagating in a particular direction in an anisotropic medium. As discussed

above, this beam, facilitated by the nonlinearities of the material, will generate its sec-

ond harmonic. If this second harmonic has the same polarization as the fundamental

beam, then there will be destructive interference. However, due to the anisotropy of the

medium, a different polarization will propagate with a different velocity. If the direction

of propagation is chosen carefully, then second harmonic light generated with a polariza-

tion different from the polarization of the fundamental beam could propagate with the

same velocity as the fundamental beam therefore avoiding the destructive interference

from the previous paragraph.

In order to produce second harmonic light, one must know the index of refraction’s

dependence on direction and frequency. Measuring the index over these parameters is

the goal of this experiment.

E.2 Fabry-Perot Cavities

A Fabry-Perot cavity is basically just two mirrors facing each other. Mirrors in this

configuration will have a resonance with particualr modes of the electromagnetic field.

Often, the mirrors will be curved to tune the resonance to a particular spatial mode. The

length of the cavity selects the frequency. See Fig. E.1. We will consider a lossless cavity

with mirrors that have the same reflection and transmission coefficients. In general the

reflection and transmission coefficients of the two mirrors will not be the same, and the

cavity will not be lossless. However, the following procedure can still be used in the

general case.

A quantity that is often of interest when using a Fabry-Perot cavity is the steady state

circulating power. This quantity can be written as a function of the cavity parameters as
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Figure E.1: A Fabry-Perot cavity of length L. Due to the finite size of L, the modes

of the cavity will have discrete frequencies. The curvature of the mirrors select which

spatial modes of the electromagnetic field will be resonant with the cavity. These spatial

modes are often described using the Hermite-Gauss polynomials. See [121] for more

details. The amount of steady state circulating power inside the cavity is determined by

the reflection and transmission coefficients of the two mirrors. The field reflection and

transmission coefficients, r and t, for our example are the same for both mirrors. The

cavity is assumed to be lossless.

well as the frequency of the incident light and is used in a variety of calculations. In this

case, we are interested in calculating the amplitude and phase of the transmitted light.

The circulating field amplitude can be calculated by considering the steady state

buildup step by step as shown in Fig. E.2. We start with a beam of amplitude Ei incident

on a cavity with no field inside it. Immediately after the beam hits the first mirror, the

field just inside the mirror is tEi (Fig. E.2a). A short time later, that first light has made

one complete round trip through the cavity. The amplitude is then modified by the

reflectivities of each mirror (along with any cavity losses, which we ignore here) as well

as a phase factor for propagating through space resulting in an amplitude of tEir2e2ikL.

However, the incident beam is still on, so there is still light entering the cavity with an

amplitude of tEi. The resulting total amplitude just inside the first mirror after this first

round trip is tEi + tEir2e2ikL (Fig. E.2b). After the second round trip, the field amplitude

just inside the first mirror is tEi + tEir2e2ikL + tEi(r2e2ikL)2. We continue adding up the
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(a) (b)

(c)

Figure E.2: A Fabry-Perot cavity of length L. The field reflection and transmission coef-

ficients, r and t, are the same for both mirrors. The cavity is assumed to be lossless.

field amplitude after each successive round trip and end up with a geometric series

Ec = tEi

∞

∑
n=0

(r2e2ikL)n =
tEi

1− r2e2ikL =
tEi(1− R cos(2kL) + iR sin(2kL))

1 + R2 − 2R cos(2kL)
(E.1)

where R = r2.

Before we continue, we will introduce a convenient quantity called the free spectral

range (FSR). The FSR is the fundamental frequency of the cavity. For a Fabry-Perot cavity

it is given by the formula

νFSR =
2L
c

. (E.2)

We can use the result in Eq. E.1 to calculate the intensity transmission coefficient of

the cavity as well as the phase of the transmitted field. The expressions we get for these

quantities, in terms of the FSR, are
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Tc =
|Et|2
|Ei|2

=
|tEc|2
|Ei|2

=
T

1 + R2 − 2R cos
(

2π ν
νFSR

) ; φ = arctan

 R sin
(

2π ν
νFSR

)
1− R cos

(
2π ν

νFSR

)
 .

(E.3)

These quantities are plotted in Fig. E.3.

Figure E.3: The amplitude and phase of a beam transmitted through a Fabry-Perot rel-

ative to the incident beam. We are assuming that the there is no absorption within the

cavity and r2 + t2 = 1.

E.3 FSR Measurement

The FSR measurement technique we are discussing here was developed in the 1990’s in

the context of gravitational wave measurements [122] and metrology [123] and grew out

of techniques from surveying and geology [124, 125] and frequency locking [76, 126].

The main idea is to use the sharp phase and amplitude properties of the Fabry-
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Perot cavity in Fig. E.3 to create a beat frequency pattern that is extremely sensitive to

detuning. This is done by using a device such as an EOM to modulate the light that

is incident on the cavity. The modulation frequency is at about, but not quite the FSR,

shown in Fig. E.4. In addition the central band of the beam is slightly detuned from

resonance with the cavity. When these conditions are met, then the beam’s sidebands

will wind up with very different amplitudes and phases due to the sharp frequency

dependence of the Fabry-Perot. The result is a beat pattern between the beam’s bands

that has a very strong dependence on the EOM’s frequency.

Figure E.4: The output of an EOM (green) overlaid on the amplitude transmission func-

tion of a Fabry-Perot cavity. If the EOM’s modulation frequency is slightly off from the

FSR and the beam’s central band is slightly off resonance, then the rapid variation of the

Fabry-Perot’s transmission function will cause a beat pattern between the beam’s bands

that is highly dependent on the EOM’s frequency. On the left the EOM’s frequency is

slightly below the FSR and the center beam is red detuned from resonance. The right

hand plot has both of these features reversed.

The resulting beat pattern can be seen in Fig. E.5. The figure clearly shows a very

sharp variation of the beat pattern as the modulation frequency is changed. After zoom-

ing in three times, we see that this technique can measure the FSR to better than one
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Figure E.5: The modulation frequency dependent beat pattern in the transmitted beam.

Reproduced from [123] with permission of AIP publishing.

part in a million. This precision can be made even higher with a higher finesse and/or

beam intensity.

E.4 Experiment with YSO

The high precision this technique offers in measuring the FSR translates into a high

precision measurement of the optical path length within the cavity and thus the index

of refraction. An example of a future setup is shown in Fig. E.6. Because out crystals are

cut with its optical axes perpendicular to the surfaces, the placement of the crystal in Fig.

E.6 adds the effects of one of the principle indices of refraction to the optical path length

difference. by either using crystals of different length or changing the medium around

the crystal, we can get a precise measurement of the principle indices of refraction.

The most straightforward way to measure the index of refraction is to solve the equa-
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Figure E.6: A simplified schematic of the experimental setup

tion for the FSR for the index of refraction

νc =
c

2(Lnc + ncLc)
⇔ nc =

1
Lc

(
c

2νc
− Lnc

)
. (E.4)

Because the index is a function of Lc, Lnc, and νc the form of the uncertainty in the index

is

∆n2 =

[
−1
L2

c

(
c

2νc
− Lnc

)]2

∆L2
c +

[
−c

2Lcν2
c

]2

∆ν2
c +

[
−1
Lc

]2

∆L2
nc. (E.5)

Plugging in the values from Sec. E.4 into Eq. E.5 we get

∆n2 = (104m−2)∆L2
c + (4× 10−17)Hz−2∆ν2

c + (104m−2)∆L2
nc. (E.6)

Parameters

To get a quantitative idea of the accuracy of this method, I will use the geometric param-

eters of our ULE cavity. Since there will be a crystal in the cavity for this experiment, the

finesse should be closer to that of the SHG cavity.

• L0 = 10 cm: length of cavity with nothing in it

• Lc = 1 cm: length of the crystal

• Lnc = 9 cm: length of whatever is not the crystal (Lnotcrystal)
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• ν0 = 1.5 GHz: FSR with no crystal

• w0 = 180 µm: waist of the beam inside the cavity

• R = 20 cm: radius of curvature of the curved cavity mirror

• F ≈ 40: Finesse of the cavity. This factor is limited due to losses from the crystal

interfaces and absorption.

• ν′0 ≈ 1.5 GHz: FSR with no crystal, but the cavity is filled with gas (or liquid)

• νc ≈ 1.5 GHz: FSR with the crystal

• ν′c ≈ 1.5 GHz: FSR with the crystal and the cavity is filled with gas (or liquid)

• nc: index of refraction of the crystal

• nnc: index of refraction of whatever is not the crystal

• c: speed of light in vacuum

Measurement

The methods described in [123, 127, 122] are capable of measuring the FSR to level of

ones to tens of Hz. Even if our measurement was much worse, the coefficient of the

second term on the right of Eq. E.6 is so small that I argue we can drop it.

Both the length uncertainties will be limited by ∆Lc. This is because the total length

of the cavity, L0, can be measured very precisely by measuring the FSR with no crystal,

ν′0. Then Lnc = L0 − Lc and the uncertainty will be dominated by ∆Lc. We then get

∆nc = 141m−1∆Lc (E.7)
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Typical calipers can measure lengths to the level of 5×10−5 m. This would give

∆nc = 0.007. This doesn’t give us as many decimals as is known for KTP, but it does put

us in the ballpark of the index for YSO at 527 nm.

Improved Measurement

A measurement of νc gives the total optical length of our cavity. Therefore, we need a

way to separate out the two lengths from the index of refraction. One way to do this,

as described above, is to use calipers. However, I believe we can potentially get a much

more precise measurement by making FSR measurements of different configurations of

the cavity.

The first step would be to measure the FSR with and without the crystal in vacuum,

νc and ν′0. This would then give us

c
2ν0
− c

2νc
= L0 − (Lnc + ncLc) = (nc − 1)Lc. (E.8)

The uncertainty in L0 = c/2ν0 is

∆L0 =
c

2ν2
0

∆ν0 = 6.67× 10−11Hz−1∆ν0. (E.9)

Here we are still stuck with a combination of nc and Lc, neither of which is known

separately. However, by making two more FSR measurements, we can find Lnc and

replace Lc with L0 − Lnc. These measurements involve measuring the FSR while the

cavity is filled with a gas or liquid instead of vacuum.

For the measurement of Lnc to be precise, we must know the index of whatever is

filling the cavity that is not the crystal, nnc. A measurement of the FSR without the

crystal but with the non-vacuum, ν′0, gives us

nnc =
c

2ν′0ν0
=

ν0

ν′0
(E.10)
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with uncertainty

∆n2
nc =

(
1
ν′0

)2

∆ν2
0 +

(
ν0

ν′20

)2

∆ν′20 . (E.11)

We can estimate the uncertainty by setting ν′0 ≈ ν0 = 1.5 GHz (this slightly underesti-

mates the uncertainty)

∆nnc = 9.4× 10−10Hz−1∆ν0. (E.12)

Now all that is left is to measure Lnc. This can be done by measuring the FSR with

both the crystal and extra gass/liquid, ν′c.

ν′c =
c

2(nncLnc + ncLc)
⇔ Lnc =

1
nnc − 1

[
c

2ν′c
− c

2νc

]
. (E.13)

Lnc has an uncertainty of

∆L2
nc =

(
c

2(nnc − 1)ν′2c

)2

∆ν′2c +

(
c

2(nnc − 1)ν2
c

)2

∆ν2
c +

1
(nnc − 1)2

[
c

2ν′c
− c

2νc

]
∆n2

nc.

(E.14)

If the cavity is filled with water so that nnc = 1.33, then ν′c = νc/1.33. If we use this

assumption, set ∆ν′c = ∆νc, and factor out 1/(nnc − 1) Eq. E.14 gives us

∆Lnc =
7.3× 10−10Hz−1

nnc − 1
∆νc. (E.15)

If nnc < 1.33 than the numerator in the above equation is too large.

Now we have all the pieces to find nc which is given by Eq. E.8

nc − 1 =
1

L0 − Lnc

[
c

2ν0
− c

2νc

]
. (E.16)

The uncertainty for nc is

∆n2
c =

(
nc − 1

L0 − Lnc

)2

(∆L2
0 +∆L2

nc)+

(
1

L0 − Lnc

c
2ν2

0

)2

∆ν2
0 +

(
1

L0 − Lnc

c
2νc

)2

∆ν2
c (E.17)
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where Eq. E.16 has been used to simplify the expression. Eqs. E.9 and E.15 can be used

to simplify further

∆n2
c =

( 1
L0 − Lnc

c
2ν2

0

)2

+

(
nc − 1

L0 − Lnc
6.67× 10−11

)2
∆ν2

0 (E.18)

+

[(
1

L0 − Lnc

c
2ν2

c

)2

+

(
nc − 1

L0 − Lnc

7.3× 10−10

nnc − 1

)2]
∆ν2

c . (E.19)

If we use ν0 = νc and nc = 1.8 we get

∆n2
c = 7.3× 10−17Hz−1∆ν2

0 + 4.4× 10−17Hz−1∆ν2
c +

3.4× 10−15Hz−1

(nnc − 1)2 ∆ν2
c (E.20)

or

∆nc ≈
5.8× 10−8Hz−1

nnc − 1
∆νc (E.21)

E.4.1 Challenges

• Eq. E.21 shows that the larger nnc the more precise the measurement. If we used

air at STP, nnc = 1.0003 and ∆nc = 0.0002. The best measurements would be made

with something that would give us nnc − 1 = 0.1 to 1. This would have to be a

liquid which would make stablizing the cavity difficult.

• For Eq. E.15 to stay small we would need Eq. E.12 to stay small. This means we

would have to keep the pressure and temperature of the gas very steady.

• This would be more of a problem for liquids, but filling the cavity with a high

index fluid would change the mode matching conditions.

• The coefficient of thermal expansion for YSO is 7 × 10−6 C−1 [128]. Since the

crystal is only 0.01 m long heating from the laser probably wouldn’t too big of an

issue, but we should be wary of it.
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