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Abstract

We will study an ensemble of two-level quantum systems coupled to a common

boson bath. We find the spectrum in the large N limit of the exchange Hamiltonian

which arises from the boson bath and allows the subsystems to exchange a quanta

of energy. We study the implications of this spectrum in quantum error correction,

decoherence, and the measurement problem. Numerical studies support the analytic

approximations and are used to approximately simulate the collective system.



CONTENTS iv

Contents

1 Motivation From Quantum Error Correction 1
1.1 The Exciting Possibility of a Quantum Computer . . . . . . . . . . 1
1.2 Quantum Error Correction and the Threshold Theorem . . . . . . . 3
1.3 The Possibility of Fundamental Failure . . . . . . . . . . . . . . . . 5
1.4 Proof of the Inapplicability of the Threshold Theorem for the

exchange interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Spectrum of the Exchange Hamiltonian 10
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The Hamiltonian for Many-Spin Interactions . . . . . . . . . . . . . 11
2.3 The Moments of the Spectrum Distribution . . . . . . . . . . . . . 13

2.3.1 Triplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Pattern and Subsystem Selection, Assignment Definitions . . 15
2.3.3 Compatibility Conditions . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Pattern Definition . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.5 Subsystem Selection Definition . . . . . . . . . . . . . . . . 17
2.3.6 Subsystem Assignment Definition . . . . . . . . . . . . . . . 18
2.3.7 Identifying the Term Associated with a Triplet . . . . . . . . 18
2.3.8 Associating a Triplet with Any Term . . . . . . . . . . . . . 19
2.3.9 Back to σ(p) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.10 Extracting the N dependence of Ω(S) . . . . . . . . . . . . . 21
2.3.11 Expectation Values . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.12 Isolating and Quantifying N Dependence to Identify {St} . . 26
2.3.13 Pattern Transformations . . . . . . . . . . . . . . . . . . . . 27
2.3.14 →1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.15 →2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.16 →3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.17 →4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.18 →5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.19 →6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.20 Ω′(St) 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Evaluating σ(p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 D(St) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 A(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.3 E[

∏
F (S)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.4 The Number of Final Patterns . . . . . . . . . . . . . . . . . 37
2.5 The Non-trivial F-Condition . . . . . . . . . . . . . . . . . . . . . . 38
2.6 The Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Implications for Quantum Computing 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 N-dependent Error Rate . . . . . . . . . . . . . . . . . . . . . . . . 50



CONTENTS v

3.2.1 First Approach: Reduced Density Matrix . . . . . . . . . . . 50
3.2.2 Second Approach: The Single Qubit Hamiltonian . . . . . . 56

3.3 The Relative Error Rate . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.1 Is it even a Quantum Computer anymore? . . . . . . . . . . 67

4 Numerical Studies 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Definite Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Decoherence Simulation . . . . . . . . . . . . . . . . . . . . . . . . 72

5 System Induced Superselection 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Einselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Sinselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.1 Arbitrarily Large Systems . . . . . . . . . . . . . . . . . . . 84
5.4.2 Finite Systems . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.3 Stochastic Wavefunction Collapse . . . . . . . . . . . . . . . 88
5.4.4 Implications for Quantum Cosmology . . . . . . . . . . . . . 89

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Conclusion 92

Appendices 96

A The distributions and expectation values of various powers of the
exchange coupling constants 96
A1 Two-dimensional geometry . . . . . . . . . . . . . . . . . . . . . . . 96
A2 Three-dimensional geometry . . . . . . . . . . . . . . . . . . . . . . 97

B Pattern Decomposition Example 101

C The Threshold Theorem 106

D Source Code for the Numerical Simulations 111
D1 Definite Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
D2 Approximate Decoherence Simulations . . . . . . . . . . . . . . . . 118

E Derivation and Discussion of the Exchange Hamiltonian 128
E1 Beyond the Born-Markov Approximation . . . . . . . . . . . . . . . 133

References 136



LIST OF FIGURES vi

List of Figures
1.1 An N qubit quantum computer in (a) two and (b) three dimensional

geometry with the qubits coupled to a common bosonic bath. For
a single qubit present, the interaction with the bath causes an
independent decay rate of Γ between the qubit levels. When the
whole ensemble of qubits is present, correlated decay causes correlated
errors to build up across the whole computer. Since we are primarily
interested in the N →∞ limit, we do not impose restrictions on the
size of the sample, i.e. the spacing between the qubits may be much
larger than the radiation wavelength, d >> λa. For concreteness, we
focus on a square and a cube arrangement of atoms with regularly
spaced qubits, but the results are not sensitive to the precise shape
and arrangement structure of the array. . . . . . . . . . . . . . . . . 2

3.1 The single qubit Hamiltonian spectrum. The vertical axis is relative
number of eigenenergies at that energy, and the horizontal axis
has units of energy but with an arbitrary scaling that will depend
sensitively on many parameters. In contrast, its shape plotted above
will always be achieved for large enough N with only its overall size
determined by other parameters. Its overall size does grow with N
in an asymptotically simple way, as N1/6 in 3 dimensions and log(N)
in 2 dimensions. This means that, for any parameter values, the
spectrum becomes arbitrarily wide for arbitrarily large N . The zero
of the vertical axis is unlabled because it is immaterial, amounting
only to a shift to all energies by a constant and therefore affecting
only the overall complex phase of the wavefunction, an unphysical
parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 An example output of the Definite Model. This instance uses the
physical parameters of an atomic MOT with 900 atoms, a lifetime
of 27 ns, a transition wavelength of 780 nm and a gaussian spatial
distribution with a 1/e2 waist of 5µm. . . . . . . . . . . . . . . . . 73

4.2 A comparison between how long it takes for an off-diagonal reduced
density matrix element initialized to .5 to reach the threshold value
of 1/2e for a simulation of the full Schrödinger Equation (labelled
Full SE) and an approximate method described in the main text . . 76

A2.1 The probability density functions of the random variable U ≡ 1/(k2
ar

2
ij)

for an array of atoms in two (dashed red line) and three (solid black line)
dimensions. The functions are plotted for the case when the length of each
side is L = 1. For an arbitrary L, the horizontal axis of the plot is scaled
by 1/L2 whereas the vertical axis is scaled by L2 . . . . . . . . . . . . 99



1 MOTIVATION FROM QUANTUM ERROR CORRECTION 1

1 Motivation From Quantum Error

Correction

1.1 The Exciting Possibility of a Quantum

Computer

Quantum Computers are built out of two-level quantum systems, or qubits, instead

of classical bits. As shown in Fig. 1.1, we physically model a Quantum Computer

as N two-level atoms, each with levels |0〉 and |1〉, in a two- or three-dimensional

geometry.

They are an exciting possibility because they could potentially vastly outperform

classical computers at certain tasks which are of interest both academically and

practically [1–8]. For example, the best known quantum algorithms for simulating

any quantum system, or finding the prime factors of large integers, is far more

efficient than the best known classical algorithm for the same problem [9] [10]. The

former problem would be of interest to scientists probing quantum phenomena

which are difficult to access experimentally and theoretically, and the latter problem

would be of interest to anyone wishing to decrypt electronic communications since

most communications today are encrypted using the RSA algorithm, which relies

on the difficulty of factoring large integers.

In this context, the efficiency of an algorithm means the relationship between the

size of the input and how long the algorithm takes to complete for a typical input of

that size. In our two example applications, the input size would be the dimension

of the Hilbert space to be simulated and number of bits in the composite integer to

be factored, respectively. When comparing algorithms to decide which scales more

favorably with input size (or more briefly, which is more efficient) it is well accepted

that the comparison should be done by taking the limit of arbitrarily large inputs.

For example if the input size is characterized by the number N , and the time it
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Figure 1.1: An N qubit quantum computer in (a) two and (b) three dimensional
geometry with the qubits coupled to a common bosonic bath. For a single qubit
present, the interaction with the bath causes an independent decay rate of Γ between
the qubit levels. When the whole ensemble of qubits is present, correlated decay
causes correlated errors to build up across the whole computer. Since we are
primarily interested in the N →∞ limit, we do not impose restrictions on the size
of the sample, i.e. the spacing between the qubits may be much larger than the
radiation wavelength, d >> λa. For concreteness, we focus on a square and a cube
arrangement of atoms with regularly spaced qubits, but the results are not sensitive
to the precise shape and arrangement structure of the array.

takes an algorithm to complete goes as aN + bN2, one would simply say that the

algorithm scales as N2, which is the only important term for large N . There is no

guarantee that such an attitude will lead to the most efficient algorithm in practice

- any real implementation of the algorithm will have a finite value of N at which

the asymptotic scaling will not necessarily have taken over, especially if a >> b.

Despite this flaw, using the large N scaling for algorithms has proven meaningful,

even if no one is exactly sure why (as is demonstrated by the foundational and

still-open problem of P = NP [11]).

An even cruder classification which appears to be deeply meaningful is the

polynomial-exponential divide. An algorithm which requires an amount of time

which scales for large N as Np for some power p is considered polynomial, and when

the required time scales as eNp the algorithm is considered to be exponential. One

of the main results which inspired the field of quantum computing was that of Peter

Shor in 1994, which showed that a polynomial time factoring algorithm existed
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for a quantum computer [12, 13]. Despite decades of searching both before and

since this quantum result, no such improvement has been made upon long-known

exponential-time classical algorithms. This established the idea that computers built

from bits whose state lived in a quantum state space might be characteristically

better than their classical counterparts, at least for some problems.

1.2 Quantum Error Correction and the Threshold

Theorem

There is a complication: the classical and quantum algorithms discussed above are

ideal in the sense that they assume perfect control over the bits, with no influence

from its physical environment besides that of the person or machine implementing

the desired algorithm. However any physical implementation of an algoithm will

always have some unwanted interactions or imprecisions, even if they can be made

very small. For classical computers, error correction can be implemented in such a

way as to not affect the polynomial-exponential categorization of ideal algorithms;

if an ideal algorithm is polynomial (exponential), then implementations of that

algorithm which includes error correction can also be polynomial (exponential) [14].

This important property rests on the fact that error correction is implemented

actively during the computation, as opposed to trying to make the errors so unlikely

that not too many will occur during the length of the entire computation. If this

latter approach were used, algorithms would become increasingly inaccurate for

longer calculations. Since their scaling properties are understood for arbitrarily large

inputs and therefore arbitrarily long computations, this would call into question

the validity of such a limit and require algorithm efficiency to be compared at

specific input sizes. We are spared such an unfortunate situation because of the

ease at which active error correction can be performed classically. Although more

sophisticated techniques are used, the idea can be simply demonstrated as follows.

If the ideal algorithm requires a bit in the state 1, the real algorithm encodes the

state of this conceptual, or logical, bit in the state of, say, 10 different real bits
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all in the state 1 (and similarly encode one logical 0 in 10 physicals 0s). The bits

might randomly flip between 0 and 1 at some error rate, but if we repeatedly check

the 10 real bits with a period much smaller than the inverse error rate and find,

for example, all but one classical bits are in the 1 state, it is much more likely that

one bit flipped than that 9 of them did. Accordingly, the error correction algorithm

repairs the state by flipping the single 0 back into a 1. There is no guarantee that

the error rate can be made low enough that it is possible to perform such diagnoses

and corrections fast enough, but it can be shown that a threshold relationship

exists between the error rate and error correction rate which guarantees that, when

met, error correction can be performed such that the computation’s result remains

arbitrarily reliable for arbitrarily large N while only requiring the duration of the

algorithm to increase by a factor polynomial in input size. Crucially, this threshold

between the rate of errors and corrections is also independent of how long the

computation is or the input size.

Quantum error correction is not as simple as its classical analogue due to the

delicacy of quantum superpositions and the inability to copy a quantum state. Even

once it was determined to be possible there was doubt as to whether it would

be possible to do in a scalable way. Errors can be mitigated through correction,

but could they be mitigated in such a way that they did not compound during a

long computation, therefore ruining the desireable scaling properties of the ideal

algorithms? The Threshold Theorem [15–19] showed that it was indeed possible, so

long as the interaction Hamiltonian which describes the errors obeyed a stringent

set of assumptions. The assumptions were initially unrealistic, but it was celebrated

because it established for the first time that quantum error correction could, in

principle, be implemented in a scalable way. The Threshold Theorem has been

improved upon many times to apply it to a wider and wider class of interactions or

errors which now include many realistic error models. This has led to optimism

that scalable, fault-toleranct quantum computers are possible, which in turn led

to the ongoing expenditure of great resources in order to realize such a possibility

[20–26]. Appendix C contains more details on the Threshold Theorem
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1.3 The Possibility of Fundamental Failure

We have identified a source of error which does not conform to the assumptions of the

most general Threshold Theorem currently known to me [27]. This is the effective

interaction that arises when the qubits are all coupled to a common boson bath,

the same interaction which can give rise to the well-known but little-understood

effects of super- and sub-radiance. It is rarely the dominant form of error in the

small quantum computers being built today - however we will argue that this could

change as the number of qubits in the computer grows, and in particular that the

scaling properties of the error ruins any possible error correction scalability when

that scaling is taken arbitrarily far. We will discuss precisely how this is different

than the classical case. In this Chapter we will show why the current Threshold

Theorem does not apply to this interaction, a result which by itself is cause for only

mild concern, since the Threshold Theorem has been continuously generalized and

therefore a future version may apply to this interaction as well. In the rest of this

thesis we will examine this question by studying the interaction in greater detail,

and argue based on the results that there is no conceivable Threshold Theorem

which could apply to this interaction. This would mean no quantum computation

would be scalable in the way its classical counterpart is. This does not preclude the

possibility of quantum computers - perhaps this scaling issue only comes into play

when the number of qubits is much larger than would be needed for useful quantum

computations. We do not address the question here of for what computer size this

effect is important, in part because it depends sensitively on the specifics of the

technology and architecture used to build the quantum computer, but also because

it is much more difficult than analyzing only the scaling itself. Therefore I will

argue at least that these results imply a previously unrecognized difference between

quantum and classical computing, and possibly that errors of this sort will prevent

the dream of scalable fault-tolerant quantum computation from being realized.

There are already many reasons to suspect that this dream is too good to be true

[19, 28–30]. For example, if the entire observable universe were filled with the best
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possible classical computer (with the fundamental constraint on the amount of

information stored in a volume implied by the Bekenstein bound for black holes

[31]), it would only be able to store the state of around 400 qubits [32]. To store

the state of a 500 qubit quantum state, then, would require about a volume 2100 the

size of our observable universe, each filled with computers storing information in

the densest way possible without collapsing into a black hole. Of course quantum

physics is quite different than classical physics, and there is no reason a priori that

the universe can’t have that much information hidden in an almost classical-looking

universe, but this is no mere difference in orders of magnitude. However if quantum

computing is fundamentally impossible, new physics will be needed to explain why.

1.4 Proof of the Inapplicability of the Threshold

Theorem for the exchange interaction

The exchange interaction arises whenever a collection of qubits is coupled to a

common boson; this is always the case, although not always relevant for quantum

error correction since other types of error may be significantly more prominent.

The exchange interaction is described by sum of pairwise Hamiltonians, one for

each pair of qubits and which affects only those two qubits: Hexchange =
∑

(jk) Hjk.

One of the assumptions of the current Threshold Theorem [27] is that, for such a

pairwise interaction, for any fixed qubit j,

∑
k 6=j

| Hjk |< η (1.1)

where the inequality is supposed to hold as N →∞ for some fixed η. The value of

the threshold η depends on the specifics of the computer, including the error rate,

gate time, and the error correction code used. It is often shown to be around 10−4,

but for surface codes can be as high as 10−2 [33]. Assuming that the sum converges,

the concern is over whether or not it converges to a small enough value to meet the

threshold. So long as it converges, its value can be changed by implementing using
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better error correcting codes, improving the technology, etc. Thus the fact that

such a threshold exists implies that implementing scalable fault-tolerant quantum

computing is simply a matter of developing better error correcting codes and

technology. In contrast, the converge of this sum does not depend on any of these

specifics but only on the structure of the coupling.

The convergence of 1.1 is not an unreasonable possibility, since as N increases the

new qubits are added at the edge of the computer, and the interaction strength

between two qubits j and k (quantified by the magnitude of Hjk) decreases with

distance. In the same way that
∑∞

k=1 k
−2 = π2/6 <∞, we might hope that even as

N goes to infinity, and therefore also the number of terms in the sum
∑

k 6=j

∣∣Hjk

∣∣
goes to infinity, that it still remains finite. However just as

∑∞
k=1 k

−1 does not

converge, there may be kinds of interactions for which 1.1 does not converge even

though the strength decays with distance. Recall that this condition for scalable

fault-tolerance is sufficient but not necessary; it must be so, for it does not take into

the account the relative phases of the different interactions. The overall effect on a

single qubit would be much greater if the effects of all others added constructively

in phase, but this crude upper bound would not discern any difference if this were

the case. For large samples, where the phases of the interactions eik(|~rj−~rk|) become

random, it seems plausible that these phases might be the savior since they do not

describe constructive interference. However no one has to my knowledge proven an

inequality like 1.1 where the phases of the interactions are included - it is merely

remains a possibility.

The dipole interaction between atoms decays like r3 and is a common source of noise

for atomic qubits [34]. Even disregarding the phases, for many computer geometries

and error types, including the dipole interaction, the Threshold Theorem condition

(1.1) holds. However the effective interaction arising due to the interaction with

a common boson bath decays more slowly like r−1, and we now show that in this

case the threshold condition is not met. For a more complete discussion on this

effective interaction, and a derivation of it from the more fundamental interaction

between the atoms and the boson bath, see Appendix E.
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For a collection of N qubits coupled to a common bath, the effective interaction

Hamiltonian is H =
∑

(jk) Hjk with

Hjk = F
e−ik(|~rj−~rk|)

k | ~rj − ~rk |

(
σ+
j σ
−
k + σ−j σ

+
k

)
(1.2)

where σ+,−
j,k are the raising and lowering operators for qubits j and k, F is a coupling

constant, and ~rj,k are their spatial positions. Here we have kept only leading orders

in 1/r since the limit of large N also means the the limit of large separations (since

the spatial density of qubits is taken to be fixed). The norm of an operator, in the

sense used in the Threshold Theorem, is bounded below by the magnitude of any

of its matrix elements in any normalized basis. If this lower bound diverges, then

so does the actual sum; this will be our strategy.

The only non-zero matrix elements in Hjk in the normalized computational basis

are Fe−ik|~rj−~rk|/k
∣∣~rj − ~rk∣∣ which has magnitude F/krjk where rjk =

∣∣~rj − ~rk∣∣ for
short. Since we are only looking at whether or not this sum converges, we can

ignore the coupling constant F , and say that the sum (1.1) is bounded below by

∑
k 6=j

1/rjk (1.3)

This sum depends on the geometry of the computer - however one thing its

convergence or divergence does not depend on is the overall scale of the computer

i.e. if this sum diverges for some spatial qubit arrangement then if we move all

the qubits away from each other uniformly, it will still diverge no matter how far

we separate them; this is because if rjk → λrjk for all pairs, then the sum only

changes by a multiplicative constant,
∑

k 6=j Hjk → λ−1
∑

k 6=j Hjk. Thus we need not

worry about the spatial scale of the computer, only its shape. Quantum computer

realizations efforts are restricted to 2 and 3 spatial dimensions, so we examine only

those cases here. In simple square or box geometries in either 2 or 3 dimensions,

this sum diverges as N1/2 and N2/3, respectively, as shown in Appendix A. Thus,

regardless of the error correcting code, the technology used, and the rate of errors
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(so long as it is not zero which of course it can never be), the Threshold Theorem in

its current form cannot guarantee that scalable fault-tolerant quantum computing is

possible in the face of this error. As mentioned, this does not mean it is impossible,

only that more work must be done to ensure that it is. In order to answer the

question of whether or not this error source is scalably error correctable, in Chapter

2 we will examine this interaction in greater detail. The results of that Chapter will

lead us to the conclusion that it is definitively not error correctable in a scalable

way, as well as to several other conclusions and applications which are addressed in

the following Chapters.

The idea that the effect of a boson bath on a quantum ensemble decreases in time

as the number of subsystems grows is not new. Since the seminal paper by Dicke in

1954 ([35]), it has been known that the decay rate of an ensemble can experience

increases or decreases, known as super- and sub-radiance respectively, in a manner

that depends on the total number of subsystems. For infinitely small systems,

where all interactions are in phase, these rates are changed by up to a factor of N ,

which is an enormous change even for modest N . When the physical size of the

sample is taken into account, such that the interactions have a more complex phase

relationships, much less is known except that the effect is lessened but still present.

Although we will not specifically focus on the phenomona of super- or sub-radiance,

they show how dynamics with strong N -dependence arise in such systems, and may

be useful tools for conceptually understanding the mathematical results.
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2 The Spectrum of the Exchange

Hamiltonian

2.1 Motivation

Large collections of two-level systems are common in nature and physics labs; such

systems include ferromagnets [36], black holes [37–39], and quantum computers [1],

and spin glasses [40]. They exhibit a wide variety of behaviors which are under

study both theoretically and experimentally; these behaviors include sub- and

super-radiance [41], many-body localization [42], and the entanglement entropy area

law of low lying energy states [43]. Despite decades of study, many properties of

these systems remain mysterious. This is because they can’t be understood exactly,

at least in practice and possibly even in principle. For example, as mentioned in

Chapter 1, if the entire observable universe were filled with the best conceivable

classical computing hardware, it would only be able to store the quantum state of

spin systems with around 400 spins [32], whereas the systems under consideration

can contain millions or even ∼ 1026 spins. This difficulty is due to the exponential

scaling of the size of Hilbert space where the abstract physical representation of such

a system’s state lives. The dimension of this space is 2N where N is the number

of subsystems, and this becomes intractable to simulate for N > 30 or so. Even if

computing power were increased by 3 orders of magnitude, this maximum would

only increase to about 40. Therefore approximate methods are needed, which can

be tailored to the regime or phenomenon being studied. In this thesis, I present a

new tool to try to understand these systems; we will find the eigenvalue distribution

of the interaction Hamiltonian for physically motivated couplings Fjk in the large N

limit, giving new insight into the timescales of the dynamics such systems undergo.
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2.2 The Hamiltonian for Many-Spin Interactions

Consider a collection of 2-level systems indexed by the integers j = 1, ...., N with

the ground and excited state of the jth system denoted by |0〉j and |1〉j , respectively,

and an energy difference of ~ω = ω (setting ~ = 1). If the subsystems are non-

interacting, the time evolution of the whole system is determined by the Hamiltonian

H = ω
∑

j σ
z
j via the Schrödinger Equation d |ψ〉 /dt = iH |ψ〉 where σzj = |1〉j 〈1|j

is the z Pauli matrix with a constant added to the energy to allow for a shifted

definition, deviating from the more typical σz = 1
2
(|1〉 〈1| − |0〉 〈0|).

Any state of the whole system can be written |ψ〉 =
∑

q cq |q〉 where {|q〉} is the

computational basis in which, for each element, each subsystem has a definite state,

and the cq are complex numbers (normalized so that 〈ψ | ψ〉 =
∑

q

∣∣cq∣∣2 = 1). For the

example of N = 3, {|q〉} = {|000〉 , |001〉 , |010〉 , |100〉 , |011〉 , |101〉 , |110〉 , |111〉}.

Note that the set {|q〉} has 2N elements, which we denote as
∣∣{|q〉}∣∣ = 2N . The

computational basis diagonalizes the Hamiltonian, and thus its time dependence

is fully and easily understood; each component cq rotates in the complex plane

with an angular frequency given by ω times the number of excited subsystems in

it, i.e. cq(t) = cq(0)e−iωMqt where Mq is the number of 1s in the arrangement q.

However, once interactions between the subsystems is added, the diagonal basis

is not generally known and the dynamics can be much more difficult to calculate

exactly or even approximate.

In this thesis, we will consider interactions of the form

Hint =
∑
(jk)

Hjk =
∑
(jk)

Fjk(σ
+
j σ
−
k + σ+

j σ
−
k ) (2.1)

where
∑

(jk) denotes the sum over all pairs of subsystems (i.e.
∑

(jk) = 1
2

∑
j

∑
k 6=j)

and Hjk acts non-trivially only on subsystems j and k. The σ±j operators raise

or lower the state of subsystem j so that σ+
j |0〉j = |1〉j, σ

+
j |1〉j = 0, σ−j |0〉j = 0,

and σ−j |1〉j = |0〉j . We will study Fjk of the form Fjk = F (~rjk) = f sin(θjk)(krjk)
−α

where ~rjk is the separation vector between the two subsystems, k is the wavelength
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associated with the energy difference ω (k = 2π/λ = 2πω/c), f is a complex

constant with units of energy or frequency, and θjk are phases randomly drawn

uniformly from [0, 2π] for each pair of subsystems. When the notion of ‘averaging’

is used later, it means with respect to randomly drawn positions of the subsystems

from some spatial distribution ρ(~r), such as a box, sphere, or gaussian cloud with a

fixed shaped and a characteristic size R which grows with N as R ∼ N1/D, where

D = 2 or 3 is the number of spatial dimensions of the distribution of subsystems.

This scaling is such that the spatial subsystem density remains constant on average

with respect to N . We restrict our attention to isotropically shaped ensembles, as

opposed to the cigar or other shapes often analyzed in the context of super- or

sub-radiance. Here and throughout, ∼ means ‘scales with N as’.

The random phase assumption is physically reasonable because typically this phase

is given by krjk, and in the large N limit, for almost all pairs j and k, krjk becomes

much larger than 2π and the distribution of the phases krjk mod 2π approaches

uniform in the interval [0, 2π].

We have taken Fjk to be both complex and symmetric, meaningHint is not Hermitian;

this is to be expected, since this kind of interaction arises when the subsystems

are coupled to a common boson bath and it is well known that the dynamics of an

open quantum system can be approximated by a non-Hermitian Hamiltonian acting

only on the open quantum system, as opposed to the larger quantum system which

includes the external system and is still governed by a hermitian Hamiltonian.

Using all of these assumptions throughout will allow for significant simplification,

although a similar analysis could likely be applied in the absence of some of them.

Interactions which conform to these assumptions arise physically in many situations,

such as in atomic interactions where there the dipole interaction is of the Exchange

type and has couplings Fjk which decays as distance cubed [34], and the boson

exchange interaction in which decays as distance to the first power [44]. In order to

gain new insight into such systems, we will analytically find the spectrum of these

kinds of Hamiltonians when N is arbitrarily large.
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2.3 The Moments of the Spectrum Distribution

Rather than compute the eigenvalues directly, we will find the moments of

their distribution, or rather the smooth distribution which the discrete spectrum

asymptotes to for large N . The distribution f(λ) is constructed from its moments

by taking the fourier transform of

F (ξ) =
∞∑
p=0

(
iξ
)p
p!

σ(p) (2.2)

where the pth moment of the distribution is defined as

σ(p) = 2−N
∑
q

〈q|Hp |q〉 = 2−N
∑
λ

λp =

∫ ∞
−∞

λpf(λ)dλ (2.3)

where {λ} are the eigenvalues of H. The p-th spectrum moment can be thought of as

the average of the eigenvalues raised to the p-th power. The fourier transform of 2.2

is the distribution because it is the expectation value of eiλξ where the expectation

value is with respect to λ i.e.

F (ξ) =

∫ ∞
∞

eiξλf(λ)dλ =
∞∑
k=0

(−iξ)k

k!
E[λk] =

∞∑
k=0

(iξ)k

k!

∫ ∞
−∞

λkf(λ)dλ =
∞∑
k=0

(iξ)k

k!
σ(k)

(2.4)

In order to estimate the distribution after finding the moments, we will truncate

the sum over p in the above expression. In order to accomplish this we will need to

utilize the large N limit to find the moments analytically. Since N is arbitrarily

large and we truncate the sum over p at some fixed pmax, we can always take

p ≤ pmax << N .

Using only the interaction Hamiltonian (2.1), the moments can be written

σp = 2−N
∑
q

〈q|
p∏

w=1

∑
(jwkw)

Hjwkw |q〉 = 2−N
∑
q

〈q|

(
p∏

w=1

∑
(jwkw)

Fjwkw(σ+
jw
σ−kw+σ−jwσ

+
kw

)

)
|q〉

(2.5)

The sum and product
∏p

w=1

∑
(jwkw) can be understood as having one term for
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each unique selections of p pairs, and thus there are
(
N
2

)p
such terms. For one such

choice of p pairs, {{j1k1}...{jpkp}}, we have the associated term Hj1k1 ...Hjpkp which

contributes to σ(p) an amount equal to 2−N
∑

q 〈q|Hj1k1 ...Hjpkp |q〉. In total, σ(p) is

the sum of all such contributions from each of the
(
N
2

)p
ways to choose the p pairs

{{j1k1}...{jpkp}}.

2.3.1 Triplets

We are going to associate each term Hj1k1 ...Hjpkp one or more triplets (S, {j}, π),

composed of a pattern S, a subsystem selection {j}, and a subsystem assignment π.

After defining them, we will see there is at least one triplet for each termHj1k1 ...Hjpkp ,

and that every triplet which obeys the Compatibility Conditions (to be specified)

constructs exactly one sequence of pairs, or equivalently one term Hj1k1 ...Hjpkp . This

means we can rewrite
∏

w

∑
(jwkw) in (2.5) with a sum over all patterns, subsystem

selections, and subsystem assignments, as long as we use only triplets which obey

the Compatibility Conditions, and divide by a degeneracy factor D(S, {j}, π) equal

to the number of different triplets which construct the same term. We denote the

term constructed from a triplet (S, {j}, π) as
∏
H(S, {j}, π) = Hj1k1 ...Hjpkp where

{{j1k1}...{jpkp}} are the p ordered pairs constructed from the triplet in a way yet

to be specified. We similarly define
∏
F (S, {j}, π) = Fj1k1 ...Fjpkp for future use.

Achieving this, we can write the moments as

σ(p) = 2−N
∑
q

〈q|

(∑
S

∑
{j}

∑
π

∏
H(S, {j}, π)/D(S, {j}, π)

)
|q〉 (2.6)

where on the right hand side, the p dependence is hidden inside the sum over

patterns - for each p a different set of patterns is allowed, and for a given pattern a

certain set of subsystem selections and assignments {j} and π are allowed, according

to the Compatibility Conditions defined below. Re-arranging the sum in this way

is desireable because it will allow us to utilize the large N limit in a way that is

not manifest in the expression (2.5). Later, we will calculate the degeneracy factor
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D(S, {j}, π) and observe that it, as well as the number of different patterns S and

the number of different compatible subsystem assignments π, do not depend on N .

The N dependence of sum over q can accounted for in a straightforward manner,

leaving all the remaining N dependence in the sum over subsystem selection
∑
{j}

and the Fjk factors, due to the fact that the total system size grows with N so as to

keep subsystem density fixed, meaning that as we increase N the added subsystems

are at the edge of the system and therefore the additional Fjk will typically be

smaller than the ones that already existed for smaller N (given the assumed form

of Fjk whose magnitude shrinks with the distance between subsystems j and k).

Once all sources of N -dependence have been taken into account we will be in a

position to identify a very special subset of patterns, {St}, for which in the large N

limit the associated term’s contribution to σ(p) becomes arbitrarily larger than the

contribution to the moment from all patterns not in {St}. Since we will see that

the number of patterns, and therefore the number of such terms, does not depend

on N , this will allow us to conclude that for large N , only the patterns in {St} need

to be included.

Calculating the contribution to the moments for all patterns is a difficult task,

but for the special patterns St this task can be much more readily accomplished.

Rather than depend on complicated products of Fjk raised to different powers and

having possibly overlapping subscripts, we will find that for the St we can express

their contribution to the moments, and therefore the distribution f(λ), in terms of

only the average of F 2
jk (averaged over all pairs (jk)). Then for any given coupling

Fjk corresponding to some system of interest, its energy spectrum density can be

approximated for large but finite N , potentially leading to new physical insight.

2.3.2 Pattern and Subsystem Selection, Assignment

Definitions

We will now define a pattern, a subsystem selection, and a subsystem assignment,

and then demonstrate how to construct a term from a pattern or find a pattern
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associated with a given term. We establish along the way that every term can be

associated with at least one triplet, and that under certain compatibility conditions,

every triplet constructs one and only one term. Once established, these facts justify

the proposed sum re-arrangement 2.6, provided the sum over triplets is taken

to mean only the triplets which obey the Compatibility Conditions. These are

summarized below for ease of reference.

2.3.3 Compatibility Conditions

-Every subset in S has an even number of elements which are integers between 1

and p (inclusive) and each integer between 1 and p (inclusive) appears in exactly

two different subsets in S

-Given a pattern S in a triplet, the number of subsystems referenced in a {j} which

appears in the same triplet as S must be the same as the number of subsets in S

-Given a pattern S and subsystem selection {j}, any π which appears in the same

triplet must be a permutation of a number of objects equal to the number of

elements in S (and therefore also the number of subsystems in {j})

2.3.4 Pattern Definition

A pattern is a list with collections of locations of Hamiltonians where each

collection contains the integers associated with all of the locations at which a

given subsystem appears. For example, the pattern associated with H12H24H23

is {{1}, {1, 2, 3}, {3}, {2}} because the first subsystem appears only in the first

pairwise Hamiltonian, the second appears in all three, and the last two only appear

in the third and second, respectively. For visual clarity, we are using an ordering

convention that the subsystem labelled 1 appears in the locations in the first

collection and so forth (left to right), but it is important to remember going forward

that mathematically we treat the pattern as an un-ordered set. Note that every

integer between 1 and p, inclusive, appears exactly twice among the collections in
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S, following the Compatibility Conditions. This ensures that exactly two subscripts

are assigned to each pairwise Hjk.

The total number of elements in all the subsets of S is 2p. Note also that which

subsystems appear is immaterial to the pattern, which only contains information

about the coincidences of subsystem appearances. For example H56H67H68

corresponds to the same pattern as the example above. Thus in H12H24H23 it

is useful to think of the integers not as subsystem indexes but rather ‘slots’ in

which some subsytem will be placed - which subsystem is placed in which slot is

determined by the subsystem selection and subsystem assignment together. This

makes it clear why, in addition to the pattern, we require both the subsystem

selection and subsystem assignment to construct the term Hj1k1 ...Hjpkp uniquely.

2.3.5 Subsystem Selection Definition

The subsystem selection associated with a term {{j1k1}...{jpkp}} or Hj1k1 ....Hjpkp

is the set of all unique subsystems {j} which appear in it. The size of this set

is equal to the number of subsets in S because there is one subset in S for each

subsystem. If the number of collections appearing in S is specified to be u, we

denote this by writing S(u), and use the notation
∣∣{j}∣∣ = u to mean that the

size of the set {j} is u, i.e., it has u subsystems listed in it. A general subsystem

selection with u subsystems is denoted {j}(u), just as a general pattern with

u collections is denoted S(u). One of the Compatibility Conditions is that the

subsystem selection in a triplet has the same number of elements as collections in

S. In this notation, this Compatibility Condition can be stated as follows: for any

triplet (S(u), {j}(u′), π), we require u′ = u. Since the sum over patterns, subsystem

selections, and subsystem assignments in (2.6) is done in that order, we can enforce

this Compatibility Condition by making the sum over subsystem selections for a

given pattern be only over subsystem selections with the same value of u as S.
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2.3.6 Subsystem Assignment Definition

The subsystem assignment π contains information about which subsystem in {j}

appears in each collection of subscript locations in S. It must link up u different

subsystems in {j}(u) with u subsets in S(u); therefore each π compatible with some

S(u) and {j}(u) must be a permutation of u objects, or the different ways to pair up

the u elements in each of those objects. Denoting such a permutation of u elements

as π(u), another Compatibility Condition is that for a triplet (S(u), {j}(u), π(u′)),

u′ = u. This means there are u! different subsystem assignments π(u) compatible

with any two S(u) and {j}(u).

Equipped now with the definition of a triplet, we establish that for every term

Hj1k1 ...Hjpkp there is at least one triplet associated with it, that each triplet that

obeys the Compatibility Conditions is associated with exactly one term, and compute

the degeneracy factor D(S, {j}, π) by counting how many other triplet {S ′, {j}′, π′}

construct the same term as (S, {j}, π).

2.3.7 Identifying the Term Associated with a Triplet

Here we demonstrate how to construct a unique ordered set of p pairs

{{j1k1}...{jpkp}}, or equivalently a termHj1k1 ...Hjpkp , from a given triplet (S, {j}, π)

which obeys the Compatibility Conditions. We begin with a ‘blank’ term H__...H__

and fill in the subscripts with subsystem references (which are indexed by the

integers) according to the triplet as follows: for each subsystem in {j}, first use π

to determine which collection in S that subset is associated with, and then insert

that subset’s index in the subscript of all the H__ at the locations in its associated

collection. Since Hjk = Hkj we need not specify which subscript, although if there is

already a subscript filled in then of course it must be placed in the other. Given this

recipe, the only conditions under which the same term might be constructed from

two or more different triplets is if there is at least one pair of subsets who only appear

as subscripts of the same pairwise Hamiltonians; in this case the degeneracy factor
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D(S, {j}, π) is 2 raised to the number of such pairs. We will use this calculation

much later, but for now, the salient feature is that it is independent of N (since the

number of pairs is at most half of p which is considered fixed with respect to N).

We also note the fact that, as is evident from its calculation, D only depends on S

and not {j} or π. Therefore from now on write it simply as D(S).

2.3.8 Associating a Triplet with Any Term

Now we will show how to identify a compatible triplet associated with any term

Hj1k1 ...Hjpkp , thus establishing that all are accounted for when summing over

Compatible triplets in 2.6. Arbitrary decisions will need to be made, due to the

fact that some triplets have D(S, {j}, π) > 1.

We will deduce the three constituents of a triplet from a sequence of pairs

{{j1k1}...{jpkp}} or a term Hj1k1 ...Hjpkp by selecting one by one, in any order, each

subsystem which appears: for each such subsystem, first add it to the subsystem

selection list, then locate every individual pairwise Hamiltonian Hjwkw at which

it appears in the term and collect the integer identifiers of these locations into a

collection (again using the convention that 1 is the left-most pair and incrementing

by 1 to the right), add that collection to the pattern S, and finally add an element

to π matching that subsystem with that collection. The Compatibility Conditions

will automatically be met by a triplet constructed from a term in this way; thus,

it is clear that the sum over all compatible triplets will include each term at least

once. By dividing by D(S), we also ensure none of them are counted more than

once, justifying 2.6.

Something to keep in mind going forward: despite the notation, S(u), D(u), and

{j}(u) are not functions of u. Rather, the purpose of the notation is to specify the

value of u for the given object. For example, in the same way that S should be

thought of as a pattern for some integer p, S(u) should be thought of some pattern

for the integer p which contains u collections of locations. Similarly, while {j}

is any list of any number of different subsystems, {j}(u) is any list of u different
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subsystems.

2.3.9 Back to σ(p)

We are now equipped to make some fruitful manipulations to the expression for

σp. First, note that 2 ≤ u ≤ 2p since there are only 2p empty slots in the term

to be filled with u different subsystems; u is maximized when there is a different

subsystem in each of the 2p slots and minimized when the same two subsytems

appear at each location (recall that the original sum is over p pairs of subsystems,

meaning the same pairwise Hamiltonian can’t have a subsystem as both of its

subscripts, leading to a minimum of 2 instead of 1).

Recall that we denote the term
∏

wHjwkw = Hj1k1 ...Hjpkp constructed from a triplet

(S, {j}, π) as
∏
H(S, {j}, π). For all q and all

∏
H(S, {j}, π), when the triplet

(S, {j}, π) is fixed then 〈q|
∏
H(S, {j}, π) |q〉 has only two possible values: 0, or

some value which depends on the triplet and the coupling Fjk, but not on which

q it is (among the q that have the property 〈q|
∏
H(S, {j}, π) |q〉 6= 0). In other

words, whenever q is such that 〈q|
∏
H(S, {j}, π) |q〉 6= 0, it is always equal to the

same thing for all other q for which the same quantity is also non-zero. When it is

nonzero, we define it to be equal to
∏
F (S, {j}, π)/Ω(S), where Ω(S) is the number

of |q〉 such that the quantity 〈q|
∏
H(S, {j}, π) |q〉 is not zero. Defined this way,

the new quantity
∏
F (S, {j}, π) relates to

∏
H(S, {j}, π) via

Ω(S, {j}, π)
∏

F (S, {j}, π) =
∑
q

〈q|
∏
w

Hjwkw |q〉 (2.7)

This is consistent with the previous definition
∏
F (S, {j}, π) =

∏p
w=1 Fjwkw . Due

to the invariance of the problem under the relabelling of subsystems, it must be

the case that Ω(S, {j}, π) is the same for any (compatible) {j} and π placed into a

triplet with that S, since any modification to {j} or π can be effectively undone by

relabelling the subsystems. Therefore, like D(S), Ω also depends only on S and we

similarly write it simply as Ω(S).
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Some patterns construct terms for which there is no |q〉 with non-zero

〈q|
∏
H(S, {j}, π) |q〉; for these we define Ω(S) = 0, allowing us to write

σ(p) = 2−N
∑
q

〈q|

(∑
S

D(S)−1
∑
{j}

∑
π

∏
H(S, {j}, π)

)
|q〉

= 2−N
∑
S

D(S)−1Ω(S)
∑
{j}

∑
π

∏
F (S, {j}, π)

= 2−N
2p∑
u=2

∑
S(u)

Ω(S(u))

D(S(u))

∑
{j}(u)

∑
π(u)

∏
F (S(u), {j}(u), π(u))

(2.8)

2.3.10 Extracting the N dependence of Ω(S)

Ω(S) depends on N , but we will now extract the N dependence of Ω(S) by factoring

that dependence out of a related, N -independent function Ω′(S). In order to do

so, we must establish the notion of comparing two different computational basis

elements |q〉 and |q′〉; we say that they ‘agree on’, or ‘are the same for’ a subsystem if

that subsystem has the same status in both of them, and similarly that they ‘disagree

on’, or ‘are different for’, those subsystems that are opposite. Every subsystem

will either disagree or agree for each pair of computational basis states because by

definition every subsystem has a definite state in each of the computational basis

states. For example, with N = 5 the two computational basis states |01101〉 and

|01011〉 agree on subsystems 1, 2, and 5, and are different on subsystems 3 and 4

(where have again employed the convention of indexing the subsystems left to right,

starting at 1 and incrementing by 1).

Observe that the quantity 〈q|
(∏p

w=1

∑
(jwkw) Hjwkw

)
|q〉 is invariant upon altering

the status in q of any subsystem not among the jw or kw, or equivalently

any subsystem not in {j} for the quantity 〈q|
∏
H(S, {j}, π) |q〉. Using the

sense of sameness of subsystems between pairs of states defined above, we can

say that 〈q|
∏
H(S, {j}, π) |q〉 = 〈q′|

∏
H(S, {j}, π) |q′〉 if q and q′ agree on all

subsystems in {j}. Now consider a new quantity Ω′(S, {j}, π) which is similar to

Ω(S, {j}, π) except instead of counting all arrangements of all subsystems for which
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〈q|
∏
H(S, {j}, π) |q〉 6= 0, we count only arrangements of the subsystems in {j}. Ω′

also depends only on S, and similarly we write it as Ω′(S). The maximum of Ω′(S(u))

is 2u since that is the total number of arrangements of any {j}(u) compatible with

S(u), whereas the maximum of Ω(S(u)) is 2N since that is the total number of

arrangements of all N subsystems. Ω′(S(u)) is only counting arrangements of u

subsystems instead of N and therefore does not depend on N (since u < 2p and

p is fixed with respect to N). There is an exception when Ω(S) or Ω′(S) is zero

for some pattern S - this can be relevant for N dependence since the N scaling of

that pattern’s associated term is then merely hypothetical, not corresponding to

an actual contribution to the moments. We will use the N dependence in order

to discard contributions which have a relatively vanishing contribution for large

N , regardless of the constant (with respect to N) out front - however this logic

clearly only applies when that constant is not zero. Noting that Ω′(S) 6= 0 implies

Ω(S) 6= 0 and vice versa, this exception can be accounted for by assuring that

Ω′(St) 6= 0 for the final patterns St whose contributions have an N -scaling greater

than the contribution from all other patterns for which Ω′(S) 6= 0.

For each of the 2u arrangements of the subsystems in {j}(u) which could count

towards Ω′(S(u), {j}(u), π(u)), there are 2N−u arrangements of all subsystems which

counts towards Ω(S(u), {j}(u), π(u)): one for each possible arrangement of the

other N − u subsystems. Thus Ω(S(u)) = 2N−uΩ′(S(u)). Applying this to the

spectrum moments sum, we have

σ(p) =

2p∑
u=2

2−u
∑
S(u)

Ω′(S(u))

D(S(u))

∑
{j}(u)

∑
πu

∏
F (S(u), {j}(u), π(u)) (2.9)

Now all N dependence is contained in the sum over subsystem selections and the

values of the Fjk (we will count them later, but it follows from the definition of a

pattern that the number of them for a given p is independent of N). The number of

terms in the sum over subsystem selections {j}(u) is
(
N
u

)
since this is the number

of different ways to select u subsystems from a list of N of them. The N scaling of

this quantity is Nu. The N dependence of the couplings Fjk is trickier to quantify;
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in order to get a handle on it we define Expectation Values in the next section.

2.3.11 Expectation Values

Define the expectation value E[
∏
F (S)] of

∏
F (S, {j}, π) for some fixed S by

averaging over all subsystem selections {j} and assignments π:

E
[∏

F (S)
]

= A−1
S

∑
{j}

∑
π

∏
F (S, {j}, π) (2.10)

where AS is a normalization constant equal to the total number of terms in the

sum to its right, consistent with the idea of E[ ] as an average over {j} and π. AS
is equal to the number of different {j} compatible with S times the number of π

compatible with S, denoted as AS =
∣∣{j}∣∣×|π|.

For a pattern S(2) with u = 2, both of the subsystems appear in the subscript of

each pairwise Hjk and accordingly
∏
F (S(2), {j, k}, π)) = F p

jk (all π are equivalent

in this case since all subsystems are assigned to the same location). Define E[FB]

for any integer B to be the average of
∣∣∣FB

jk

∣∣∣ over all pairs,
E[FB] =

(
N

2

)−1∑
(jk)

| Fjk |B (2.11)

so that E[
∏
F (S(2))] = E[F p].

The absolute value has been added because for odd B,
∑

(jk) F
B
jk → 0 due to the

random phase assumption. For a given large but finite N and fixed subsystem

positions,
∑

jk F
B
(jk) will not generally be zero; although it’s just as likely to be

negative as positive, its typical magnitude is nonzero and given by the central

limit theorem. When comparing the N scaling of the contributions from different

patterns, or estimating for the purpose of approximation, the typical magnitude is

the relevant quantity - whether the contribution from a pattern adds positive or

negative value to σ(p), when determining which are the dominant contributions for

large N the quantity of interest is the overall size of the contribution. Thus we will
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define the expectation values as capturing the typical size of the contribution from

a pattern.

The addition of the absolute value does not alter the quantity for even B and makes

it for a more meaningful definition for odd B.

What is the value of E[FB] for odd B, and how does its N scaling relate to the

case of even B? Odd E[FB] =
∑

(jk) F
B
jk are sums of

(
N
2

)
summands of the same

kind as in the even case, the difference is that they have a randomly signed factor

sin(θ1) sin(θ2) instead of the always positive geometric factor sin(θ1)2 of the even B

case (here θ1,2 is a random phase). Thus their average is zero, but by the central limit

theorem they will approach a gaussian distribution a variance equal to the variance

of the summands, E[F 2B], divided by
√(

N
2

)
. This means that for odd B the typical

magnitude of the average over the FB
jk, whose definition was substituted for 0 in

E[FB], scales as E[F 2B]1/2/N . For the purposes of actual spectrum approximation,

the odd expectation values can be generated by drawing from a gaussian distribution

centered at 0 and with width E[F 2B]1/2/N .

Define a set of integers B(S) for a given pattern S which is the unordered set of

integers to which power each unique Fjk appearing in
∏
F (S) is raised. For example,

for the pattern {{1, 2, 4}{1, 2, 3}{3, 4}} corresponding to the term F12F12F23F13,

B(S) = {2, 1, 1}. Note that the elements of B(S) will always sum to p.

Suppose we have two different patterns S and S ′ which correspond to the same

integers B(S) = B(S ′), for example a pattern corresponding to FB1
12 F

B2
23 and a

pattern corresponding to FB1
12 F

B2
34 . The sum over subsystem selections in E[

∏
F (S)]

can be thought of as a sum over the positions corresponding to the locations of

the subsystems, and in the large N limit this sum becomes well approximated by

a continuous integral which is well defined because the assumed form of Fjk =

f sin(θjk)(krjk)
−α is defined for all positions, not just the specific locations of

the subsystems. Using this property we can define the closely related function

F (~r1, ~r2) = f sin(k | ~r1 − ~r2 |)(k | ~r1 − ~r2 |)−α where the angle will approach a

uniform distribution when N is large and therefore the system is large. Defining
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F (S, {~r}, π) to be the value of the term F (S, {j}, π) where the subsystems {j} are

at the locations {~r}, the integral limit of the E[
∏
F (S)] is

E
[∏

F (S(u))
]

= A−1
S(u)

∑
{j}

∑
π

∏
F (S(u), {j}(u), π(u))

→ 1

u!

∫ (
dDr

)u∑
π

F (S(u), {~r}, π)
(∏

ρ(~r)
)
− ...

(2.12)

where D is the number of spatial dimensions, ρ(~r) is the subsystem density function

normalized so that
∫
dDrρ(~r) = 1 (which accounts for part of AS(u)), and the

product over ρ is the product over the density at the location of each of the u

subsystems. Because the subsystems must be unique, we must disallow ~r1 = ~r2, etc.,

which is represented by the subtraction of an unspecified quantity in the expression

above. However, note that the quantity to remove is a set of a measure zero on

the integration domain, so by the continuity and finiteness of f(~r) everywhere, this

subtraction is negligible. This means that

E[
∏

F (S)]→
∏

Bi∈B(S)

E[FBi ] (2.13)

This means that if S and S ′ share the same integers B(S) = B(S ′), then

E[
∏
F (S)] = E[

∏
F (S ′)] in the large N limit, a fact which we will use often.

As noted, for odd B, FB
jk averages to zero due to the random phase assumption, and

the present analysis makes it clear that similarly the expectation value E[
∏
F (S)]

of a pattern S with at least one odd element of B(S) is also zero. Thus we adopt

a similar adjustment for the definition of E[
∏
F (S)], such that it is their typical

magnitude, or the width of their distribution around zero, rather than their true

average. Due to 2.13, this redefinition is automatic from the definition of E[FB]

which includes the absolute value.
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We can now rewrite the spectrum moments in terms of these expectation values:

σ(p) =

2p∑
u=2

2−u
∑
S(u)

Ω′(S(u))

D(S(u))
AS(u)E

[∏
F (S(u))

]
=

2p∑
u=2

2−u
∑
S(u)

Ω′(S(u))

D(S(u))
AS(u)

∏
Bi∈B(S)

E[FBi ]

(2.14)

2.3.12 Isolating and Quantifying N Dependence to Identify

{St}

Ω′(S), D(S), the number of terms in the sum over u, and the number of patterns

i.e., the number of terms in the sum
∑

S do not depend on N . Thus, the expression

for σ(p) in 2.14 is an N -independent number of summands, each corresponding to a

pattern and comprised of an N -independent prefactor multiplied by ASE[
∏
F (S)].

Therefore in the large N limit, if a pattern S corresponding to an ASE[
∏
F (S)] with

Ω′(S) 6= 0 scales less quickly with N than AS′E[
∏
F (S ′)] for some other pattern S ′

with Ω(S ′) 6= 0, then the term contributing to σ(p) that corresponds to the pattern

S may be safely discarded when N becomes arbitrarily large. We now identify the

special set of patterns St which have contributions to σ(p) that have the largest

scaling with N among all patterns, meaning that all other patterns can be ignored

(provided Ω′(St) 6= 0 for all such St, which we will confirm once they are identified).

The strategy to determine this final set of patterns {St} will be to start with any

pattern S and make a sequence of transformations S → S1 → S2...St, where each

right arrow is a transformation which increases the N scaling of the associated

terms which contributes to σ(p). We can only discard patterns with lesser N scaling

contributions to σ(p) if, for the pattern with the greater N scaling of its contribution,

the constant prefactor in front of its contribution is not zero, i.e., Ω′ of that pattern

is not zero. It is sufficient to make sure that this prefactor is non-zero only for

the final sets, which we do because the transformations will be many and it would

significantly complicate what follows to show this at every step. We will show that

any initial pattern not in {St} can be brought to an element of {St} by a series of

such transformations, establishing that this set contains the patterns corresponding
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to all non-negligible contributions to σ(p), and we need only show for Ω′(St) 6= 0 for

all St ∈ {St}.

To evaluate the spectrum moments in this limit we will actually need to calculate

Ω′(St), which is fortunately much easier than calculating Ω′(S) for any given pattern,

and at that point it will be seen that it is not equal to zero. Also, note that since

the existence of any term with a greater N scaling means the original term can be

neglected, these transformations need not be unique - it needs only be established

that there is at least one pattern with a contribution with a greater N scaling.

What we will find is that for the even moments, the final patterns {St} will turn

out to be the ones with u = p, and with each pairwise Hamiltonian paired up with

exactly one other which has the same two subsystems as subscripts (and those

subscripts appear nowhere else in the pattern). This pairing up is impossible for odd

moments, for which there is an odd number of pairwise Hamiltonians; the important

patterns for odd p will be the ones for which all but three pairwise Hamiltonians

are paired up and the last three form a cycle of the form H12H23H31 where the

subsystems appearing in this triple do not appear anywhere else. We now derive

these resuls.

2.3.13 Pattern Transformations

We now define the transformations that will together take any pattern S into St by

increasing theN scaling of its associated contribution to the moments, ASE[
∏
F (S)].

We will define certain classes of patterns, denoted by {S1}, {S2}, etc., for which S1

can be thought of as any pattern which conforms to the class {S1} in the same way

S can be thought of as any pattern and S(u) can be thought of any pattern with u

elements. There will be several types of transformations →i which, after repeated

applications, take elements of {Si−1} into {Si} (where {S0} is simply the set of all

patterns). Thus the sequence of patterns with increasing N scaling of ASE[
∏
F (S)]

is S →1 S
′ →1 ...→1 S1 →2 S

′
1 →2 ...→2 S2 →3 S

′
2 →3 ...→ St. We will describe

the process which takes a general pattern not in {Si>0} all the way to {St}, but for
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a starting pattern which happens to already conform to type {Si} for some i, we

can simply begin at that point in the process (and of course for patterns which are

already of type St, we let them be). There will only be six kinds of transformations,

but each one in general will be applied many times.

The desired N -scaling properties of the transformations, that it increases the N

scaling of the associated contribution to σ(p), is established if the following holds

for every transformation:
ASiE[

∏
F (Si)]

AS′iE[
∏
F (S ′i)]

→ 0 (2.15)

where the arrow indicates the large N limit. After defining each type transformation,

we will show that this limit holds. To do so, we will require certain conditions on

the Fjk and their spatial distribution for large N ; we call these the F -Conditions,

and will tabulate them as we go along. Only one will not follow from the central

limit theorem and insead may depend sensitively on the details of Fjk = F (~rjk). We

will analyze this condition after it has been established, but suffice it to note here

that it is satisfied for α = 1 and D = 2 or 3, the case corresponding to coupling to

a common boson bath which is highly physical relevant.

We now define each of the →i separately, and establish 2.15 for each.

2.3.14 →1

The first kind of transformation we will make to a generic initial pattern S, called

→1, reduces an element of B(S) by 2, increases u by 2, and adds a new element

equal to 2 to B(S). If there are no elements of B(S) greater than 2 then it is

already of type Si for i ≥ 1, and we begin the sequence of transformations at the

appropriate, later place. If not, then this transformation will turn one pairwise factor

in
∏

Bi∈B(S) F
Bi
jk with Bi > 3 from FBi

jk into FB−2
jk as well as add a new pairwise

Hamiltonian squared, H2
j′k′ , where j′ and k′ appear nowhere else in the pattern. For

example,→1 takes F12F
2
23F

5
14 →1 F12F

2
23F

3
14F

2
56 (recall that the subscripts should be

thought of as slots, not specific references; in the example, 1 could be any subsystem,

2 could be any other subsystem, and so on). If there is more than one B ≥ 3, or
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some B is still ≥ 3 after this manipulation, we repeat it on each such B ≥ 3 until

all none of the elements of B are greater than 2. When this is the case, we will have

transformed the initial state S into an element of {S1}; the defining characteristic

of a pattern S1 is that all elements of B(S1) are either 1 or 2.

Now we must show that →1 satisfies (2.15). Recall that AS =| {j} | × | π |, and

that | π(u) |= u! is independent of N . Thus the N -dependence of AS is the same as

the N -dependence of | {j} |, which for | {j}(u) | is the number of ways to choose

u subsystems from a set of N ,
(
N
u

)
. For large N ,

(
N
u

)
scales with N as Nu; in our

notation this is written
∣∣{j}∣∣ ∼ Nu. Since |π| is independent of N and ∼ means

only the N scaling, then it is also true that AS(u) ∼ Nu. Thus for S →1 S
′ the ratio

of the contributions from S and S ′ (discarding constant prefactors which do not

effect the N scaling), (2.15), is

AS(u)E[
∏
F (S(u))]

AS′(u+2)E[
∏
F (S ′(u+ 2))]

→
Nu
∏

Bi∈B(S(u))E[FBi ]

Nu+2
∏

Bi∈B(S(u+2))E[FBi ]
=

E[FBi ]

N2E[FBi−2]E[F 2]
→ 0

(2.16)

Thus an F -condition is that, for any integer B ≥ 3, E[FB](N2E[FB−2]E[F 2])−1 →

0.

After exhaustive (no more B > 2) application of →1 to a starting pattern S, the N

scaling of the contribution to σ(p) will have increased. Thus if it can be shown that

Ω′(S1) 6= 0 for the patterns in {S1}, then in the large N limit the contribution to

σ(p) from the terms in 2.14 corresponding to patterns not in {S1} can be neglected.

As noted above, we will put off showing that Ω′(Si) 6= 0 until we arrive at the

final set {St}, since showing that Ω′(St) 6= 0 is sufficient to conclude that only the

contributions from those patterns are important for large N . We now define the

next transformation, →2, which will, after exhaustive application to all patterns in

{S1}, create a new class of patterns S2.
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2.3.15 →2

To apply →2 to a pattern S1 in order to make a new pattern S ′1, we choose a

subsystem reference in a subscript of an F factor raised to the second power, then

look to see if that same subsystem also appears in the subscript of any other F

factor; if it does, we unlink these references via F 2
12F

b
23 → F 2

12F
b
34 where b can be 1

or 2. Note that the two F factors cannot share both subscripts, as otherwise the

pattern would have an element of B(S) greater than 2 and therefore not be in {S1}.

This transformation increases u by 1 and adds a new element to S which contains the

all the locations (equal to b in number) in the term
∏
F where the new subsystem

reference appears. It also modifies the existing element of S corresponding to 2 in

the example above, removing the b locations where the new subsystem is to appear

in S ′.

To establish that this transformation satisfies 2.15, note that B(S) = B(S ′), and

thus E[
∏
F (S)] = E[

∏
F (S ′)]. Since u increases by 1, AS1/AS′1 = 1/N . Together,

then, in this case 2.15 becomes

AS1E[
∏
F (S1)]

AS′1E[
∏
F (S ′1)]

→ 1/N (2.17)

establishing that if Ω′(S ′1) 6= 0, the terms in 2.14 corresponding to elements of {S1}

but not {S2} can be ignored for large N . If we apply this transformation repeatedly

until it is impossible to apply again, then the resulting pattern S2 will have no

subsystem references in subscripts of any Fjk raised to the second power which also

appear anywhere else in the pattern. This is the defining propery of {S2} (along

with the inherited property of S1, that all elements of B(S1,2) equal to 2 or 1).

2.3.16 →3

Like the transformations before it, the next transformation →3 acts on a pattern

S2 ∈ {S2} and, after exhaustive application, produces a new pattern S3 ∈ {S3}. For

one such transformation →3, we identify any subsystem reference which appears 4
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or more times among the subscripts of the Fjk which are raised to the first power

i.e., find an element of S2 which has 4 or more elements (note that for every pattern

S2, no subsystem which appears in the subscript of a Fjk factor raised to the first

power also appears in the subscript of an Fj′k′ factor raised to the second power, so

a subsystem that appears in an F 1
jk can only appear in other F 1

j′k′). In its basic form,

this transformation takes H12H23H31H14H45H51 →3 H12H23H31H45H56H64. More

generally, for the chosen set of 4 or more locations of pairwise Hamiltonians, pick

any one location in it, and follow it to another pairwise Hamiltonian by arbitrarily

picking any other pairwise Hamiltonian in which the other subsystem appearing

as a subscript in the original pairwise Hamiltonian at the current location also

appears. Because, as noted, no subscript appearing in an Fjk appears also in an

F 2
j′k′ , when moving between pairwise Hamiltonian locations this way we will never

be led to an F 2. Since each subsystem must appear at least twice this hopping

will repeat indefinitely. We add the restriction that it does not repeat locations,

and choose to terminate this process when the same pairwise Hamiltonian at which

originating subsystem reference occurred is landed on again. This must happen

despite the non-repeatability condition because, like all subsystem references, the

original subsystem reference must appear at least twice (actually at least 4 times,

but this is not necessary for the conclusion at hand). Once this loop is completed,

we take the last two locations at which the original subsystem which initiated the

process appeared in the loop, remove those two locations from their associated

element of S, and add a new element to S with these two locations in it.

Thus u is increased by 1, and accordingly the N dependence of AS increases by N .

It does not alter the set B(S) and therefore also does not alter E[
∏
F (S)], and

thus if S2 →3 S
′
2,

AS2 | E[
∏
F (S2)] |

AS′2 | E[
∏
F (S ′2)] |

→ 1/N (2.18)

This establishes that the contribution to σ(p) from all patterns in {S2} but not {S3}

vanish compared to the contribution from the patterns in {S3}, the set formed

by exhaustively applying →3 to all elements of {S2}. This transformation can no

longer be applied once none of the subsystems appearing in an F 1
jk appear in more
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than 2 locations; this property characterizes S3 (along with the properties of its

supersets {S1} and {S2}). Since each subsystem appearing among the F 2
jk also

appears only twice, then all collections of locations in a pattern S3 have exactly two

elements i.e., each subsystem appears exactly twice amongst all of the subscripts in

any associated pattern Fj1k1 ...Fjpkp .

2.3.17 →4

To set the foundation of the next transformation, →4, observe that the location

hopping done according to the prescription above, which required arbitrary choices,

is non arbitrary for patterns S3 because each subsystem reference only has one

pair it is attached to, meaning there is a unique location to hop to from any given

pairwise Hamiltonian Fjk (provided we know which of its two subsystem references

lead us there). Given an initial subsystem reference, there is still ambiguity as to

which of its locations to begin at, but the one other location will inevitably be the

destination, so this ambiguity amounts only to an arbitrary direction of the travel

while the path itself is uniquely defined.

Choose a collection of locations in S3 (now reduced to only pairs of locations) and

find the path that can be traced through the pairwise Hamiltonian locations that

begins and ends at the two locations in the chosen collection (according to the

hopping prescription described above); if it is longer than 4 locations long, adjust it

as follows: F12F23F34F45F51 → F12F23F31F
2
45. More precisely, we take the last two

pairwise Hamiltonians in the path and replace both of their two subscripts with the

same two subsystem references which do not appear anywhere else in the pattern,

then adjust one of the references in the third-to-last pairwise Hamiltonian along

the path so as to make sure each subsystem still appears twice.

This transformation does not alter u, and therefore also not AS3(u). Thus all change

in the N scaling of the contribution to the moments comes from the expectation

value E[
∏
F (S3(u))], which goes from E[F ]l → E[F ]l−2E[l2] where l is the number
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of pairwise Hamiltonians in the loop. As usual we must test the condition (2.15),

AS3E[
∏
F (S3)]

AS′3E[
∏
F (S ′3)]

→ E[F ]l

E[F ]l−2E[F 2]
→ E[F ]2

E[F 2]
(2.19)

As discussed when defining the expectation values E[S], by the central limit theorem

E[F ]→
√
E[F 2]/

(
N
2

)
making the above ratio go like 1/N2 and therefore vanishing

for large N . This establishes that →4 increases the N dependence of the pattern’s

associated contribution to σ(p).

Once →4 has been applied exhaustively to all elements of {S3}, we arrive at the

set {S4} which contains only patterns with such loops of length 4 or 3 among the

F 1
jk (all longer ones have been removed by the transformations, a path of length 2

would mean that F factor is raised to the second power, and paths of length 1 are

not allowed since the same subsystem cannot appear as both indices of a pairwise

Hamiltonian).

2.3.18 →5

The next transformation is to take all paths of length 4 and pair them up via

F12F23F34F41 → F 2
12F

2
34. Again the AS factor is unaltered because u does not

change, but the expectation value increases in N scaling:

AS4E[
∏
F (S4)]

AS′4E[
∏
F (S ′4)]

→ E[F ]4

E[F 2]2
→

(√
E[F 2]/

(
N
2

))4

E[F 2]2
→ 1

N4
→ 0 (2.20)

Thus after exhaustive application of →5 to all elements of {S4}, we have a new

set {S5} in which every pattern has some number of F 2
jk all with different j and k,

and some number of cycles of three Fj1j2Fj2j3Fj3j1 with j1,2,3 all different from each

other and from all of the j, k appearing in any F 2
jk in the same pattern.



2.3 The Moments of the Spectrum Distribution 34

2.3.19 →6

The final transformation, →6, pairs up these loops of length 3 via

Fj1j2Fj2j3Fj3j1Fk1k2Fk2k3Fk3k1 → F 2
j1k1

F 2
j2k2

F 2
j3k3

. Again u does not change, so for

→6 the condition 2.15 is

AS4E[
∏
F (S4)]

AS′4E[
∏
F (S ′4)]

→ E[F ]6

E[F 2]3
→

(√
E[F 2]/

(
N
2

))6

E[F 2]3
→ 1

N6
→ 0 (2.21)

Once →6 is exhaustively applied, there will be 0 or 1 paths, or loops, of length

3 left. All other pairwise Hamiltonians will be paired up with a second pairwise

Hamiltonian in the sense that they share the same two subscripts, and no other

pairwise Hamiltonians in the pattern share any of these subscripts. These are the

final patterns, denoted by {S6} = {St}.

p is the total number of pairwise Hamiltonians, so if p is even then this final

transformation process must be able to pair up every single triplet. If p is odd this

transformation can no longer be applied when there is one length 3 cycle left, as

there is not another length 3 cycle to pair it with.

Now, as promised, we make sure Ω′(St) 6= 0 for the patterns in {St} for the odd

and even case, in order to establish that it is safe to neglect all other patterns in

the large N limit.

2.3.20 Ω′(St) 6= 0

Recall that Ω′(St) is the number of arrangements |q〉 of the u subsystems appearing

in St for which 〈q|
∏
H(St) |q〉 6= 0. Conceptually, this definition is best imagined

for a triplet with a specific subsystem selection {j} and assignment π in mind,

which allows the related term
∏
H(St) = Hj1k1 ...Hjpkp to have specific subsystems

in its subscripts, but since the value of Ω′(St) depends only on the pattern part

of the triplet, it is written as a function of its pattern only. For patterns in {St},

the term
∏
H(St) = Hj1k1 ...Hjpkp takes the form H2

j1j2
...H2

jp−2jp
for even p and
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H2
j1j2

...H2
jp−4jp−3

Hjp−2jp−1Hjp−1jpHjpjp−2 for odd B. The different Hjk in
∏
H(St)

can appear in any order, for example pairs need not occur consecutively; but

since each subsystem appears in no more than 2 places for the patterns {St}, this

ordering does not matter. For these patterns, the only restriction on |q〉 such that

〈q|
∏
H(St) |q〉 6= 0 is that, for each pair of subsystems appearing together in the

subscripts of two H factors in
∏
H(St), they are oppositely aligned in |q〉. For even

p, all subsystems only ever appear in an Hjk with one other subsystem, so for every

such pair there are two options: one up and the other down, or vice versa. Thus

for even p, Ω′(p) = 2p/2 since there are p/2 pairs and there are two choices for each

pair.

For odd p, there are p− 3 pairs as in the even p case, which together contribute a

factor of 2(p−3)/2 to Ω′(p). For the loop F12F23F31 there are only two choices: up

down up, or down up down. The loop then contributes a factor of 2, leading to

Ω′(St) = 2×2(p−3)/2 = 2(p−1)/2 for odd p. Since in neither case, for any integer p ≥ 1,

Ω′(St) is zero, then we have now proven that when Fjk obeys the F -conditions, only

terms in 2.6 corresponding to the patterns in {St} contribute meaningfully for large

N . In other words, for large N , the sum over S can be replaced by a sum over St

without significantly changing the value of the moment σ(p).

Using this fact, we can actually estimate the moments in terms of E[F 2]. It remains

to calculate D(St), A(St), and E[
∏
F (St)], as up to now we’ve only calculated

the N -scaling of the latter two quantities, and not at all discussed the value of

D(St). Then we will know the contribution to the moment from each St, and upon

summing over them will have found the moments themselves.

2.4 Evaluating σ(p)

For ease of notation, from here on out we write the relevant patterns St simply as

S, which before stood for any pattern but now will stand for St, a pattern with

the property that B(S) = {2, 2, ...., 2} and u = p (these two facts alone specify

{St} for even p), or B(S){2, 2, ..., 2, 1, 1, 1} and u = p (for odd p). We have already
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calculated Ω′(St = S) to be equal to 2(p−r)/2 where r = 0 for even p and 1 for odd p;

in order to make numerical estimations of σ(p) for a specified coupling Fjk = F ( ~rjk)

and other parameters, we now evaluate the remaining necessary quantites in the

special case of these final patterns {St} (now referred to simply as S): D(S), A(S),

and E[
∏
F (S)].

2.4.1 D(St)

D(S) is the number of triplets S ′ there are that construct the term
∏
H(S). This

compensates for overcounting in the sum over triplets, which there are more of than

ways to choose p pairs {{j1k1}...{jpkp}} for the terms
∑

(j1k1) ...
∑

(jpkp) Hj1k1 ...Hjpkp .

In the final patterns, each subsystem appears twice and each subsystem appears

in exactly the same locations as one other subsystem; thus if π were altered to

switch the collections in S to which two such pairs of subsystems are assigned,

the constructed term
∏
F (S) would not change. For example, for F 2

12F
2
34, S =

{{1, 2}, {1, 2}, {3, 4}, {3, 4}} and {j} = {1, 2, 3, 4}, π could either assign the first

listed element of S to 1 and the second to 2, or vice versa; a similar consideration

for subsystems 3 and 4 leads to the conclusion that D = 4, a factor of two for each

F 2. For even p there are p/2 F 2 factors, and so D(S) = 2p/2. For odd p there are

(p− 3)/2 such pairs, leading to D(S) = 2(p−3)/2. There is no contribution from the

cycle of 3 in the odd S since none of the subsystems in it are assigned to exactly

the same locations of any of the other subsystems in it.

2.4.2 A(S)

A(S) is the number of terms in
∑
{j}
∑

π, the sum over subsystem selections

and assignments, which are compatible with S (according to the Compatibility

Conditions). Since {j} is unordered, there are
(
N
u

)
of them compatible with a

pattern S(u). Being the enumeration of ways to pair up u objects, π(u) = u!. Thus

AS(u) =
(
N
u

)
u! = N !/(N−u)!, or for the final patterns with u = p, AS = N !/(N−p)!.

Since we are taking N >> p, we will approximate this as AS → Np.
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2.4.3 E[
∏
F (S)]

As previously noted, E[
∏
F (S)] =

∏
Bi∈B(S) E[FBi ]. Given that B(St) =

{2, 2, ..., 2} for even p, E[
∏
F (St)] = E[F 2]p/2 in that case. For odd p, B(St) =

{2, 2, ..., 2, 1, 1, 1} and E[
∏
F (St)] = E[F 2](p−3)/2E[F ]3.

2.4.4 The Number of Final Patterns

We can now finally conclude that the contribution to the spectrum moments from

any final pattern St with an even value of p is

2−pD(S)−1Ω′(S)A(S)E[
∏

F (S)] = 2−p2−p/22p/2NpE[F 2]p/2 = (NE[F 2]1/2/2)p

(2.22)

and for odd p the contribution from each of the patterns is

2−pD(S)−1Ω′(S)A(S)E[
∏

F (S)] = 2−p2−(p−3)/22(p−1)/2NpE[F 2](p−3)/2E[F ]3

= 2
E[F ]3

E[F 2]3/2
(NE[F 2]1/2/2)p

(2.23)

The expression for the spectrum moments contains a sum over S so we must

determine how many such final patterns there are, each of which contributes the

quantity above to the spectrum moments (with the alternate expressions used

accordingly for even or odd moments). We have already determined that this

number does not depend on N , but to estimate the spectrum moments we must

know it exactly.

For even p, in a final pattern each pairwise Hamiltonian must be paired up with

another so the number of patterns is simply number of ways to pair up p objects.

There are
(
p
2

)
choices for the first pair,

(
p−2

2

)
for the second, and so forth, but we

must divide by (p/2)! since it doesn’t matter which order the pairs are selected in.

Thus the number of patterns is
(
p
2

)(
p−2

2

)
...
(

4
2

)
/(p/2)! = p!/((p/2)!2p/2).
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For odd p, first we pick which three pairwise Hamiltonian locations will be in the

triplet; there are
(
p
3

)
choices for this. We then have to pair up the remaining p− 3

things, which as established in the even case there are (p− 3)!/(((p− 3)/2)!2(p−3)/2)

ways to do. Thus for odd moments there are
(
p
3

)
((p− 3)!/(((p− 3)/2)!2(p−3)/2)) =

p!
3×2(p−1)/2((p−3)/2)!

patterns.

Thus, finally, we can calculate the moments by multiplying the contribution from

each pattern by the number of such patterns. For even p then,

σ(p) → p!

(p/2)!2p/2
(NE[F 2]1/2/2)p =

p!

(p/2)!

(
N(E[F 2]/8)1/2

)p (2.24)

and for odd p the typical magnitude of the moment is

σ(p) → p!

3× 2(p−1)/2((p− 3)/2)!

2E[F ]3

E[F 2]3/2
(NE[F 2]1/2/2)p =

23/2E[F ]3

3E[F 2]3/2
p!

((p− 3)/2)!
(N(E[F 2]/8)1/2)p

(2.25)

2.5 The Non-trivial F-Condition

When showing that the transformations →i increased the N -dependence of the

contribution to the spectrum moments, we assumed certain conditions on the

coupling function F (~r). Most required properties follow from the central limit

theorem and therefore applies to any Fjk = F (~rjk) as long as they have bounded

variance (when considered to be sampling from a distribution of pairs of positions

drawn from some distribution ρ(~rjk)). The F -Condition that depends more carefully

on the functional form of F (~r), due to the transformation →1, is that

E[FB]

N2E[F 2]E[FB−2]
0 (2.26)

for all B ≥ 3. It is difficult to say for general F (~r) when this is satisfied and when it

is not, but it can be determined in some cases through the use of inequalities. If we

can find a quantity that is greater than E[FB](N2E[F 2]E[FB−2])−1 that vanishes

in the large N limit, then so will E[FB](N2E[F 2]E[FB−2])−1. We will implement
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this strategy for F (~r) of the form | F (~r) |∼ r−α for some positive α. For such

functions, the the minimum magnitude of Fjk of all pairs, which we denote by Fmin,

is a constant i.e. Fmin ∼ N0. This is because the distribution function ρ(~r) is taken

to scale with N such that the subsystem spatial density is constant. We similarly

define Fmax ∼ N−α/D where D is the number of spatial dimensions. This is because

rmax ∼ N1/D, again because of the subsystem distribution scaling.

Using these observations, we make another:

E[FB] =

(
N

2

)−1∑
(jk)

∣∣Fjk∣∣B ≤ (N
2

)−1∑
(jk)

FB−2
jk F 2

max = E[FB−2]F 2
max (2.27)

and similarly

E[FB] ≥ E[FB−2]F 2
min (2.28)

Using the first inequality, we can re-express the non-trivial F -Condition 2.26 as

E[FB]

N2E[F 2]E[FB−2]
≤ F 2

max

N2E[F 2]
(2.29)

and thus a sufficient but not necessary condition for the satisfaction of this F-

Condition is that F 2
max/(N

2E[F 2])→ 0. We will explore the particular case of α = 1

since it corresponds to the interaction of a common boson bath with the collective

system, but these inequalities could be examed for other coupling constants, and if

not satisfied then perhaps a tighter upper bound could be found.

As derived in Appendix A, for α = 1 and in D spatial dimensions (for D = 2 or

3 which are the dimensions of interest), E[F 2] ∼ N−2/D log(N)3−D. Since Fmax ∼

N−α/D = N−1/D, then F 2
max/(N

2E[F 2]) scales as ∼ N−2/DN−2N2/D log(N)D−3 =

N−2 log(N)D−3 → 0 for the allowed values of D (2 and 3). Thus the inequality is

established for α = 1.

We make a quick sidenote for the sake of a future reference, when we find the

spectrum of the single qubit Hamiltonian in Chapter 3: there we will meet the same

F-Condition but with N2 replaced by N . As can clearly be seen, in this case the
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fraction still vanishes, thus establishing the F -Condition in that case as well.

2.6 The Energy Spectrum

We now use these spectra to calculate the spectral density function via (2.2). We

approximate the spectra by truncating the sum at some cutoff pmax which well

approximates the function near its center and with the validity extending into the

tails for larger pmax. For example, a gaussian distribution can be well approximated

this way to around 3 times its width with pmax = 6.

First, let us demonstrate that the odd moments become negligible for large N ,

making the spectrum asymptotically symmetric. We do this by grouping consecutive

even and odd terms in (2.2) as so:

F (ξ) =
∞∑
p=0

(iξ)p

p!
σ(p) =

∞∑
p=0

((iξ)2p

(2p)!
σ(2p) +

(iξ)2p+1

(2p+ 1)!
σ(2p+1)

)
=
∞∑
p=0

(iξ)2p

(2p)!

(
1 +

iξ

2p+ 1

σ(2p+1)

σ(2p)

)
σ(2p)

(2.30)

We now show that the term in parenthesis, 1 + iξσ(2p+1)/(σ(2p)(2p+ 1)), asymptotes

to 1 for large N , making the spectrum’s fourier transform asymptote to

F (ξ) =
∞∑
p=0

(iξ)2p

(2p)!
σ(2p) =

∞∑
p=0

(−ξ2)p

(2p)!
σ(2p) (2.31)

To come to this conclusion, let us recall the N scaling of the various quantities

appearing in iξσ(2p+1)/(σ(2p)(2p + 1)). Only the moments are not constant

with respect to N . For even p, σ(p) ∼ NpE[F 2]p/2, and for odd p, σ(p) ∼

NpE[F 2]p/2E[F ]3/E[F 2]3/2. Thus the N scaling of the ratio of the even and odd

moments is
σ(2p+1)

σ(2p)
∼ N2p+1E[F 2]p+1/2

N2pE[F 2]p
E[F ]3

E[F 2]3/2
= N

E[F ]3

E[F 2]
(2.32)

By the central limit theorem (and the definition of E[F ] as its average magnitude,
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not it’s average value of 0), E[F ] ∼ E[F 2]1/2/N and therefore

σ(2p+1)

σ(2p)
∼ N

E[F 2]3/2

E[F 2]N3
∼ E[F 2]1/2

N2
(2.33)

Since the coupling strength decreases with distance, and as we increase N we

increase the total system size by adding new subsystems to the ‘edge’ of the system,

this ratio indeed vanishes for large N - in fact, to conclude as such we require only

that the average magnitude of Fjk does not grow with N . Since the ratio of the

even and odd moments contained all the N -dependence of iξσ(2p+1)/(σ(2p)(2p+1)),

then this fraction vanishes for large N , justifying the exclusion of the odd moments

in the same limit.

Using the value of σ(p) for even p, we finally have that

F (ξ)→
∞∑
p=0

(
iξ)2p

(2p)!
σ(2p) =

∞∑
p=0

(
iξ)2p

(2p)!

(2p)!

p!

(
N(E[F 2]/8)1/2

)2p
=
∞∑
p=0

(
− ξ2N2E[F 2]/8

)p
p!

= e−ξ
2N2E[F 2]/8

(2.34)

which is a gaussian function of ξ. The fourier transformation of a gaussian is

another gaussian, and so the eigenvalue distribution is a gaussian with width equal

to NE[F 2]1/2/2.

The specific magnitude of E[F 2], and therefore f(λ), will depend on the particulars

a given coupling for some specific system. However, the N scaling of these quantities

depends only on the exponent of the coupling α and the geometry of the computer.

Thus we may speak generally about the N scaling of the moments, and therefore the

size of the distribution, without specifying anything about the system other than

the exponent on the coupling and whether it lives in 2 and 3 dimensions (assuming

it has a regular shape, such as a box, sphere or gaussian cloud). As noted previously,

and as shown in Appendix A, for α = 1 and D = 2 or 3, E[F 2] ∼ N−2/D log(N)3−D.

Therefore the 2p-th moment scales as N2pE[F 2]p ∼ N2pN−2p/D log(N)p(3−D). We

can compare the different moments to each other by raising them to the 1/(2p)
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power, making them all have the same units. Upon doing this, we see that they

all scale uniformly with N as N1−1/D log(N)(3−D)/2. Thus the entire distribution

uniformly grows in size with N while preserving its shape, and the scaling of its

size factor is N1−1/D log(N)(3−D)/2. Since all moments scale in the same way, we

can take this scaling to be the scaling of the timescale of the dynamics generated by

the interaction Hamiltonian (once raised to the 1/2p power, the 2p-th moment has

units of inverse time, meaning that as it increases, the timescale of the dynamics

becomes shorter). We will have more to say about what this final scaling result can

tell us about such systems in the following chapters.

2.7 Conclusion

We have now estimated the eigenvalue spectrum density for a wide class of pairwise

interaction Hamiltonians for an ensemble of two-level systems, and expressed them

in terms of the typical value of F 2
jk averaged over all pairs. The constraints specified,

including the large N limit, are physically relevant. We now explore what can be

learned from this approximate spectrum about the physical systems which obey

these constraints. Because the approximation error decreases without bound with

the system size, and systems with N ∼ 1026 and much larger are commonplace, we

anticipate that observations made about such systems according to its spectrum

might have relevance to physical systems which can be found or created.
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3 Implications for Quantum Computing

3.1 Introduction

A quantum computer is a physical system which obeys the constraints under which

the spectrum calculation of Chapter 2 applies. This can be said in generality

because the two-level systems, or qubits, which comprise the computer must be able

to interact with experimental instruments which implement the algorithm; if the

qubits were completed isolated from another, no entanglement or multi-qubit gates

could be performed, which are essential for quantum computation. This means

the qubits must share an environment (in some sense any two pieces of the same

universe share an environment, but the needs of quantum computation demands

that they share a very immediate environment). Although pains may be taken

to minimize the interaction with their environment, it is both an experimental

fact and a theoretical necessity that some interaction always takes place. This

interaction is due to the exchange of bosons, the force carriers of our universe.

For an atomic system, for example, photons would be such a boson. It is well

known that when two-level systems interact with a common boson field, the effective

Hamiltonian includes the exchange type, defined in Chapter 1, with a coupling

exponent α = 1 i.e., the interaction strength between two qubits falls off like one

over their separation to the first power. As observed there, all necessary conditions

for the derivation of the asymptotic spectrum moments are met for α = 1. Not

all errors afflicting the quantum computer will have this form, but since this one

grows without bound then either this error dominates for large N or there is an

even greater error source. Either way, if this error alone is enough to cause the

breakdown of scalable fault-tolerance, then it will fail no matter if there is some

greater error or not.

For any specific implementation of a quantum algorithm, which takes a fixed and

finite amount of time, if the error rate is low enough it will be likely to succeed.

This means the output will be likely to be correct (given the random collapse during
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the measurement of the final quantum state of the computer, most algorithms aim

to make the correct answer likely, not guaranteed - this is particularly useful for

problems such as integer factorization whose answer is difficult to identify but can

be easily verified). Much effort is expended to reduce the coupling of the qubits to

environmental degrees of freedom and each other in the pursuit of controlling the

system. Error rates due to unwanted interactions can never be zero, but can be

mitigated so that the decay or decoherence it causes is not fatal to the function the

quantum control protocol.

As discussed in Chapter 1, making the errors so slow that their time scale is not

relevant over the entire length of the computation has not proven to be a viable

solution - instead quantum error correction techniques are implemented as the

algorithm goes along. With this approach, the timescale of the errors need only be

slow enough compared to the timescale of a single gate, not the entire computation.

In addition to being a more practical way to approach error correction, this approach

has the added benefit of mirroring the classical case.

In classical computing, algorithms are fundamentally classified based on how the

time or space (memory) resources needed scale with the size of the problem or the

size of the input. Although predicting precisely how long a given computation will

take is difficult, discerning the scaling with input size for large inputs is much less

so. The asymptotic scaling of the resources needed has proven to be a meaningful

categorization; for example, the non-existence of an integer factorization algorithm

which is polynomial in time is a fact which greatly concerns many scientists in

many fields [11]. It’s non-existence has not been proven but it also has not been

found despite decades of intense search. Were such an algorithm found, it would

have profound consequences - Shor partially solved this problem by identifying such

an algorithm for a quantum computer [12], and it inspired the field of quantum

computation. However the identification of such an algorithm would have, by itself,

no implications for the actual factorization of integers, for who is to say that this

polynomial algorithm is faster than our current exponential algorithms for any size

of integer that any human ever has or will desire to factor? However, informed
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by the historical trend of the discovery of algorithms, we expect this not to be

the case. Although it need not be for the particular values of N which interest

humans in their computations, the scaling of a process with N for large N has

proven to be a good indicator of whether a computational problem is easy or hard

even in practice. For example, although one could not in principle add any two

given integers together using today’s best computers, the limits of computation

are not relevant for addition of the kinds of numbers humans wish to add. In the

other extreme, the inability to factorize integers of a size which can easily be stored

in modest computers is so reliably difficult that it forms the basis of the world’s

computer security, the RSA encryption scheme. Why the exponential-polynomial

divide has proven such a good classification tool for the human computational scale,

or more generally that the N scaling for arbitrarily large N has such meaning on

our finite scale, remains somewhat a mystery. If this classification scheme were not

so meaningful for quantum computers, that would be of interest. The N scaling

arguments presented in this thesis imply that fault-tolerant algorithms are not

scalable for arbitrarily large N , and therefore if quantum algorithms do prove useful

in practice, a different classification scheme will be necessary. We will not attempt

here to speculate on such a possible new classification scheme.

If one does hope to have fault-tolerant, scalable quantum computing, as many do,

one must find a way to error correct during the computation such that errors do not

accumulate, meaning that the same error correction protocol will work no matter

how long the computation is. Of course, the error correction takes both time and

space resources, but in the classical case it adds only a polynomial overhead, and

therefore leaves algorithms unchanged with respect to the polynomial-exponential

classification. As might be hoped, a similar result was found for quantum error

correction in what is known as the Threshold Theorem [16, 17, 27]. According

to this theorem, error correction with the desired properties (scalable with only

polynomially many extra resources on top of the ideal algorithm) is possible under

certain conditions. This result, and the generalizations that followed, is the source

of much optimism in the field of quantum computing. Appendix C summarizes the
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main ideas of the Threshold Theorem in greater detail.

Due to the inability to measure and therefore assess errors in a quantum system

without destroying it, the possibility of active quantum error correction was long

thought impossible; however, in the 1990s, it was demonstrated that it is possible

to encode the state of one quantum two-level system into many quantum two-level

systems in such a way that partial measurement can be made on the ensemble with

enough information gleaned so as to assess and correct the error, but not so much as

to have destroyed the quantum coherences which encode the state of the so-called

logical qubit [45]. This task is the quantum analogue of determining whether a

classical bit has been flipped on accident without looking to see whether it is 0 or 1.

The subsequent Threshold Theorem improved upon this result, showing that this

kind of active error correction can be done successfully for an arbitrarily large and

long computation, provided that the interaction obeys a certain set of assumptions

that are independent of the length of the computation or the size of the computer

[15–19]. Although in its first version these assumptions were strict and non-physical,

subsequent generalizations have extended the essential result to a much wider class

of interactions, including many of those actually encountered in quantum computer

experiments today. As was discussed in the Chapter 1, the exchange interaction

does not obey the conditions set forth by the most current version of the Threshold

Theorem [27]. However, since the result has been extended multiple times before,

this alone may not cause concern - surely some future Threshold Theorem might

show that the boson exchange interaction, too, is correctable in a scalable way. As

the theorem gives sufficient but not necessary conditions, its failure to apply to the

exchange interaction does not mean that error is not error correctable, only that

further work is needed to show that it is.

One of the main hopes for a quantum computer is that it can might solve certain

problems much faster than classical computers. In particular, it is known that some

problems for which the best known classical algorithm takes an amount of time that

scales exponentially with the size of the input can be solved with only polynomial

scaling time on an ideal quantum computer [12]. As discussed, this scaling is
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determined asymptotically for arbitrarily large inputs. Thus, if this same kind of

speed-up is hoped to be demonstrated on a physical, non-ideal quantum computer

with errors, the Threshold Theorem must be proven for arbitrarily large computers,

as this scaling distinction is only made in this limit. Indeed, the Threshold Theorem

is proved for an arbitrarily large quantum computer, i.e., one which contains an

arbitrarily large number of qubits. In this section, we argue that the spectrum of

the exchange Hamiltonian, derived in Chapter 2, implies that the rate of errors

it causes becomes arbitrarily fast when compared to the time it takes to perform

single gate, which is considered fixed with respect to N . This would mean that

error correction is not possible when no limit is placed on N , as the errors would

eventually become much faster than the error correction scheme, no matter how

fast the error correction scheme is. In this case, no conceivable Threshold Theorem

could prove that errors due to this Hamiltonian are correctable in a scalable way

unless the definition of scalable were altered.

So why is this worrisome? Just because there exists some computer size at

which error correction fails, who’s to say that that size is anywhere near what

an experimentalist may ever attempt. After all, there are limits to the size of

classical computers, imposed for example by the total amount of energy in the

observable universe, and yet the conceptual framework which involves hypothetical

arbitrary scaling still proves meaningful. However, error correction is considered an

essential part of both classical and quantum computation while the finiteness of the

observable universe is not, and thus restrictions placed based on it should be taken

more seriously.

Practically speaking, if this error grew large for a physically realized N , it would

simply be a matter of improving the technology so as to push that N limit larger

until it is no longer an issue. Although it may be that this is does not significantly

hinder the aims of quantum computers, it does point to a fundamental difference

between classical and quantum computation that I am not aware has been observed

before. The following scenario demonstrates this definition.

Consider a fixed system size and coupling magnitude (for example, 1/137). One could
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conceivably manufacture faster and faster gates so that the necessary conditions

of the boson interaction is met, that it is slow enough that a single fault-tolerant

quantum gate (which performs the logical operation as well as checks for and

corrects errors) can be implemented at a success rate above some threshold which

guarantees fault-tolerance. Since error correction occurs as the computation goes

along, as long as a single gate can be performed with high (enough) fidelity, defined

by the threshold, then a computation of any length can be performed without an

overall failure rate that grows to 1 for long computations (this is oversimplifying

a bit, but gets the idea across in the relevant way for the present discussion -

showing that fault-tolerance of a single gate implies fault-tolerance of the entire

computation is not so straight-forward). As we will see, for any fixed timescale

of computation, as the system size increases, eventually the exchange interaction

will decay or decohere the system so quickly that the computation’s outcome is

unhelpful. This is in contrast to the case of classical computing, where error rates

are independent of computer size. For a classical computer, no such interaction

exists because the interaction is described by a quantum Hamiltonian. To see the

difference between this and the classical case, consider a physical classical machine,

comprised of bits, that runs an algorithm to, say, add two numbers. Concurrently

with the adding algorithm, it will also run some sort of error correction scheme

since bits can be randomly flipped by the environment that the environment is

located in. If one wished to improve the machine so as to double the number of

digits allowed for the maximum input size, one would need to double the number

of bits in the computer. Another copy of the original computer would work, so

long as you could hook the two up in a way that allowed the two computers to act

in concert on a single instance of the addition algorithm (augmented with error

correction). The same algorithm executed on the same technology can produce

reliable results in this manner, so long as one is willing and capable to expand the

physical volume of the computer and wait longer for the computation to finish. If

there are no changes to the technology or algorithm then at a minimum the volume

would need to double, but due to heat considerations or other physical factors it

may need to be increased by more. Of course, many technical challenges exist to
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increase the speed at which computation occurs, as well as how to store it in a

physically smaller volume, but in principle one can double the size of a problem that

a classical computer can solve with a copy of that computer and sufficient space to

store it in and sufficient time to wait for it to complete. This process can be greatly

improved upon by reducing errors, writing better algorithms, and physically smaller

bits and machinery that manipulates them, but even without these improvements

the process can be repeated to add ever larger and larger numbers until one runs

out of space or time. Past technological progress has allowed for computers to

shrink drastically in size and increase drastically in speed, and many of the same

technological difficulties have and will arise for quantum computers. However, if the

error rate per qubit grows without bound with the total number of qubits, as we will

demonstrate in this section using the derived spectrum, then there is an additional

engineering problem on top of all of these already well-known challenges, which

is unique to quantum systems and possibly not yet encountered in real quantum

computers due to their currently small size. If, like in the case of the classical

computer, we wish to increase the size of the problem that a quantum computer

can solve, we cannot simply make it bigger. Because the error rate scales with

system size, if the same technology and algorithm (including the error correction)

are used on ever larger machines, eventually they will fail, unlike in the classical

case where in principle they will work as long as you have enough time and space.

Note that simply increasing the computer size to decrease the qubit-qubit coupling

does not help, since the gate time is limited by causality to scale in the opposite

way, meaning that the ratio td/tg, with td being the decoherence time and tg the

gate time, cannot shrink indefinitely in this way (although it could shrink some, as

current gate times are far above the minimum times dictated by causality) Thus

if one has access to a certain kind of quantum technology, including a quantum

algorithm and error correction, then even if they had enough time and space to

build a bigger computer and wait for it to complete the algorithm, the outcome of

the algorithm will, at some point in the scaling process, no longer be useful because

it has been scrambled by errors. No such failure occurs for the analogous classical

case, pointing to a fundamental difference between the two.
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How much larger does the computer need to get before this happens? Estimating

this threshold N at which the interaction becomes a problem is highly dependent

on the specific algorithm and technology used, and could be the subject of much

further study. In this thesis, we will stick to general statements about such systems

in the large N limit, without reference to a specific implementation or value of N ,

since the asymptotic N scaling does not depend on implementation, only computer

geometry and the coupling exponent α, which we take to be 1 from the boson

coupling. Although there is always an interaction with a boson field, often a different

error is dominate for the finite N encountered in real quantum computers; some of

these errors fit the form of the exchange Hamiltonian with α 6= 1 and so might also

be investigated with this technique.

3.2 N-dependent Error Rate

I claimed above that the error rate in a quantum computer grows without bound

with the number of qubits; in this section, we will show how this follows from the

spectrum calculated in Chapter 2. We will go about this in two different ways:

first by computing the decoherence time of a single subsystem which is part of a

collection of N identical systems, and second by calculating the spectrum of the

single qubit Hamiltonian, Hj =
∑

k 6=j Hjk, and using its width to estimate the

timescale of single qubit dynamics. These two methods give the same result through

different means, strengthening both arguments.

3.2.1 First Approach: Reduced Density Matrix

Suppose we have some initial state |ψ(0)〉 =
∑

q cq |q〉 which evolves according to the

Schröedinger Equation i∂t |ψ(t)〉 = H |ψ(t)〉 for some operator H conforming to the

kind prescribed in Chapter 2. Define cq(t) such that cq(0) = cq and 〈q | ψ(t)〉 = cq(t)

for all q. For the eigenbasis {|λ〉} defined by H |λ〉 = λ |λ〉, if |ψ(0)〉 = |λ〉 then

〈λ | ψ(t)〉 = e−iλt. By the linearity of the Schröedinger Equation, if |ψ(0)〉 =
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∑
λ fλ |λ〉 then |ψ(t)〉 =

∑
λ fλe

−iλt |λ〉. The initial state can also be expressed

in the computational basis, |ψ(0)〉 =
∑

q cq |q〉, and the fλ and cq are related by

fλ =
∑

q cq 〈λ | q〉 or cq =
∑

λ fλ 〈q | λ〉. Note that, due to normalization, the

average magnitude of 〈q | λ〉 is 2−N/2 because for any basis x,
∑

x |x〉 〈x| is the

identity operator and therefore 1 = 〈q | q〉 =
∑

λ 〈q | λ〉 〈λ | q〉, so the average value

of 〈q | λ〉 〈λ | q〉 =
∣∣〈q | λ〉∣∣2 is 2−N since there are 2N of them and their sum is 1.

Using this, we can write cq(t) as

cq(t) = 〈q | ψ(t)〉 =
∑
λ

fλe
−iλt 〈q | λ〉 =

∑
λ

∑
q′

cq′(0) 〈λ | q′〉 〈q | λ〉 e−iλt

=
∑
q′

cq′(0)
∑
λ

〈q | λ〉 〈λ | q′〉 e−iλt

=
∑
q′

cq′(0)Λqq′(t) , Λqq′(t) =
∑
λ

〈q | λ〉 〈λ | q′〉 e−iλt

(3.1)

Note that at t = 0, Λqq′(0) = 〈q|
∑

λ |λ〉 〈λ| |q′〉 = δqq′ as is required for consistency

at t = 0:

cq(t) = cq(0)Λqq(t) +
∑
q′ 6=q

cq′(0)Λqq′(t) (3.2)

The coefficient of cq(0) in cq(t) is Λqq(t) =
∑

λ | 〈q|λ〉 |2 e−iλt. The size of this

coefficient measures how much the value of cq(t) directly depends on its initial value

cq(0). In the sum over λ in Λqq(t), each summand is the phase e−iλt multiplied by a

positive real number. For any fixed distribution of the λ, once t is large enough the

phases λt mod 2π will be distributed uniformly between 0 and 2π; the sum will have

become dephased and average to zero. A sum with X randomly signed summands

drawn from a distribution centered about a mean magnitude Y averages to zero and

has typical magnitude
√
XY . Brownian motion is a well known example of this in

physics, where the direction is chosen randomly but the distance moved during each

step is fixed or centered on some typical length scale; its typical displacement after

some number of steps scales with the length scale to the first power and the square

root of the number of steps. In the case of Λqq(t), the sum over q has 2N summands,

and average value of the
∣∣〈q | λ〉∣∣2 is 2−N by normalization - therefore although its
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average is zero, its typical magnitude is ∼
√

2N2−N ∼ 2−N/2. For long enough times

Λqq(t) becomes arbitrarily small for arbitrarily large N , but at t = 0 it is equal to 1

and for some interval after it will have a non-arbitrarily-small magnitude. Because

this shrinks to zero for large N , that means if we wait long enough then cq(t) has

almost no relation to cq(0). The value of cq(t) typically has, for long enough times,

the same weight given to cq(0) as cq′(0) for all other q′. This means that for large

N , where there are vastly more than one q′ 6= q, the value of cq(t) has much more to

do collectively with the initial states of the other subsystems than cq(0) itself. This

kind of evolution is desirable in the case of a logical gate, but the interaction in

question describes errors due to the exchange of bosons, something that cannot be

controlled or predicted with certainty. Once the condition that
∣∣Λqq(t)

∣∣ ∼ 2−N/2 is

met, the system will have changed characteristically such that its relationship with

its initial condition is almost entirely obscured. We call the timescale over which

this occurs t1, and next we will calculate its scaling with N as well as show that it

is an upper limit on the decoherence time i.e., decoherence must have occurred by

the time t1. However, first, we repeat this analysis on the Λqq′(t) for q 6= q′ for later

use.

For q 6= q′, Λqq′(t) =
∑

λ 〈q | λ〉 〈λ | q′〉 e−iλt is typically vanishingly small for all

times because the sum is always decoherent. Λqq′(t) is an out of phase sum over

2N summands, each with typical magnitude 2−N . Since there are 2N summands

with random phases with typical magnitude 2−N , the typical magnitude of the

sum is
√

2N2−N = 2−N/2. The product of two different 〈λ | q〉 and 〈λ | q′〉 for

q 6= q′ will have a random phase, since there is no special relationship between the

computational basis and the eigenbasis.

Now let f(λ) be the distribution of eigenvalues and σ its width. WhenN is very large,

the real part of the initially macroscopic sum
∑

λ | 〈q|λ〉 |2 e−iλt is well approximated

by the integral
∫∞
−∞ f(λ) cos(λt)dλ. The imaginary part is always vanishingly small,

so we focus on the real part since it must be responsible for the initially non-

vanishing value. For example, when f(λ) is gaussian i.e. f(λ) = e−λ
2/2σ2

/
√

2πσ,

then as t varies from 0 to ∞, this integral will monotonically decrease from 0 to 1.
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We define t1 as when this integral equals 2−N/2, its typical magnitude value when

treated stochastically:

2−N/2 =

∫ ∞
−∞

e−λ
2/2σ2

√
2πσ

cos(λt1)dλ = e−t
2
1σ

2/2 =⇒ t1 =
N1/2

σ

√
log(2) (3.3)

Similar analysis could be performed for any given eigenvalue distribution f(λ), and

it is possible that the the time t1 scales as N1/2/σ for a wide class of Hamiltonians.

Let us now observe that t1 is an upper limit on the decoherence time. This will be

done by examining the off-diagonal elements of the reduced density matrix in the

computational basis, for some singled out qubit which we will call j. When these

off-diagonal elements become vanishingly small, decoherence has occured. This is

a common view of decoherence [46] and makes intuitive sense since |α|2 |1〉 〈1| +

|β|2 |0〉 〈0| is the classical ensemble with probabilities due to observer ignorance

associated with the quantum state |α|2 |1〉 〈1|+|β|2 |0〉 〈0|+ αβ∗ |1〉 〈0|+ α∗β |0〉 〈1|

with intrinsically quantum probabilities. However, the definition of decoherence

cannot precisely be ‘when the reduced density matrix becomes diagonal’ as of course

there is always a basis in which this is true. There is nothing special about the

computational basis, as the computation could be done in any basis (in other words,

the ‘up’ and ‘down’ state could be mapped to any two orthogonal states). Having

nothing special about it is precisely the desired property - for the following results

will be true for any generic basis, the exception being the one in which the interaction

is diagonal. Identifying this diagonal basis would be a computationally difficult task,

and the ability to perform it would call into question the very need for the quantum

computer. Since it would need to be completed before operating the quantum

computer, it therefore must be done classically, and classically diagonalizing a

matrix which grows exponentially in system size (the Hamiltonian is 2N by 2N)

is well known to take an exponentially long amount of time. Thus to the extent

that we hope for quantum computers to be able to surpass classical computers, we

discount the possibility of performing such a diagonalization and using that basis

as the computational basis, which would render the following results untrue. The

decoherence time will apply to generic bases, where generic means that it does not
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relate to the interaction eigenbasis in any special way; we will do the calculations

in the computational basis which is an example of one such generic basis but use

only its generic properties, allowing the results to apply to any basis except the

special one described above. In summary, the decoherence time will be how long

it takes the off-diagonal reduced density matrix elements in a generic basis with

non-negligible initial off-diagonal density matrix elements to evolve to their typical,

vanishingly small (with large N) magnitude.

Typicality is defined by what is overwhelmingly likely for a state chosen with uniform

random components in the computational (or any other) basis. A typical state can

be generated by choosing 2N phases uniformly from [0, 2π], choosing 2N magnitudes

uniformly from [0, 1], dividing each magnitude by the squared sum of all magnitudes,

multiplying the phases by the magnitudes, and assigning these products at random

to the 2N different cq. The division of the magnitudes is necessary so that the state

is normalized i.e.,
∑

q

∣∣cq∣∣2 = 1. After normalization, the average value of
∣∣cq∣∣ is

exactly 2−N/2; for large N , if we skip the normalization step but instead choose the

magnitudes from some distribution centered around 2−N/2, the resulting state will

typically be very close to normalized.

Let the initial state of the ensemble be |ψ〉 =
(
a |0〉j + b |1〉j

)
⊗
∑̃

rcr |r〉, where j

is the subsystem in question and
∑̃

r is the sum over the computational basis of

the N − 1 other sub subsystems. Such a product form ensures that the off-diagonal

elements of the reduced density matrix are not vanishingly small. Let cr0(0) = acr

and cr1(0) = bcr, where |r0〉 is the computational basis element of all N two-level

system with the subsystem j in state 0 and the rest of the system in state r, and

similarly for |r1〉. Using (3.1), the time evolution of the off-diagonal matrix element
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ρ01(t) is

ρ01(t) =
∑̃
r

cr0(t)c∗r1(t) =
∑̃
r

∑
q,q′

cq(0)c∗q′(0)Λr0,q(t)Λ
∗
r1,q′(t)

=
∑̃
r

∑
q,q′

cq(0)c∗q′(0)
∑
λ,λ′

ei(λ
′−λ)t 〈r0|λ〉 〈λ|q〉 〈q′|λ′〉 〈λ′|r1〉

=
∑̃
r

[∑̃
r′,r′′

(
cr′0(0)c∗r′′0(0)Λr0,r′0(t)Λr1,r′′0(t) + cr′0(0)c∗r′′1Λr0,r′0(t)Λr1,r′′1(t)

+ cr′1(0)c∗r′′0(0)Λr0,r′1(t)Λr1,r′′0(t) + cr′1(0)c∗r′′1(0)Λr0,r′1(t)Λr1,r′′1(t)

)]

=
∑̃
r

[∑̃
r′,r′′

(
| a |2 cr′c∗r′′Λr0,r′0(t)Λr1,r′′0(t) + ab∗cr′c

∗
r′′Λr0,r′0(t)Λr1,r′′1(t)

+ a∗bcr′c
∗
r′′Λr0,r′1(t)Λr1,r′′0(t)+ | b |2 cr′c∗r′′Λr0,r′1(t)Λr1,r′′1(t)

)]
(3.4)

Let us examine more closely the four terms comprising ρ01(t) in the final line. Even

though for a generic subsystem j in a generic state, ρ01(t) is arbitrarily small for

large N , by assumption we have begun with initial conditions such that ρ01(t)

is initially finite and by continuity of the Schrödinger Equation it must remain

finitely large for some time interval afterwards. Thus, for the initial value of ρ01(t)

to be nonvanishingly small with large N , there must be at least one of the four

terms which are non-vanishingly small initially. Additionally, since each term is a

continuous function of time, that quantity will remain finite for some interval of time

afterwards. During this interval, the only non-vanishing contribution to its value

is from terms in (3.4) with a coefficient Λqq(t), which happens when r = r′ = r′′

and the a and b coefficients is ab∗, not a∗b, |a|2 or |b|2. The condition on the a and

b coefficients make sense because ρ01(0) = ab∗, so the coefficient of that term in

(3.4) must be initially non-vanishing, and all the others must be initially vanishing.

After t1, even the Λqq′(t) with q = q′ will become vanishingly small, meaning that

ρ01(t > t1) itself is vanishingly small. Again this makes sense because for almost

all of Hilbert space this quantity is vanishingly small for any qubit j, and since

the exchange Hamiltonian is highly non-diagonal in the computational basis, the



3.2 N-dependent Error Rate 56

evolution it generates will not keep initial states for which this is not true in that

tiny fraction of Hilbert. Once the off-diagonal element is vanishingly small in the

computational basis, that qubit has decohered, as discussed above. Since t1 is the

time at which this occurs, we may say that by t = t1 the N − 1 two-level systems

have decohered the singled-out qubit j. This establishes the claim above, that t1

is an upper bound on the decoherence time. This means most of the information

initially in the single-out two-level system has leaked into the other N − 1 two-level

systems. Past t1, when all Λqq′ are vanishingly small for q = q′ and q 6= q′, we can

see from (3.4) that the value of ρ01 for qubit j is due much more to the state of

the other qubits than its own initial conditions; its initial information has almost

leaked out entirely into the rest of the system.

3.2.2 Second Approach: The Single Qubit Hamiltonian

Here, we will examine the single qubit Hamiltonian instead of the entire Hamiltonian.

The single qubit Hamiltonian Hj is defined by singling out a subsystem j and

including only terms in the Hamiltonian which directly act on j, i.e., Hj =
∑

k 6=j Hjk.

For short timescales, the time evolution according to this Hamiltonian only will

approximate the dynamics of the reduced density matrix for subsystem (qubit)

j. If the single qubit Hamiltonian commuted with the entire Hamiltonian,

[Hj,
∑

(kk′) H(kk′ ] = 0, then the reduced density matrix for j would be correct

for all times. However for Hjk = Fjk(σ
+
j σ
−
k + σ−j σ

+
k ) this is not the case, and for

times when t2
∣∣[Hj, Hjk]

∣∣ is on the order of t
∣∣Hj

∣∣ for some k, then the approximation

will break down. This can be thought of as the inaccuracies of the state of qubit k,

due to the lack of terms Hkk′ for k′ 6= j, leaking back into the dynamics of qubit j

and indirectly causing inaccuracies there. Thus, the decoherence time calculated

according to the full Hamiltonian versus just the single qubit Hamiltonian might be

different. Does the inclusion of all terms Hkk′ for k, k′ 6= j in the Hamiltonian tend

to increase or decrease the decoherence time, or neither? This will come down to

whether or not the collective effect of all other qubits is coherent or decoherent; if

it is perfectly decoherent, it can’t prefer one direction or another and so must not
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affect the decoherence time on average. It is reasonable that the effects approach

decoherent for large N because the phases of the interactions becomes uniformly

distributed in [0, 2π]. But the effect under consideration here is not characterized

by the interactions Hjk whose relative phases become completely random, but

rather by the difference between including or excluding Hkk′ for k, k′ 6= j. It

is not so clear what the coherence or decoherence condition is; we will look for

evidence that the different single qubits Hamiltonians have no special phase relations

amongst themselves by comparing each of their spectra to the spectra of the full

Hamiltonian. In order to do so we must first calculate the spectrum of the single

qubit Hamiltonian.

This will be done in a similar manner than the full Hamiltonian, although many

simplifications are possible and so we will define some quantities slightly differently

than in that case. Be warned that when changes are made we do not change the

names of these quantities so that the analogous steps in both processes are more

easily identified. We begin in the same place:

σ
(p)
j = 2−N

∑
q

〈q|Hp
j |q〉 = 2−N

∑
q

〈q|
p∏

w=1

∑
kw 6=j

Hjkw |q〉 (3.5)

First, observe that for odd p, σ(p)
j is identically zero since for all {k1...kp} (all not

equal to j) and for all |q〉, the state Hjk1 ...Hjkp |q〉 is orthogonal to |q〉 because j is

oppositely oriented in the two states, having been flipped an odd number of times.

Thus we will focus on the case of even p, which is assumed throughout the rest of

this section.

For similar reasons, each of the kw 6= j in {k1...kp} must appear an even number

of times, otherwise 〈q|Hjk1 ...Hjkp |q〉 = 0 for all |q〉. Like before, we will break the

sum over choices of all ordered sets of p subsystems not equal to j into a pattern,

subsystem selection, and subsystem assignment (S, {k}, π). We denote a term

Hjk1 ...Hjkp associated with a triplet (S, {j}, π) as
∏
H(S, {j}, π) and similarly for∏

F (S, {j}, π) = Fjk1 ...Fjkp .

The elements of S are collections of locations in the sequence {k1...kp} where each
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subsystem reference appears, {k} is the set of all subsystems which appear, and π

assigns each subsystem in {k} to the appropriate set of locations in S. For example,

Hjk1 ...Hjkp = Hj1Hj7Hj3Hj3Hj1Hj7 or {k1...kp} = {1, 7, 3, 3, 1, 7} has the pattern

S = {{15}{26}{34}} (using the labelling convention that the leftmost location in

Hjk1 ...Hjkp is labelled 1 and incrementing by 1 to the right), the subsystem selection

is {1, 7, 3}, and the assignment π pairs up the elements of S with elements of {k}

in the order that they appear as written above (these sets are mathematically

unordered, hence the need for the assignment π).

Now we can write

σ
(p)
j = 2−N

∑
S

∑
{k}

∑
π

D(S)−1
∑
q

〈q|
∏

H(S, {k}, π) |q〉 (3.6)

where as before the sum over patterns S, subsystem selection {k}, and subsystem

assignments π are assumed to be only over compatible such triplets (to be defined

shortly), and D(S) is the degeneracy factor for each triplet that is invariant with

respect to specific choices of compatible {k} or π for a given S and so written is

as D(S, {k}, π) = D(S). Let us establish again the convention that a pattern S

with u different collections in it is denoted S(u), a subsystem selection of length

u is denoted {k}(u), and a subsystem assignment π which matches up u different

things is denoted π(u).

As before, the compatibility conditions are that for (S(u), {k}(u′), π(u′′)), we require

that u = u′ = u′′. Note that S has a slight different meaning here than in the

full Hamiltonian case; since each pairwise Hamiltonian automatically has j in it,

we need only specify which other subsystem is in it. Thus there are only up to p

different collections in it, not 2p. A related deviation is that, as before, there must

be at least two different subsystems appearing in each pattern (since terms Hkk′ for

k = k′ are not allowed), but since j is always taken to be one of the two subscripts

in each pairwise Hamiltonian, u+ 1 is the total number of subsystems appearing in∏
H(S, {k}, π), not u. In particular, a pattern with only 2 different subsets in total

corresponds to u = 1, not u = 2, and so u must be between 1 and p. Additionally,
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instead of each location appearing exactly twice in two different collections, each

location instead appears exactly once. The subsystem selection and assignment {j}

and π work in the same way as the full Hamiltonian case.

We define Ω′(S(u)) to be the number of states |q〉 of the u subsystem slots

filled by any compatible {k}(u) and π(u) for which 〈q|
∏
H(S(u)) |q〉 6= 0. As

discussed in the derivation of the full Hamiltonian spectrum, this number does

not depend on which subsystems appear where in the pattern, and thus depends

only on S and not {k} or π. Defined this way,
∑

q 〈q|
∏
H(S(u), {k}(u), π(u)) |q〉 =

2N−uΩ′(S(u))
∏
F (S(u), {k}(u), π(u)). Additionally, it was observed that Ω′ does

not depend on N in the sense that it does not affect the N scaling argument, as long

as the final patterns St determined by the N scaling argument have the property

that Ω′(St) 6= 0, which we will establish once identifying them.

Due to the appearance of j in every pairwise Hamiltonian, there is a restriction

on any pattern for which there is any contribution to σ(p). Beginning with the

leftmost Hjk in Hjk1 ...Hjkp , label the pairwise Hamiltonian factors starting with

1 and incrementing by 1 to the right, as in the convention used in the example

above. We now have a sense of even or odd pairwise Hamiltonians: those with an

even or odd label according to this scheme. As observed, all subsystems in {k}

must appear an even number of times in order for there to be any contribution to

the moments. Additionally, consecutive appearances of the same subsystem must

alternate between even and odd pairwise Hjk in the sense just defined. This is

because if the state |q〉 is acted on by Hjk and j and k are not oppositely oriented in

|q〉, then Hjk |q〉 = 0. Thus when we go to act Hjkp−l−1
on the state Hjkp−l ...Hjkp |q〉

where one or more of the {kp−l−1...kp} is equal to kp−l, if there is an odd number of

Hjk appearing between the leftmost Hjkp−l in Hjkp−l−1
...Hjkp , then since j and kp−l

were oppositely aligned when that pairwise Hamiltonian acted (otherwise the whole

term would already be zero), then they are now not oppositely aligned, making

Hjkp−lHjkp−l−1
...Hjkp |q〉 = 0. So in the sum over patterns, we may consider it to

be a sum over only patterns for which each subsystem appears an even number of

times and at alternatively even and odd locations. The contribution from other
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patterns is zero and so may be omitted without consequence.

Decomposing the sum over all patterns into a sum over u and a sum over all patterns

with a specific value of u, we have

σ(p) = 2−N
p∑

u=1

∑
S(u)

2N−u
Ω′(S(u))

D(S(u))

∑
{k}

∑
π

∏
F (S, {k}, π) (3.7)

Defining E[
∏
F (S)] such that

AS(u)E
[∏

F (S(u))
]

=
∑
{k}(u)

∑
π(u)

∏
F (S(u), {k}(u), π(u)) (3.8)

we have as before the new expression of the spectrum moments:

σ
(p)
j =

p∑
u=1

2−u
∑
S(u)

Ω′(S(u))

D(S(u))
AS(u)E

[∏
F (S(u))

]
(3.9)

Note that the expectation value means something slightly different here, since j is

fixed to appear as one of the two subscripts in each pairwise Hamiltonian. Thus

while before, E[FB] =
(
N
2

)−1∑
(kk′) F

B
kk′ , for the single qubit case it is E[F b] =

(N − 1)−1
∑

k F
b
jk. In Appendix A we study these quantities in greater detail and

note that while the prefactor can change between the two cases, single qubit and

full, the asymptotic N scaling is not affected

As before, all N dependence is in AS and the E values; neither its prefactor, nor

the number of patterns or number of possible values of u, depends on N . We will

again identify a transformation (only 1 kind is needed here) which increases the N

scaling of the contribution of the pattern to σ(p)
j , and after exhaustive applications

of it we will be left with a final set of patterns {St} which, once it is observed that

Ω′(St) 6= 0, will be the only important patterns for large N .

This transformation takes any k ∈ {k} which appears 4 or more times and reduces

its occurences by 2. It does so by choosing any 2 locations in the collection in S

which k is assigned to by π, removing those 2 locations from their collection in S,
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and adding a new element to S with just these two locations. This is analogous to

→1 from the full case, but here u increases only by 1 since the new H2
jk only requires

one new subsystem to be put in it, since it is given that the other subsystem will be

j. When we choose the two locations to remove, we make sure they are consecutive

occurrences of k; that way both the old and the new subsystem references will

alternate at even and odd locations, since by assumption the old subsystem reference

which appeared 4 or more times appeared in alternatively even and odd locations.

As previously observed, the test of the necessary N -scaling properties for two

patterns S → S ′ related via this transformation is that

ASE[
∏
F (S)]

AS′E[
∏
F (S ′)]

→ 0 (3.10)

for large N . AS(u) ∼ Nu is the number of compatible subsystem selections and

assignments. As previously shown, in the large N limit the expectation values

depend only on the power to which each given factor Fjk appears. In particular, if

the set of those integers for a pattern S is B(S), then E[
∏
F (S)] =

∏
Bi∈B(S) E[FBi ]

where E[FB] = (N −1)−1
∑

k 6=j F
B
jk → N−1

∑
k 6=j F

B
jk. Note that there is no need to

add absolute values, since for any sequence or pattern with a nonzero contribution

to σ(p) has all even exponents in B(S).

Using these facts, the ratio scales as

ASE[
∏
F (S)]

AS′E[
∏
F (S ′)]

∼ E[F 2b]

NE[F 2b−2]E[F 2]
(3.11)

where 2b is the (necessarily even) number of times the chosen subset to be acted on

appeared, which was 4 or greater by assumption. The vanishing of this fraction for

all integers b > 1 is thus the condition under which the argument applies, which

if valid would mean that only the final patterns arrived at after applying this

transformation as many times as possible contribute meaningfully to the moments

σ(p). This is similar but more stringent to the condition arising in the full case

for →1; however, we noted there that the condition is still satisfied in this more

stringent case and defer to that section for the proof.
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Thus we can conclude that only the patterns arrived at after transforming each

pattern as many times as possible need to be included in the sum over patterns

which constitutes σ(p) in the large N limit. These patterns, called St, have the

property that every subsystem besides j appears exactly twice, and thus the p/2

elements of any St are pairs of locations. Ω′(St) is the same for all patterns St and is

equal to 2, since once the orientation of j is fixed in |q〉, the orientation of all other

subsystems in {k} is fixed when one requires that 〈q|
∏
H(St, {k}, π) |q〉 6= 0 for any

|q〉. All St also share a value of D(St) which is equal to 1 since both the subsystem

selection and assignment are determined uniquely from a list {k1...kp} and a pattern

S which conforms to that list. This is because the subsystem selection is simply

the set of all subsystems appearing in {k1...kp}, and since for St each subsystem

appears in two locations at which no other subsystem appears (besides j, which

is not part of the selection and assignment since it is automatically in each Fjk)

then there is no ambiguity as to which element of St pairs with which subsystem

in {k}, nor which subsystems are contained in {k}. Finally, ASt is also the same

for all St, and is equal to the number of subsystem selections compatible with St,(
N−1
p/2

)
, times the number of compatible subsystem assignments, (p/2)!. In the large

N limit, ASt is then (N − 1)!/(N − 1 − p/2)! → Np/2. The number of different

patterns St is equal to the number of ways to pair up the p/2 even locations with

the p/2 odd ones, which there are (p/2)! ways to do.

Thus the even spectrum moments for the single qubit Hamiltonian Hj, using 3.9,

are

σ
(p)
j =

p∑
u=1

2−u
∑
S(u)

Ω′(S(u))

D(S(u))
AS(u)E[

∏
F (S(u))]→ 2−p/2

∑
St

Ω′(St)

D(St)
AStE[

∏
F (St)]

= 2−p/2(p/2)!
2

1
Np/2E[F 2]p/2 = 2 (p/2)!

(
NE[F 2]/2

)p/2
(3.12)

Using again the construction of a distribution from its moments 2.2, the single qubit
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Hamiltonian spectrum’s fourier transform F (ξ) asymptotes for large N to

F (ξ) =
∞∑
p=0

(
iξ
)p
p!

σ(p) →
∞∑
p=0

(iξ)2p

(2p)!
σ(2p) → 2

∞∑
p=0

(
iξ
)2p

(2p)!
p!
(
NE[F 2]/2

)p
= 2

∞∑
p=0

p!

(2p)!

(
− ξ2NE[F 2]/2

)p (3.13)

Like the full Hamiltonian, these moments scale uniformly with N and so the shape

is constant with respect to N with only a size factor that varies with N and the

typical strength of the coupling E[F 2] (which depends on N but also the overall

coupling strength, the computer size, etc). We approximate this distribution near

its center by truncating the sum over p and plot the shape for an arbitrary size in

3.1

In contrast, the width of the single qubit Hamiltonian for the independent case,

ωσzj , has a constant width (its spectrum has only two values; 2N−1 eigenvalues are

ω and the other 2N−1 are 0). This suggests that the error dominates over the more

basic Hamiltonian for large N . This result is interesting on its own and reinforces

the conclusions drawn from the full Hamiltonian. It also implies that the single

qubit error rate might scale as the width of the single qubit Hamiltonian spectrum

which grows without bound with N . This will be the case if the effect of the other

single qubit Hamiltonians Hk for k 6= j does not prefer to increase or decrease the

decoherence time of qubit j on average (for large N). The only way one of these

preferences could be chosen is if there is a special relationship between the single

qubit Hamiltonians - however, the relationship between the full and single qubit

Hamiltonian suggests there is not. This is because the full spectrum is exactly

what one would expect if adding together N random operators together, each with

the single qubit Hamiltonian spectrum. When adding together operators in such a

manner, the eigenvalues of the composite operator will typically be
√
N times larger,

which is indeed implies the relationship between the eigenvalue density moments

in the single and full, or composite, case. By random, we mean with respect to

each other; the matrix elements themselves can be totally random or very regular
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Figure 3.1: The single qubit Hamiltonian spectrum. The vertical axis is relative
number of eigenenergies at that energy, and the horizontal axis has units of energy
but with an arbitrary scaling that will depend sensitively on many parameters. In
contrast, its shape plotted above will always be achieved for large enough N with
only its overall size determined by other parameters. Its overall size does grow
with N in an asymptotically simple way, as N1/6 in 3 dimensions and log(N) in
2 dimensions. This means that, for any parameter values, the spectrum becomes
arbitrarily wide for arbitrarily large N . The zero of the vertical axis is unlabled
because it is immaterial, amounting only to a shift to all energies by a constant
and therefore affecting only the overall complex phase of the wavefunction, an
unphysical parameter.
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looking depending on the basis chosen to write down the elements in. This implies

that if we were to multiply each single qubit Hamiltonian by a random phase before

adding them to make the full Hamiltonian, the final spectrum would not differ on

average, meaning there is no special phase relationship between the different Hj

that affects the time scale of the dynamics produced by the full Hamiltonian and

that the inclusion of the other Hk 6=j does not on average cause faster or slower

decoherence of qubit j.

The decoherence time may then be safely calculated according to only Hj, and

since the moments of its spectrum scale uniformly with N we may take this time to

be (σ(p))−1/p which has the same N scaling for all p. We will call this time t1 for

comparison with the first approach in which we found that t1 ∼ N1/2/σ where σ is

the width of the full Hamiltonian. We can see that the scaling of the single qubit

Hamiltonian moments are Np/2 smaller than that of the full Hamiltonian, so that if σ

is the width of the full spectrum then indeed t1 ∼ (σ(p))−1/p ∼
(
σ/N1/2

)−1 ∼ N1/2/σ

which agrees with the first approach. Since this has been arrived at within a different

framework and using a different assumptions, these two results lend credence to

each other.

Another way to understand this result is to look at the magnitude of the changes to

state coefficients, which is deduced from the eigenvalues. For an eigenvector with

eigenvalue λ, the magnitude of the change it experiences in a time step dt is equal to

λdt. For a superposition of eigenvectors (which of course any state can be expressed

as), each of its eigencomponents changes by a different amount according to its

eigenvalue. For a random or typical vector, its total magnitude change will converge

for large N to the average change among eigenvectors, which is dt times the average

eigenvalue magnitude. The action of the full Hamiltonian upon a state is equal

to (one half) the sum of the action of each single qubit Hamiltonian i.e.,Zombie

Attack / Dueal / Bridge Explosion 5:12 Fernando Velazquez 0 1 MPEG audio file

Hfull |ψ〉 = 1
2
(
∑

j Hj) |ψ〉 = 1
2

∑
j(Hj |ψ〉). How much the full state changes depends

both on the magnitude of the changes made by the various Hj , as well as the phase

relations between these various changes. Since they each have typical magnitude
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√
σ

(2)
j

1/2

= σ, the total change could be either Nσ if they are all perfectly in phase,

or typically of magnitude
√
Nσ with a random sign if they all have random phases.

If the moments are all multiplies by the same factor, it can be seen from 2.2 that

this amounts to a re-scaling of time. Thus if the phase relations between the changes

induced by the various Hj are randomly phased with respect to one another, we

would expect that on average time evolution is
√
N times faster than in the single

qubit case, and therefore that the moments are all
√
N times larger. As observed

above this is indeed the case, again implying that the changes in evolution due to

each Hj are randomly phased with respect to one another.

3.3 The Relative Error Rate

We have now established that the error rate increases without bound with N , but

the only way to decide if these errors are ‘fast’ or ‘slow’ is to compare them to

the rate of computation. Since active error correction is assumed, the relevant

timescale for comparison is the fault-tolerant gate time tg. Here ‘fault-tolerant’

means that, in addition to the time it takes to perform the logical gate, tg also

includes any time it takes to complete a quantum error correction cycle, typically

done after each logical operation. We argued that this comparison demonstrated the

impracticality of scalable quantum computing, since the errors become arbitrarily

fast compared to the gate time, whose function depends on the rarity of errors

during its execution. Note that it does not matter what the gate time is, for large

enough N the errors will always become much faster. One could continually make

the gate times shorter and shorter as N increases, but conceptually this would be

a very different from classical computing, where such technological improvements

are done for convenience and are not necessary in principle for arbitrary scaling of

problem size and computer size. A simple way to decrease the error rate, effectively

increasing the gate time, would be to move all of the qubits farther from each other.

Since their couplings go as inverse separation, this would uniformly slow down the

errors. We can imagine spreading the computer out as N grows so that the error
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rate is always much less than the gate time. However this does not help, because

the gate time cannot be held constant during this process; the gate time between

two qubits is bounded below by r/c where r is their separation and c is the speed

of light, so as the computer becomes more and more spread out the gate time will

need to increase as well. As the size scaling increases the gate time linearly and

decreases the coupling also linearly, we can see that there is no net impact on their

ratio. Thus such a scaling can be useful in a limited way if the current gate time is

above the lower limit imposed by relativity, but this approach cannot ultimately

avoid the scaling conclusions arrived at in this thesis.

3.3.1 Is it even a Quantum Computer anymore?

If the full exchange Hamiltonian is compared to the full base Hamiltonian ωa
∑

j σ
z
j ,

an even more concerning implication arises. This base Hamiltonian that tells us

that we have a collection of two level systems, each with energy difference ωa. For

large N , the spectrum of this Hamiltonian approaches a gaussian distribution with

a width that scales as
√
N . Thus the width of the base Hamiltonian becomes

negligible compared to the width of the interaction Hamiltonian for large N , since

the interaction Hamiltonian’s width scales as N1−1/D log(N)(3−D)/2 for D = 2 or

3, which grows faster than N1/2 in both cases. When perturbation theory is used,

a common analysis tool for modelling quantum errors, it is assumed that the

effect of the errors is small compared to the base or ideal Hamiltonian. This is

analogous to a Taylor expansion, in which a small change is added to some base

value, and the effect of this small change is estimated in a way that is accurate

so long as it is small. Due to the global phase invariance of |ψ〉, the range of

eigenvalues rather than their values characterize the timescales of the evolution

generated by an operator. For regular distributions, such as Laplace and Gaussian,

the spectrum width characterizes this range well. Unlike the case of real numbers,

their operator character makes it less simple to compare the sizes of the base and

error Hamiltonians. But one of the chief differences between operators and real

numbers is that operators need not commute; however in this case, [Hbase, Hint] = 0,
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as the operator Hint leaves invariant the number of excited subsystems of the state

that it acts on. Thus in at least one important way these operators are similar to

real numbers, lending credence to the taylor series analogy and the idea that their

timescales can be determined independently. Comparing the sizes of their widths,

then, implies that perturbation theory is inappropriate in this case, or even that

for large enough N the base Hamiltonian would become a perturbation off of the

interaction Hamiltonian. The collective system at that point has lost almost all

sense of being a collection of two level systems - this two-level structure is instead

a perturbation off some much more prominent, unknown structure. This calls

into question the very concept of a quantum computer as a collection of two-level

systems. Although errors will have dominated long before this limit is reached, it

is another way to view the unscalability implied by the interaction Hamiltonian

spectrum found in Chapter 2.
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4 Numerical Studies

4.1 Introduction

In this chapter, we will explore numerical ways to test and explore the system under

consideration in this thesis, namely an ensemble of two-level quantum systems

coupled to a common boson bath at zero temperature. First we present a novel

semi-classical algorithm to approximate the partial dynamics of such a system.

While many details of the system are lost in such a simulation, the observable that

is focused on is the status of each system in its individual, non-interacting eigenbasis

i.e., whether it is in the excited or ground state. The word ‘on’ is substituted for

‘excited’ in this code. In addition, we will refer to the subsystems as atoms, but

as is the case throughout this thesis, they may be substituted with any two-level

quantum system. While the assumptions and simplifications used are not rigorously

justified, the results qualitatively match what is known to occur in such systems

when there are initially many excitations. Because at all times each subsystem

is either in the excited or ground state, this model is referred to as the ‘Definite

Model’.

4.2 Definite Model

In the Definite Model, each atom always has a definite state: excited or ground.

This means it is an essentially classical model, but we insert the quantum mechanics

by allowing for spontaneous and stimulated emission as well as absorption.

In this model, an initial state is specified by a total number of atoms and the

fraction that are initially excited. This model is intended to work best when the

number of excitations is some finite fraction of the whole, such as N/2 which can

be physically achieved by blasting the sample with near-resonance photons for a

long time.
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During each timestep of the computation, each subsystem that is excited at the

beginning of that step is allowed some small chance of decay equal to its decay rate

Γ times the duration of the timestep, dt, which must be chosen so that Γdt << 1. If

such a spontaneous decay occurs, a photon is created in the system and accordingly

each other subsystem is immediately given a chance to absorb or emit (depending

in whether it itself is in the excited or ground state) due to the new photon. The

probability of stimulated emission and absorption must be equal, but we must

determine what this probability is.

The atomic coupling is
∣∣Fjk∣∣ ≈ Γ/5krjk which should define the timescale of their

interaction, where rjk is the separation between the pair of subsystems in the

sample. We do not include the factor of Γ because this has already been accounted

for in the spontaneous emission of the first atom; in order for the probability of

one atom emitting and stimulating another to be Γdt/5kR as desired, we require

the conditional probability of stimulated emission (conditioned on the original

spontaneous emission) to be 1/5kR. The rates of absorption are the same as that

of stimulated emission, and which is process is possible is determined by if the

other atom is excited (in which case it might undergo stimulated emission) or in

its ground state (in which case it might absorb the photon). When stimulated

emission does occur, the electric field amplitude is increased due to the presence

of another (in phase) photon, and similarly after absorption occurs the electric

field amplitude decreases as a photon is destroyed. Thus the probability 1/5kR

should be multiplied by the total number of in-phase photons due to the original

spontaneous emission (when there is no original emission, the number of photons is

zero and there is no chance of stimulated emission or absorption). We track the

number of photons, initializing the count to 1 when a spontaneous emission occurs,

and increasing or decreasing the count by 1 whenever there stimulated emission

or absorption, respectively. If at any point the number of photons becomes zero,

the process of stimulated emission or absorption stops; no more atoms are given a

chance to emit or absorb for that initial spontaneous emission. In this case, the

remaining subsytems are given a chance to spontaneously emit during that time,
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initiating the above process for each subsystem that does. When all have been

given such a chance, and the ones that do emit have the emitted photon interact

with each other subsytem, the algorithm moves onto the next time step. At each

step we record the total number of excited subsystems, so that this quantity versus

time may be graphed once the algorithm is finished.

In a reflective cavity each emitted photon bounces around until measurement,

continually stimulating emission and absorption for every atom; however, the MOT

is contained in absorptive walls, which effectively measure the photons when they

strike the wall. This justifies the idea that each emitted photon has one chance to

stimulate emission or be absorbed by each atom as it ‘passes by’. If these different

processes were happening continuously, as in the case of the reflective walls, their

relative phases would become of great importance as time passes, when certain

possibilities constructively or deconstructively interfere in complicated ways. Thus

we can think of the computational time step to be the time it takes for a photon

to radiate from the sample to the walls; as is required of the timestep, this is

much smaller than the timescale of the dynamics of the Hamiltonian. There still

could be interference between different spontaneous emission processes that occur

in the same computational time step, but neglecting these yields a great increase in

computational efficiency. We hope that the small photon travel time, coupled with

the large sample size, make this approximation valid. Comparison with experiments

might determine if these assumptions are valid or not.

The order that the other atoms are given a chance to spontaneously emit or absorb

should not matter in the limit of small step sizes. Similarly, when N is large, it is a

good approximation to simply choose random separations for each pair of atoms

when needed during evolution. This is especially true because of the semi-classical

approximation where each atom is only in either the excited or ground state, with

no other information about its state being recorded or used. This means any sort of

quantum correlations that build up more strongly between neighbors, and therefore

may affect future evolution, is not accounted for. Thus it doesn’t really matter

which atom a photon comes from or which atom absorbs it. When their positions are
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sampled randomly inside of a gaussian cloud a great many times, it will statistically

converge to the exact case where each atom is assigned a static position relative to

each other atom.

As a basic example of this model, see Fig. 4.1. There is a log plot of the number

of excitations versus time, with the purely exponential curve that would occur if

no interactions between the atoms were allowed plotted for comparison. As can

be seen, the interactions allow for excitations to stay within the system for many

lifetimes longer than without inter-atom interactions, a phenomenom known as

subradiance. While much work has been done to characterize the timescales of

subradiance, we are not aware of numerical or analytic models that predict the

entire curve, beginning with small deviations from the independent case and growing

to diverge by orders of magnitude for longer times. This model does not predict

superradiance, in which at very early times the excitations leave the system at a

rate much greater than the independent.

4.3 Decoherence Simulation

In this section, we will numerically compare the decoherence time predictions made

in Chapter 2 with a simulation of the exact Schrödinger Equation. We will calculate

a modified decoherence time, defined as the time at which the off-diagonal matrix

elements of a single subsystem’s reduced density matrix shrinks below a fixed

threshold in the computational basis. This differs from the decoherence time, whose

threshold shrinks with N because it is defined as its typical value when averaged

over all of its Hilbert space. The value of this constant threshold is unimportant

for the scaling of N as long as it is << 1. For numerical convenience we choose a

constant threshold equal to 1/2e, instead of the N -dependent threshold proposed

in the definition of decoherence in Chapter 3. These simulations are meant as a

consistency check between the exact Schrödinger Equation and the approximate

analytic method, so what is important is that we choose the same threshold in both

cases. 1/2e is chosen because the off-diagonal matrix elements are taken to have an
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Figure 4.1: An example output of the Definite Model. This instance uses the
physical parameters of an atomic MOT with 900 atoms, a lifetime of 27 ns, a
transition wavelength of 780 nm and a gaussian spatial distribution with a 1/e2

waist of 5µm.
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initial value of 1/2, their maximum value, and so the threshold represents the point

at which the matrix element has dropped to 1/e times its original value.

For the exact simulation, we first choose random positions inside of a unit box

for each of the N subsystems (a rescaling of the box amounts to a rescaling of

the coupling parameter so there is no need for a second, independent parameter

corresponding to the system size). If two subsystems happened to be chosen very

near one another, then their interaction can be very large and drastically alter

the properties of time evolution; to avoid this, a shell size was chosen such that

no two subsystems could be nearer than that distance from one another. In the

unit box, this shell was chosen to be of size .2, and similarly applies when choosing

positions for the approximate comparison. We then randomly select one of the

subsystems as the one whose reduced density matrix will be analyzed. According

to this selection, we choose a random initial state for the system subject to the

constraint that the off-diagonal matrix element for the chosen subsystem is 1/2.

The state is then evolved in time according to the fourth order Runge-Kutta method

until the threshold value of the off-diagonal reduced density matrix element is met.

This evolution is performed hundreds of times for each value of N with different

random positions and initial states, and the threshold times are averaged over. The

standard deviation of the mean forms the error bars depicted in 4.2, where ‘Full SE’

refers to this exact simulation of the full Schrödinger Equation.

Since the Hilbert space dimension is 2N , practical limitations meant that we could

only simulate up to N = 15. Although we have not attempted to quantify when

the large N behavior takes over, it is not hard to imagine that 15 is not large

enough. Thus when calculating the spectrum, we will not only include patterns

that matter for large N , as the analytic expression does, but actually all patterns.

In this way, the smallness of N is made much less important. We will average

over many random selections of subsystem positions, making the use of expectation

values in calculating the contribution to the moment from each pattern justified in

comparison. This large number of parallel computing jobs were performed on the

High-Throughput Computing Cluster at UW-Madison.
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To test the assumptions made by the approximate analytic methods used in the

Chapters 2 and 3, we first calculate the average width of spectrum for a given value

of N with respect to randomly chosen positions (subject to the same shell size).

This can easily be done by directly calculating
∑

q 〈q|
∑

(jk) H
2
jk |q〉. We then choose

450 eigenvalues from a gaussian with that width and numerically compute when the

chosen off-diagonal matrix element decreases to the threshold of 1/2e. This is done

by taking the state to initially be comprised of 450 different components, each in

phase and with phases rotating according to the randomly sampled eigenvalues. As

the interference grows for t > 0, the magnitude of the matrix element decreases. This

calculation is performed many times for each value of N with different eigenvalues

sampled from the distribution according to the width for that N , using a range

of values for this width according to its uncertainty. Since this is a much less

computationally expensive task than the full Schrödinger Equation approach, it is

not difficult to average over many more cases than in the full approach, making the

error bars much smaller; for this reason they are not displayed.

We expect these two approaches to well approximate each other for large N , and

in fact the results of this thesis depend on that correspondence. Indeed, such

agreement is demonstrated in 4.2 where it can be seen that the agreement increases

for larger N , as expected.
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Figure 4.2: A comparison between how long it takes for an off-diagonal reduced
density matrix element initialized to .5 to reach the threshold value of 1/2e for a
simulation of the full Schrödinger Equation (labelled Full SE) and an approximate
method described in the main text
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5 System Induced Superselection

5.1 Introduction

The quantum measurement problem has long plagued any attempt to use quantum

mechanics to describe how the universe really is, as opposed to simply using the

math to predict the outcome of a measurement of a subsystem of the universe. The

Copenhagen Interpretation, which stresses the measurement outcome paradigm, is

widely taught. In this interpretation, an interaction with a classical observer takes

place at certain times during the quantum evolution, projecting the quantum state

onto one of its eigenvectors with probabilities according to the Born rule which is

a postulate of the interpretation. Only the outcomes of these measurements can

be determined through experiment, and so the underlying quantum states can be

conceptually reduced to a mathematical device without saying in what sense they

are real.

What is the difference between a quantum-quantum interaction and a classical-

quantum measurement? In other words, what makes one system quantum and

another classical? It is usually easy to tell since when doing an experiment the

measuring device is always classical, allowing the theory to be useful in many

cases. But efforts to make this classical-quantum distinction scientific have not

been successful. Some success has been found in treating both the observer and

observed system as quantum in the theories of decoherence and Environment Induced

SuperSELECTION, or EINSELECTION. We will briefly summarize these ideas and

their main flaws, some of which can be erased by switching from environment induced

superslection to a new paradigm of system induced superselection. Abbreviated as

sinselection, we will also discuss how this new idea is physically motivated by the

results of Chapter 2.
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5.2 Decoherence

Any quantum two-level quantum state |ψ〉 can be written |ψ〉 = a |1〉 + b |2〉 for

two complex numbers a and b which obey |a|2 + b2 = 1. If a measurement is made

on the |1〉 , |2〉 basis then the probability of observing the system in state |1〉 (|2〉)

is |a|2 ( |b|2). Despite this fact, it is not possible to interpret this state as really

being in |1〉 or |2〉 according to those probabilities because measurements made

in a different basis can reveal the relative phase between a and b. In order to see

quantitatively how such a quantum state compares with the state corresponding to

|1〉 with probability |a|2 and |2〉 with probability |b|2, we must examine the density

matrix |ψ〉 〈ψ|, another way of representing the state. Writing this state as a matrix

in the |1〉, |2〉 basis, it is |a|2 ab∗

a∗b |b|2

 (5.1)

whereas a system that is in |1〉 (|2〉) with probability |a|2 ( |b|2) is represented in the

same basis by the density matrix |a|2 0

0 |b|2

 (5.2)

It is therefore the non-vanishing value of the off-diagonal matrices that prevents

us from interpreting the quantum system as really having a definite state, with

uncertainties only coming about due to the ignorance of the observer. This is

in stark contrast to the outcome of every measurement, in which the quantum

state is always found to be in an eigenvector of the measurement operator, never

a superposition. Since the quantum state just prior to measurement cannot be

interpreted as actually in such a state, the Copenhagen Interpretation adds the

measurement postulate which says that the system undergoes non-unitary evolution

when interacting with a classical observer wherein that state collapses to one of

the eigenvectors of the measurement operator. But this effect can also be partially
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understood in a fully quantum treatment according to decoherence and einselection,

as follows.

When a measurement in the |1〉, |2〉 basis is made, the system interacts with the

environment (which includes the measuring instrument) in such a way that if the

system were in |1〉 the environment goes into one set of states, for example the set of

states with a dial pointing to ‘1’, and a different set of states if the system is in |2〉.

Classically, then, we may observe this piece of the environment, usually some kind

of meter or display, to infer the state of the system at the time of measurement.

However, if we wish to model the environment as a large quantum system, then the

interaction has the form

|ψ〉 ⊗ |ε0〉 =
(
a |1〉+ b |2〉

)
⊗ |ε0〉 → a |1〉 ⊗ |ε1〉+ b |2〉 ⊗ |ε2〉 (5.3)

where |ε0〉 is the initial state of the environment, and |ε1(2)〉 is its final state if the

system was in the state |1〉 (|2〉).

For what follows we will need to distinguish between the observer, which is a part

of the environment, and the rest of the environment. We define the observer states

analogously to |ε0,1,2〉 as |η0,1,2〉 and let |ε0,1,2〉 now stand for the environment minus

the observer/apparatus. This measurement process is now written as

|ψ〉 ⊗ |η0〉 ⊗ |ε0〉 → a |1〉 ⊗ |η1〉 ⊗ |ε1〉+ b |2〉 ⊗ |η2〉 ⊗ |ε2〉 (5.4)

The tensor product structure of the initial and final states is highly suspect, but

a common simplification or assumption made in the literature. If the observer is

ignorant of the state of the rest of the environment, their best predictions made

about the system will not be represented by its state vector, since that vector is

now entangled with an environment whose exact state they do not know. The

mathematical object representing their best predictions in the face of this ignorance

is the reduced density matrix, which is made by constructing the density matrix of

the entire system and tracing out the unknown, environmental degrees of freedom.
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For some environmental basis |Ei〉, this reduced density matrix ρ is expressed as

ρ =
∑
i

〈Ei|
[
|a|2 |1η1ε1〉 〈1η1ε1|+|b|2 |2η2ε2〉 〈2η2ε2|

+ ab∗ |1η1ε1〉 〈2η2ε2|+ a∗b |2η2ε2〉 〈1η1ε1|
]
|Ei〉

(5.5)

where the shorthand |ψηε〉 is used for |ψ〉 ⊗ |η〉 ⊗ |ε〉. The trace sum over |Ei〉 can

be done in any basis, and we can always construct a basis with the two states |ε1,2〉

as elements and the rest of the basis states orthogonal to those two (as long as

|ε0〉 and |ε1〉 are not the same state, which they are not by assumption - otherwise

there is no interaction between the system and environment). Therefore this may

be written as

ρ =
∑
i=1,2

〈εi|
[
|a|2 |1η1ε1〉 〈1η1ε1|+|b|2 |2η2ε2〉 〈2η2ε2|

+ ab∗ |1η1ε1〉 〈2η2ε2|+ a∗b |2η2ε2〉 〈1η1ε1|
]
|εi〉

(5.6)

For any individual environmental degree of freedom, it’s not clear that the two

possible outcomes of the system lead to states orthogonal to each other - however

if the environment is made up of a huge number of degrees of freedom, then it

is reasonable to assume that the possible overall states |ε1,2〉 are very close to

orthogonal. Mathematically this can be stated as
∣∣〈ε1 | ε2〉∣∣ << 1. This quantity

is the overlap between the two states; if it is zero they are orthogonal, and if

it is one they are parallel. For example, if the environment is made out of M

subsystems |l〉 which each evolve into final states |l1,2〉 which are almost parallel,∣∣〈l1 | l2〉∣∣ = .9, then the full overlap
∣∣〈ε1 | ε2〉∣∣ = .9M is already as low as .0003 for

M = 100. Real environments can easily have 1026 or more degrees of freedom,

making the approximate that 〈ε1 | ε2〉 << 1 a very good one. In that case, the

reduced density matrix is approximately ρ = |a|2 |1η1〉 〈1η1| +|b|2 |2η2〉 〈2η2|. The

off-diagonal elements have been suppressed by the environment, allowing us to

think of this state as either ‘the system is in state |1〉 and the observer measured

that outcome and thus is in the state |η1〉, or similarly for |2〉, which is consistent

with how we experience experiments. Thus it can be understood entirely within a
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quantum framework how the outcomes of experiments appear classical.

However, the off-diagonal suppression and quantum-to-classical transition cannot

be thought of as actually happening - it only appears that way to an observer when

they are ignorant of their environment. This is because we can consider a second

observer measuring the first who can perform experiments which conclusively show

that the first observer is still in a superposition of outcomes [46]. This is made

consistent with experience by noting that, relative to each branch of the observer

state |η1,2〉, the system appears to be in the state |1〉 or |2〉, but it shows that the

quantum superposition never disappears, only becomes obscured.

Experiments suggest that even large objects display quantum properties [47], calling

into question the essential classicality of any observer. To take the Schrödinger

Equation as universal and treat all physical systems as quantum leads to the

controversial Many-Worlds picture first put forward by Everett, which contains

no inconsistencies but is considered by many to be a dissatisfying theory of the

physical world, largely because of its difficulty in explaining the Born rule [48].

Another approach is to adopt the point of view of QBism in which state functions

and probabilities are considered purely subjective; this solves some formal issues

but at a price [49, 50].

Here we will use the mathematics of einselection, combined with the results of

Chapter 2, to motivate superselection rules induced by the system itself instead of its

environment. We will argue that this effective collapse of a system’s wave function

due to itself allows for the collapse to be considered to be actually happening

without running into the contradiction mentioned above. The exchange interaction

is present in all composite quantum systems where the subsystems can exchange

quanta of energy. This interaction arises from a coupling to a boson bath, but

is different from an environment interaction in the sense of einselection. For the

exchange interaction, the boson bath is taken to be in vacuum at all times - it is

only the existence of the boson degrees of freedom that gives rise to the interaction

between the system and itself. In particular, for the exchange interaction alone,

correlations are not generated between the system and the boson bath; evolution
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under its Hamiltonian leaves an initially product state in a product state. In

einselection, the non-product state structure of the system and environment, which

is typically formed after an initial product state, is central to all its results about

superselection and measurement statistics. Another difference between the exchange

interaction and the environmental interactions considered in einselection is that

for the exchange interaction the boson bath is taken to be at zero temperature; in

contrast, a common calculation in einselection shows that the reduced density matrix

of a system in a superposition of two different spatial locations becomes diagonal

when interacting with a large environment on a timescale which is exponentially

small in both the temperature of the environment and the separation squared [51].

Thus for a zero temperature environment no such decoherence occurs, we will show

that exchange interaction causes similar decoherence except with no energy in the

environment and no energy exchange between the environment and system.

5.3 Einselection

In the theory of Einselection [51], a special basis is shown to be selected by the

environment. Over timescales which are extremely short for realistic environments,

through the framework of decoherence discussed above, the reduced density matrix

of the system assumes a diagonal form in this special basis, replicating the statistics

of a classical mixture of the special states. This basis is chosen by the environmental

interaction, or more briefly we say that it is einselected; it can be identified in many

ways but here we will focus on the predictability sieve. More precisely the einselected

basis should be an eigenvector of the system’s entire Hamiltonian, but during most

measurements the interaction dominates. The idea behind the predictability sieve

is that states can be assigned a predictability based on how quickly they are altered

by the interaction Hamiltonian. The energy eigenvectors are not changed at all

in time, while superpositions of eigenvectors can change extremely rapidly as the

different eigencomponents become out of phase with one another. Since the global

phase is unphysical, then even though an eigenstate’s phase is rotating like e−iλt if
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it’s eigenvalue is λ, this rotation can never be detected. Only when a superposition

occurs is the dephasing physical (this is why we have focused on the width of the

energy spectrum, as opposed to the magnitude of the eigenvalues themselves). The

rate of this dephasing grows with the environment size and temperature and is

extraordinarily short for realistic systems and environments.

Not only are energy eigenvectors stable, but they also can be said to have

an objective existence in the sense that two different observers can both make

repeated measurements of which eigenstate the system is in and agree every time

(quantum states are altered through measurement by projection onto the energy

eigenstates, which has no effect on a state that is already an eigenstate). The

idea behind einselection is that the predictable or stable states are superselected

by the environment and the unpredictable or unstable states are disallowed. If

a non-eigenvector state of the system-environment composite system did exist at

some moment in time, then a very short amount of time later it would be altered

dramatically, disallowing it from being observed in the traditional sense.

Many interactions depend on position, meaning the Hamiltonian is made from

position operators. In that case the position operator will commute with the

Hamiltonian, making the position basis an energy eigenbasis. This is why states

which are well localized in position are stable and objective in the sense that different

observers can measure the position of the same object and agree on the result. If,

however, we try to put a system in a superposition of position eigenstates, then it

will be extremely unstable and not conform to how macroscopic humans experience

states to behave.

Of course, quantum states which change in time are commonplace, but they can

only be used for prediction when either the interaction is precisely known, or the

timescales of prediction are short enough that the unknown part of the interaction

does not completely scramble the state. In the case of a large environment, the

interaction is both unknown and happens over very fast time scales, making the

superselection rules a very good approximation.
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To posit that this apparent collapse physically happens creates problems; if the

physical collapse has to do with the interaction with the environment/observer,

then some distinction must be made between fully quantum systems and decohering

environments, and it is unclear how to do so in a conceptually and quantitatively

satisfying way, leading back to the problem with the Copenhagen Interpretation.

One could instead hypothesize that the physical collapse takes place in the system

before the interaction with the environment, but the mathematical and physical

motivation for such a collapse comes from the environmental interaction, making it

unclear how or why such an intrinsic collapse would occur. We will argue here that

the results from Chapter 2 actually do motivate such a collapse in the system itself

before any measurement is made.

5.4 Sinselection

First, we will discuss how sinselection comes about in simple and arbitrarily large

quantum systems, then discuss why it might occur in any finite system with a finite

timescale.

5.4.1 Arbitrarily Large Systems

Consider a collection of N two level quantum subsystems where N is arbitrarily

large. For simplicity, we assume each of the N two-level systems have the same

energy difference, but allowing for detuning will not change the result as long as we

assume that we cannot have infinitely large energy differences between any ground

and excited state. Assuming this, as N grows without bound the number of other

subsystems within some threshold of resonance of any given subsystem also grows

without bound, allowing for the resonant case to apply.

For any such collection of two-level systems there will be some coupling to a common

boson bath, even if it is very small, leading to the effective pairwise interactions

between the subsystems of the form Hjk = Fjk(σ
+
j σ
−
k + σ−j σ

+
k ) where σ±j,k is the
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raising or lowering operator for the subsystem labelled by index j, k [52–54]. This

same coupling also leads to dissipation effects like spontaneous and stimulated

emission, but this thesis will focus on the effect on how the system interacts with

itself, not the environment.

We will also assume the subsystems do not become arbitrarily dense, meaning the

collective system has arbitrarily large spatial extent. This important assumption is

physically motivated because, if a system becomes too dense, it will collapse into a

black hole. Even if the interactions between a given pair of subsystems are more

complex for non-localized, overlapping two-level systems, for almost all pairs of

subsystems j and k the pairwise interactions will depend on their separation rjk like

∼ 1/rjk to leading order in 1/rjk because for arbitrarily large N almost all pairs

of subsystems are very far away from each other. This interaction is due to the

environment but is crucially different from the type of interaction considered in

einselection because it is intrinsic to all systems and the resulting dynamics can

be written only in terms of the system itself; accordingly it preserves any initial

tensor product structure between the system and environment. It does not generate

correlations between the two systems - the boson bath stays in vacuum the whole

time. Interaction with the environment necessarily increases dramatically when

a measurement is made, but the kind of environmental effect which causes the

exchange interaction is independent of measurement, distinguishing sinselection

from einselection in a fundamental way.

As shown in Chapters 2 and 3, as N grows the timescale of the interaction

Hamiltonian dynamics shrinks without bound. For large N the eigenvectors will

be unknown to the observer; for example, for N = 400 it would require the best

possible computing hardware filling the entire observable universe to simply write

down a single eigenvector of such a system, much less find it in the first place or

write down all 2400 of them [32]. When the eigenvectors are unknown, the effect

of the interaction Hamiltonian cannot be predicted, and when N is arbitrarily

large its effect happens arbitrarily quickly. Thus system states which are not

eigenvectors are unpredictable in the sense of the predictability sieve; they suffer the
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same instability that causes such superpositions to be disallowed in the einselection

paradigm. If the superselection rule is valid there, which seems to be the case as such

superpositions are never observed post measurement, it will also be valid internally

to such a large system. Here the special basis is the eigenbasis of the system’s own

Hamiltonian, which as discussed is dominated by Hint due to boson coupling for

large N . If a measurement is made in a different basis, the system’s Hamiltonian

will change during such a measurement and it will become an eigenvector of that

new Hamiltonian, allowing for consistency between sinselection and einselection.

This can be thought of as the system losing information about its phases in the

eigenbasis. If these phases are rotating arbitrarily quickly according to Hint then

any finite time observation will necessarily see averaged phases, putting the outcome

of experiments on such systems in accordance with classical uncertainty. As noted,

even though the eigenvalue itself sets the rate of phase rotation, since the overall

phase of the system is unobservable the relevant quantity is the spread of eigenvalues

i.e., how fast their phases are changing with respect to each other. When these

phases are unknown for any reason they must be averaged over, and this results in

a diagonal reduced density matrix in the energy eigenbasis. For an arbitrarily large

system, since the action of the unknown Hint is arbitrarily fast, we can say that this

process takes place immediately. In other words, arbitrarily large systems cannot

display quantum behavior. This notion seems consistent with our experience, but

is not helpful until we discuss how it applies to finite systems.

5.4.2 Finite Systems

When N is finite, Hint will have some finite characteristic timescale which can be

viewed as the timescale of sinselection. For large N it can be very fast, just like a

large environment, such that, to humans and the measuring devices we make, it

appears to happen almost instantaneously. For smaller N the decoherence caused by

a system on itself might compete with quantum effects, allowing them to observed.

For now the decoherence is only effective, just as in einselection - it is not until
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the next section that we take the newly possible next step and posit its objective

reality. Thus it is acceptable at this point for it to depend on the observer’s

knowledge, which is also as in einselection where it is assumed the observer does

not have detailed knowledge of its large environment. If the observer does not know

the eigenvectors of Hint, their predictions which rely on quantum interference will

become increasingly vague or inaccurate as time goes on, on a timescale generically

governed by the width of Hint. This is the timescale at which the density matrix

(note this is not the reduced density matrix as there is no environment being traced

over) becomes diagonal in its energy eigenbasis for that observer, in the sense that

that observer’s best guesses about the outcome of any experiment done on the

system is summarized in a density matrix which is diagonal in the energy eigenbasis.

For N < 400, it is possible that the observer knows the eigenvectors of Hint. However

there will always be some uncertainty in the eigenvalues as infinite precision is not

possible. After an amount of time t, the uncertainty in the energy ∆E will become an

uncertainty in the phase of that eigenvector component equal to t∆Emod 2π. When

t is large enough, the phase will be entirely uncertain and the experimenter must

average over them, resulting in a diagonal density matrix in the energy eigenbasis.

Thus eventually only classical behavior can be predicted for such a system i.e., it

can be considered to actually be in one of its eigenvectors with different classical

probabilities for each eigenvector. In particular, because the timescales of the

intrinsic Hint were shown to grow without bound with system size in, this implies

that all quantum phenomena are necessarily relegated to either small systems or

small timescales, explaining why it is rare to find on human scales.

Even if the eigenenergies were somehow known exactly, the duration between

state preparation and measurement cannot be due to fundamental constraints on

timekeeping [55]. In this case one must average the phases over some time window

according to the range of durations the experiment at hand might represent, and

for long enough times the smallest possible time uncertainty will be enough to

entirely randomize the phases due to the modulo 2π, making the system again

appear classical.
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Another constraint on systems of any size is that their positions cannot be exactly

known, leading to a fundamental uncertainty in the pairwise interaction energies

and ultimately to the same averaging and diagonalization as above. Of course this

applies to all systems of all sizes, even those dominated by Hint for large N , but

were it not for Hint causing a much faster effective collapse, quantum interference

effects could exist on large scales for arbitrarily long times, rendering the framework

no better than Many Worlds. So we have observed both that the the destruction

of quantum interference is ubiquitous, and that for a certain but general class of

large systems this destruction will take place fast enough that for large N , quantum

interference will be difficult or impossible to detect.

Although there is no physical mechanism within unitary quantum mechanics to

actually cause this diagonalization, it will always look like it happens to any observer;

this is exactly as in the einselection case. When something looks like it happens

to every conceivable observer, we usually simply say that it happens - however,

for einselection this is not possible because it causes a contradiction when one

considers a second observer observing the first. In sinselection no such paradox

occurs, allowing the collapse to be physical. In fact, since it will appear to happen to

every conceivable observer, it seems unreasonable to not conclude that it is actually

happening, absent any specific reason not to. In the next section we hypothesize a

modification to the Schrödinger Equation to formalize this physical process, and

explore the benefits of such a hypothesis.

5.4.3 Stochastic Wavefunction Collapse

What if the composite quantum system is not a collection of two level systems,

either because its constituents are more complex or it has only one constituent?

Many of the arguments made above are general and might apply to these as well.

Since there is no longer a need for an appeal to the observer to explain the wave

function collapse, we are free to posit that it is actually happening. The most

natural hypothesis is that the state of any system stochastically approaches one
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the eigenvectors of its Hamiltonian in addition to its normal unitary evolution. We

call this the Delayed Definite Eigenvector Hypothesis. The probability of ending in

any given eigenvector is equal to the state’s overlap with that eigenvector, which is

constant with respect to the unitary evolution.

We leave open the specifics such evolution, opting to instead merely establish that

it has many desireable qualities: it does not lead to a measurement paradox, it

does not draw a fundamental distinction between measurements and other types of

quantum interactions, it is physically motivated to apply generically, it is empirically

consistent with the theory of decoherence and einselection, and it can be applied

to a universal function without interpretational confusion. Although there are

many interpretations of quantum mechanics or wave function collapse which have

some of these properties, I am not aware of any that have them all. In the next

section we discuss this last property, about which nothing has yet been said. There

is much work to be done to propose and evaluate specific stochastic mechanisms,

but the main result here is that such a mechanism is possible without leading to

contradiction or divisions between classical and quantum, or observer and observed,

and also could plausibly be consistent with the experience of all possible observers.

5.4.4 Implications for Quantum Cosmology

When confronted with the universal wave function, einselection falters because

there is no observer outside of it. In contrast, sinselection naturally extends to

the universe as a whole, which is treated no differently than any quantum system.

Evidently the universe is not currently, and therefore did not start in one of its

energy eigenstates (according to the Delayed Definite Eigenvalue Hypothesis). This

is demonstrated every time quantum interference is observed. But the universal

wave function is slowly approaching one of these eigenstate, which is demonstrated

every time quantum interference is destroyed. While by definition this destruction

can only be detected through measurement, in the sinselection paradigm it is always

happening to quantum systems whether they are observed or not.
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Why, then, can quantum phenomena be generated, for example by manipulating

systems to carefully create quantum interference? At first this appears to be

in conflict with the idea that all quantum systems are approaching one of their

energy eigenvectors. But these interferences can only be set up and measured

through the careful manipulation by other systems, usually humans or human-made

machines. Thus the wave function describing both the system and its manipulator

is approaching one of its energy eigenstates, but the manipulation is done in such a

way that the state of a subsystem moves away from one its sub-eigenstates. This is

analogous to the explanation of why humans can create low entropy objects, such

as computers or houses or our own bodies. Entropy can locally decrease, as long

as in a wider perspective it is still increasing. It is well known that any entropy

decrease caused by a human or machine is well accounted for by the entropy increase

associated with heat being added to an environment, a necessary byproduct of doing

work. Similarly, the local movement away from an energy eigenvalue is dwarfed by

a global movement towards one.

Like in the case of entropy, the existence of any quantum phenomena implies

something about the initial conditions of the universe - in particular, that it did

not start in or too near to an energy eigenvector. However, unlike in the case of

entropy, this initial condition is generic because almost all elements of Hilbert space

are superpositions of many different energy eigenvectors.

This framework also could give insight into the conceptual problem implied by the

Wheeler-DeWitt equation for the universal wavefunction, H |ψ〉 = 0, which seems to

say that nothing ever happens, contrary to our everyday and scientific experiences

[56]. But if there were stochastic evolution towards an energy eigenstate, something

would be happening to the universal wave function. It would seem that right now

we are near enough to an eigenvector that quantum phenemona is suppressed on

large scales, but still far enough from one that it is present on small scales. Once

the universe does reach one of its energy eigenvectors, indeed nothing will happen

anymore; this is a quantum heat death of the universe.
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5.5 Conclusions

We have physically motivated a conceptually satisfying picture of quantum

mechanics, similar to einselection but with greater ontological aspirations. In

this picture, quantum effects are inherently transient, dissipating over timescales

strictly limited by the system size. Much like how the entropy of the universe is

always increasing, the quantumness of the universe (defined by how far a state is

from one of its energy eigenstates) is always decreasing. And just like how local

areas of low entropy can be found naturally or made intentionally, it is possible to

find or create quantum phenomena on small scales. Thus the universe is essentially

classical in nature - not that it lives in a classical configuration space but that it is

driven towards its energy eigenstates which are, unlike the rest of Hilbert space,

objective, definite, and stable.
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6 Conclusion

Motivated by a shortcoming of the Threshold Theorem in Quantum Error

Correction in Chapter 1, we found the spectrum of the exchange interaction

Hint =
∑

(jk) Fjk(σ
+
j σ
−
k + σ−j σ

+
k ) for couplings of the form Fjk = α sin(krjk)/rjk and

in the large N limit in Chapter 2. Equipped with the spectrum, we analytically

studied the decoherence of a single subsystem within the ensemble in Chapter 3.

We verified some of our approximations numerically, and used numerical methods to

predict the time evolution of systems evolving according to the exchange interaction

in Chapter 4. Finally, in Chapter 5 we looked at the implications for the measurement

problem, and postulated how the scaling features of the ubiquitous exchange

Hamiltonian could explain the lack of observed macroscopic quantum phenomena.

More work could be done related to the derivation of the energy spectrum. What is

the spectrum when there is an exponent of position other than −1 in the coupling

Fjk, or even when it takes a different form altogether? In order to apply to a range

of cases, there are many areas where the derivation might be improved or adjusted.

The transformations used and final set {St} may need to be altered, although if

most patterns cannot be discarded, it seems unfeasible to calculate the necessary

quantities such as Ω′(S), which can be extremely complicated for patterns not in

the {St} used here. In order to have a smaller {St}, different F -conditions could be

used, and different techniques used to prove them. The upper bound we placed on

the F -condition used here was weak, and although it was sufficient to prove what

we needed here, it suggests that the methodology is flexible.

We made no attempt here to estimate how accurate the derived spectrum is for finite

N , focusing on the simpler fact that it becomes arbitrarily accurate for arbitrarily

large N . But any physical test of this scaling will involve finite N so in order to

make predictions of relevance to experiments this would need to be done. As real

quantum computers are being built and increasing in size, when will this effect be

seen and how big will it be? As noted, this will depend sensitively on the specifics
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of the quantum computer implementation. For architectures in which spontaneous

emission is a very small error, the collective effect will likely also be very small until

N is much larger than is currently possible, meaning its effect won’t be noticed for

a very long time if at all. But for architectures in which spontaneous emission is a

mains source of error, it is possible that it’s collective nature will become relevant

in the not-too-distant future.

The single subsystem studies in Chapter 3 could be taken further. One direction

of interest is in applying the same formalism to the scrambling time, which is how

long it takes for initial information in a single subsystem to propogate to all the

other subsystems [57]. The decoherence can be thought of similarly; it is how long

it takes initial information in a single subsystem to leave that subsystems. Thus

the scrambling time is always greater than the decoherence time. In between these

two times, the information in the initial subsystem has leaked out but has not yet

spread to all the other subsystems, instead staying localized in other subsystems

near the original subsystem.

The numerical studies in Chapter 4 could be improved and extended. Are there

more realistic models which are still fast enough to run for large N? Another

outstanding question that arises when doing such simulations in relation to the

spectrum is: when an eigenstate of the interaction decays exponentially according to

the complex part of its eigenvalue, what state is it decaying into, or more generally

how many subsystem excitations leave the system? Due to the collective nature of

the interaction it seems that the answer is likely not 1. If there was a good way to

estimate this quantity, numerical studies more closely linked to the spectrum would

be possible.

Perhaps the area with the most room for growth, and the most challenging to make

progress in, is Chapter 5. In that chapter we posited a framework called sinselection

and discussed how its basic properties were physically motivated and could resolve

the measurement paradox. However, the details are left unspecified, leaving many

open questions. To name a few: in what manner does a system’s state stochastically

approach an energy eigenvector? How is the final eigenvector selected? What is the
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general timescale of this process, even when Hint is not present?

Another intriguing possibility is to hypothesize that systems always evolve toward

their lowest energy eigenstate. This is motivated by the universal dissipation felt

by all subsytems of the universe; its implications or validity when applied to the

universal wave function could be of great interest. It also could possibly explain the

ubiquity of the area law for quantum many-body entanglement. This is a property

that many low-lying energy many-body quantum states have, and means that the

entanglement entropy between the subsystems contained in a spatial volume and

the rest of the system scales as the surface area of that volume, not the volume itself

[43]. This is surprising because, for almost all of Hilbert space, this entanglement

should scale with volume. But the black hole area law, which states that the entropy

of a black hole is proportional to its surface area, suggest that this law may hold

for all systems, including quantum ones. Like in the quantum case, classically it is

not immediately clear why the area law should hold; if I double the volume of a

gas while holding its other properties constant, its entropy doubles - entropy scales

with volume, not area. But it turns out that gravitational collapse prevents the

formation of a classical state that violates the area information bound. This means

that, if one keeps increasing the volume of the gas, for a while the entropy will scale

with volume so that you’re on track to beat the bound for a large enough volume,

but before reaching that volume the gas will collapse into a black hole. Thus in

the quantum case, since low-lying energy states are the ones that obey the area

law, there may be some similar physical principle that keeps the state in that part

of Hilbert space. It is suspected that this may have to do with the structure of

spacetime and how it is built out of quantum entanglement, a new idea with much

promise [58, 59]. Sinselection could provide this physical principle, if the Delayed

Definite Eigenstate hypothesis were altered to include a tendency towards its lowest

energy eigenvalue. However note that this is a separate timescale, as the outcome

of every measurement is not necessarily the one with the lowest energy.

In short, there are many ways this work could be extended. There are many

ways to use an operator’s eigenvalues to understand its properties. Of course, a
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complete understanding of an operator requires a knowledge of both its eigenvectors

and eigenvalues, but unfortunately finding the eigenvectors of Hint appears to

be intractable. However, partial information about a wide variety of many-body

systems might be gleaned using this technique.
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Appendices

A The distributions and expectation

values of various powers of the exchange

coupling constants

In this Appendix, we discuss the probability density functions and the expectation

values of various powers of the exchange coupling constants Fjk ∝ sinκarjk/(κarjk)

for both the 2D and 3D geometries. For large distances sinκarjk term essentially

produces a random sign, whose square contributes a factor of 1/2 to the expected

value. We therefore focus on the remaining 1/(κarjk) term in this section. We

define a random variable U ≡ 1/(κ2
ar

2
jk) (which are proportional to the square of

the exchange coupling constant U ∼ F 2
jk) and first discuss the probability density

function and the expected value of this random variable. We will then discuss the

distributions and the expected values of various powers of U .

A1 Two-dimensional geometry

Consider a two-dimensional array of subsystems in a square geometry, in x − y

dimensions. Note that r2
jk = x2

jk + y2
jk = (xj − xk)

2 + (yj − yk)
2 where (xj, yj)

and (xk, yk) are the coordinates of the j’th and k’th subsystems respectively. We

view each of these coordinates xj, xk, yj, and yk to be uniformly distributed

random variables within the interval [0 N1/2d]. Taking these initial uniformly

distributed random variables, the probability density function of the random variable

U ≡ 1/(κ2
ar

2
ij) can be found using the methods outlined in [60]. Defining fU (u)du ≡
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P{u ≤ U ≤ u+ du}, this probability density function is:

fU(u) = 0 if u < 0

= 0 if 0 ≤ u ≤ 1

2L2

=
1

u2

[
2

L2
arcsin

(
2L2u− 1

)
− 2

L2
− 1

uL4
+

4

L3

√
1

u
− L2

]
if

1

2L2
≤ u ≤ 1

L2

=
1

u2

[
π

L2
+

1

uL4
− 4√

uL3

]
if

1

L2
≤ u ≤ 1

κ2
ad

2
. (A.1)

Here, the quantity L ≡ N1/2κad is the phase accumulation over the full length of

the square. Using the density function of Eq. (A.1), the expectation value of U can

be found, which gives, in the N →∞ limit:

E[U ] =

∫
fU(u)udu =

π

κ2
ad

2

lnN

N
. (A.2)

Using the probability density function of the random variable U , we can find the

distributions of various powers of U (such as
√
U , U3/2, and so on) again using the

methods outlined in [60]. These distributions are then used to find the corresponding

expected values various powers of the exchange coupling constants. These results

are:

E[|F |] =
Γ

κad

2π − 10
3

N1/2
,

E[F 2] = π
Γ2

κ2
ad

2

lnN

N
,

E[F n] ∼ Γn

κnad
n

1

N
for n > 2 . (A.3)

A2 Three-dimensional geometry

Here, we consider a three-dimensional array of cubits in a cube geometry, in x−y−z

dimensions and we have r2
jk = x2

jk + y2
jk + z2

jk = (xj − xk)2 + (yj − yk)2 + (zj − zk)2.

Following the above discussion, taking all the coordinates to be uniformly distributed,
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the probability density function of U ≡ 1/(κ2
ar

2
jk) is:

fU(u) = 0 if u < 0

= 0 if 0 ≤ u ≤ 1

3L2

=
1

u2

∫ 2L2

1/u−L2

 2

L2
arcsin

(
2L2 − t

t

)
− 2

L2
− t

L4
+

4
√
t− L2

L3


 1√

1
e
− tL

− 1

L2

 dt
if

1

3L2
≤ u ≤ 1

2L2

=
1

u2

∫ L2

1/u−L2

[
π

L2
+

t

L4
− 4
√
t

L3

] 1√
1
u
− tL

− 1

L2

 dt
+

1

u2

∫ 1/u

L2

 2

L2
arcsin

(
2L2 − t

t

)
− 2

L2
− t

L4
+

4
√
t− L2

L3


 1√

1
u
− tL

− 1

L2

 dt
if

1

2L2
≤ u ≤ 1

L2

=
1

u2

[
2π√
uL3
− 3π

eL4
+

4

u
√
eL5
− 1

2u2L6

]
if

1

L2
≤ u ≤ 1

κ2
ad

2
. (A.4)

Here, the probability density function in some of the regions cannot be evaluated

analytically and as a result they are left in the integral form (the quantity t is the

integration variable). The quantity L ≡ N1/3κad is again the phase accumulation

over one length of the cube. We numerically find that for the calculation of the

expectation value, the majority of the contribution comes from the 1
L2 ≤ u ≤ 1

κ2ad
2

region which can be evaluated analytically:

E[U ] =

∫
fU(u)udu = (π +

29

12
)

1

κ2
ad

2

1

N2/3
. (A.5)

The exact numerical result that includes all the regions of the probability density

function [given in Eq. (A.4)] differs from the analytical result of Eq. (A.5) only

by 1.2%. Following the 2D discussion, with the probability density function fU(u)

known, the distribution of the various powers of U can be evaluated and the

corresponding expectation values for the coupling constants are (again with an
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accuracy at the level of few percent):

E[|F |] =
Γ

κad

2π − 9
5

N1/3
,

E[F 2] = (π +
29

12
)

Γ2

κ2
ad

2

1

N2/3
,

E[F 3] =
4π

3

Γ3

κ3
ad

3

lnN

N
,

E[F n] ∼ Γn

κnad
n

1

N
for n > 3 . (A.6)

In Fig. A2.1, we plot the probability density function fU (u) for both the 2D (dashed

red line) and 3D (black solid line) geometries. The functions are plotted for the

case when the length of each side is L = 1. For an arbitrary L, the horizontal axis

of the plot is scaled by 1/L2 whereas the vertical axis is scaled by L2.

Figure A2.1: The probability density functions of the random variable U ≡ 1/(k2
ar

2
ij)

for an array of atoms in two (dashed red line) and three (solid black line) dimensions. The
functions are plotted for the case when the length of each side is L = 1. For an arbitrary
L, the horizontal axis of the plot is scaled by 1/L2 whereas the vertical axis is scaled by
L2

In the above discussion, we have taken selected subsystem j and k to be chosen

randomly among all the subsystems and have calculated the distribution and the

expected value of the exchange coupling constants Fjk. For the single-subsystem

error Hamiltonian and subsequent discussion, one of the subsystems, subsystem j
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is fixed, and the summations are over the remaining subsystems in the computer.

For this case, the precise values of the distributions and the expected values will

depend on the choice of the subsystem j, for example whether it is chosen to be

at the edge of the array or at the center. However using the above formalism, as

expected, one can show that these considerations do not change the N scalings of

the expected values. Therefore all scaling results here can apply to expectation

values in the single qubit Hamiltonian context as well as the full Hamiltonian.
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B Pattern Decomposition Example

Here we will go through an example of calculating the moments in detail for p = 4

and N = 5 in order to make the various definitions and ideas more clear and

concrete.

We begin with the expression

σ(4) = 2−N
∑
q

〈q|H4 |q〉 = 2−N
∑

(j1k1)

∑
(j2k2)

∑
(j3k3)

∑
(j4k4)

∑
q

〈q|Hj1k1Hj2k2Hj3k3Hj4k4 |q〉

(B.1)

which, per the analysis in Chapter 2, was broken into

σ(4) = 2−N
∑
S

D(S)−1
∑
{j}

∑
π

∑
q

〈q|
∏

H(S, {j}, π) |q〉

= 2−N
2p∑
u=2

2N−u
∑
S(u)

∑
{j}(u)

∑
π(u)

Ω′(S(u))

D(S)

∏
F (S(u), {j}(u), π(u))

(B.2)

Before analyzing the quantities in the triplet breakdown, first we will use the

knowledge of the final patterns to directly find the answer as a sum of sequences

Hj1k1 ...Hj4k4 in order to compare with the triplet method. Recall that the form of

the final patterns is that every Hjk is paired up with one other, and no pairs of

Hjk have any subsystems in common. Due to this property, the ordering of the

H factors doesn’t matter in the sense that there are the same number of |q〉 such

that 〈q|H12H34H12H34 |q〉 6= 0 as for H12H12H34H34. This means we can lump all

sequences with the same value of
∏
F together and simply multiply by how many

there are. Each
∏
F will be F 2

j1k1
F 2
j2k2

for some four distinct j1, k1, j2, k3 (but we

don’t distinguish between j1 and k1 or j2 and k2, for example j1 = 1, k1 = 5, and j2

and k2 equal to anything other than 1, 5, or each other, is the same term as with

j1 = 5 and k1 = 1. For each different value of
∏
F , i.e. each choice of 4 distinct

subsystems and each way to pair those 4 up, there is some number of times that∑
(j1k1) ...

∑
(j4k4) Fj1k1 ...Fj4k4 equals that product. This number is independent of

the chosen subsystems and how they are paired, due to the structure of the final
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patterns (this would not be true for all patterns). The number of times this happens

for a given prodF is equal to
(

4
2

)
because once the two locations of, say Fj1k1 are

chosen out of the 4 possible locations, the locations of the Fj1k2 are fixed. We will

denote the sum over pairs of pairs of subsystems chosen from the N = 5 total

subsystems as
∑

((j1k1)(j2k2)). As for the sum over q, this will contribute a total of

NN−4 × 22 = 2N−2 since Ω′(St) = 2p/2 = 22. Thus we have

σ(4) → 1

4

(
4

2

) ∑
((j1k1)(j2k2))

F 2
j1k1

F 2
j2k2

(B.3)

Since neither of j1 or k1 is equal to j2 or k2, the average of the different F 2
j1k1

F 2
j2k2

is E[F 2]2 (in the large N limit, which we are working in and only using a small N

for illustrative purposes). Therefore, since there are
(

5
2

)(
3
2

)
1
2

= 15 different pairs of

pairs, ∑
((j1k1)(j2k2))

F 2
j1k1

F 2
j2k2

= 15E[F 2]2 (B.4)

and accordingly,

σ(4) → 45

2
E[F 2]2 (B.5)

To demonstrate consistency, we will now arrive at this same result using the triplet

framework.

Since every subsystem appearing in
∏
F must appear an even number of times in

order for there to be any |q〉 such that 〈q|
∏
F |q〉 6= 0, u is capped at p and we now

list all patterns which obey this constraint (labelling the leftmost Hj1k1 one and

incrementing by 1 to the right):

{{1234}{1234}} {{1234}{12}{34}} {{1234}{13}{24}} {{1234}{14}{23}}

{{12}{12}{34}{34}} {{13}{13}{24}{24}} {{14}{14}{23}{23}}

{{12}{13}{24}{34}} {{12}{14}{23}{34}} {{13}{14}{23}{24}}

(B.6)

Letting integers now refer to subsystems 1 through 5, instead of pairwise Hamiltonian
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locations 1 through 4 as above, we can enumerate all the terms associated with

a given pattern. For example, for the pattern {{12}{13}{24}{34}}, some of the

possible pair sequences are

{{12}{13}{24}{34}} {{31}{34}{12}{24}} {{45}{42}{41}{21}} (B.7)

Since this pattern has no two identical elements, D(S) = 1 and there are 4! different

π assigning the different elements of S to the 4 different elements of {j}, which

there are 5 ways to construct (each {j} has one subsystem missing, so one j for

each subsystem). This means in total there are 5× 4! = 5! = 120 different pairwise

sequences associated with that one pattern, which is why we did not list them all.

According to the analysis of Chapter 2, only the middle row of the listed patterns

contribute meaningfully for large N , which we will call the S1, S2, and S3 in the

order they are written (note that this contradicts with previous notations, wherein

Si meant a certain type of pattern in the context of the transformations→i). There

are three of these patterns, which matches the derived number of final patterns

equal to p!/((p/2)!2p/2) which is 3 when p = 4. These patterns have u = 4, and so

σ(4) → 2−4

3∑
i=1

Ω′(Si)

D(Si)

∑
{j}(4)

∑
π(4)

∏
F (Si, {j}(4), π(4)) (B.8)

For these patterns, since each has two pairs of elements of Si which are identical,

D(Si) = 22. This matches the derived form D(St) = 2p/2 since p = 4. For example,

let us examine the sequence {{12}{12}{34}{34}. It can be constructed from any

triplet with S = {{12}{12}{34}{34}} (even though this looks identical to the

sequence, remember its interpretation is very different! - in the sequence the

numbers refer to subsystems, or H12H12H34H34, while in the patter they refer to

locations, so the pattern should be read that one subsystem appears in the first and

second Hjk, another one also appears in those two, one appears at locations 3 and

4, and another also appears at 3 and 4). The triplet must have {j} = {1, 2, 3, 4}

since these are the four subsystems appearing in the sequence or term. There are 4
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different subsystem assignments π that are compatible with that S and {j}, and

construct the given sequence: temporarily using A, B, C, D to refer to the four

elements of S (in the order listed so that A,B = {12} and C,D = {34}), the four

assignments are:

1→ A, 2→ B, 3→ C, 4→ D

1→ B, 2→ A, 3→ C, 4→ D

1→ A, 2→ B, 3→ D, 4→ C

1→ B, 2→ A, 3→ D, 4→ C

Thus there are 4 = 22 = D(S) triplets in total which construct that term, each with

the same pattern S and subsystem selection {j}, and one of four possible subsystem

assignments π enumerated above.

Ω′(S) is the number of arrangements |q〉 of the subsystems appearing in a

triplet (S, {j}, π) (i.e. the subsystems in {j}) constructed from S for which

〈q|
∏
H(S, {j}, π) |q〉 6= 0 (recall that this number is invariant with respect to

{j} and π and so is written as a function of S only). For any of the three final

patterns, Ω′(S) = 22 = 4 which is consistent with the derived value Ω′(St) = 2p/2

with p = 4: using the notation 1 is up and 0 is down, the four such arrangements of

the subsystems {1234} are:

|1010〉

|1001〉

|0110〉

|0101〉

The only restriction is that 1 and 2 are opposite, because they appear in together

in an Hjk, and similarly for 3 and 4. With an independent choice of 2 arrangements

for each pair, and two pairs, we have 2× 2 = 4 total arrangements.

Using these, we now have

σ(4) → 2−4 4

4

3∑
i=1

∑
{j}(4)

∑
π(4)

∏
F (Si, {j}(4), π(4)) = 2−4

3∑
i=1

ASiE[
∏

F (Si)] (B.9)

AS is the number of selections and assignments compatible with the pattern S.
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In this case, that is the number of ways to choose 4 subsystems from all 5, times

the number of ways to assign those 4 subsystems to the 4 elements of S. Since all

Si have 4 elements, for all of them AS =
(

5
4

)
4! = 5! = 120. This agrees with the

derived A(St) = N !/(N − p)! = 5!.

For all the final patterns Si, E[
∏
F (Si)] = E[F 2]2. Together, this means

σ(4) → 120

24
3E[F 2]2 =

45

2
E[F 2]2 (B.10)

as required.

Note that the final expression σ(p) → p!
(p/2)!

(N(E[F 2]/8)1/2)p does not agree with

this expression, because the limit N !/(N − p)! → Np has been taken for that

expression, which is only valid if p << N . Since that is not valid here, the formula

is incorrect. However, substituting N !/(N − p)! back in for Np does recreate the

correct prefactor:

p!

(p/2)!

Np

8p/2
→ p!

(p/2)!

N !

8p/2(N − p)!
=

4!

2!

5!

82 1!
=

45

2
(B.11)
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C The Threshold Theorem

Here we will sketch the ideas behind the Threshold Theorem, mainly following the

arguments in [27] and [18]. We will call the quantum computer the system, and

denote its ideal Hamiltonian as HS. This Hamiltonian exactly enacts the desired

time evolution, presumably a quantum algorithm with error correction. Whatever

environment the quantum computer lives in is called the bath and its Hamiltonian

is HB. The total Hilbert space is HS ⊗HB where HS(B) is the Hilbert space for

the system (bath). HS(B) acts nontrivially only on the system (bath) degrees of

freedom. The interaction between the two is described by HSB. HSB is not the

fundamental interaction between the qubits and the quantum environment, but

rather the effective coarse-grained interaction after integrating out high-frequency

and short-distance degrees of freedom.

Without loss of generality, this interaction can be decomposed as

HSB =
∞∑
a=1

∑
(j1...ja)

H
(a)
j1...ja

(C.1)

where H(a)
j1...ja

acts non-trivially on no system degrees of freedom except the qubits

{j1...ja}. The superscript (a) denotes how many different qubits the Hamiltonian

H(a) acts non-trivially on, and its subscript specifies which qubits, totalling a in

number, it does act on. The sum over a runs up to infinity so that there is a term

for the interaction of all qubits together in the limit that there are infinitely many

qubits. It is done this way so that the fault-tolerance of the computation can be

said to be scalable in the sense that it would in principle work for a computer of

any size, an approach motivated by classical computing.

The unitary time evolution operator U(t) generated by HSB is e−itHSB (assuming

HSB is time independent, which we do for simplicity and is the case for the boson

exchange interaction). Using the property that U(t2)U(t1) = U(t1 + t2), for any

time interval ∆ the operator U(t) can be broken in
∏
U(∆) = e−i∆HSB ...e−i∆HSB
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where the number of terms in the product is t/∆ (we will constrain ∆ such that this

ratio is an integer). For a small enough ∆, U(∆) is arbitrarily well approximated by(
1− i∆HSB

)
and therefore U(t) by

(
1− i∆HSB

)
...
(
1− i∆HSB

)
. Imagine expanding

each HSB as
∑∞

a=1

∑
(j1...ja) H

(a)
j1...ja

and then distributing each sum, so that from each

e−i∆HSB there is either a 1 or some −i∆H(a)
j1...ja

. The terms of this expansion would

be the product of t/∆ such factors, and there would be one term for each choice of

possible factor from each of the t/∆ different
(
1− i∆

∑∞
a=1

∑
(j1...ja) H

(a)
j1...ja

)
.

Define a location to be a single gate, such as a single qubit gate, multi-qubit gate,

or idle (identity) gate. The computer is assumed to be able to perform gates in

parallel, so that at any one time there can be many locations. For a single term

in the expansion imagined above, a location is said to be faulty if, for any of the

timesteps ∆ during its duration tg, there is a term −i∆H(a)
j1...ja

which includes on

one or more of the qubits involved in that gate.

Consider a set of r different locations, denoted by Ir. Let E(Ir) be the sum of all

terms in the expansion described above such that each of the locations in Ir are

faulty. Therefore if I0 is the empty set, then E(I0) = U(t) where t is the length of

the entire computation, since there are no qubits in any location and therefore all

terms are allowed. If we add one location to I, then we would exclude any term

such that, for each ∆ slice during the added location, none of the qubits involved

in that location (gate) are included in any H(a)
j1...ja

.

Since terms are excluded as one increases the number of locations in Ir, one would

expect in general for the magnitude of E(Ir) to decrease as r grows. The noise

caused by HSB is said to have effective strength ε if

∥∥E(Ir)
∥∥ ≤ εr (C.2)

for all r and any set of r locations. The norm of the operator E(Ir) is proportional

to the probability of each of the locations in r being faulty. In order for the

computation to be likely to succeed without fault, this number should be very small

for all Ir. While the value of ε can be somewhat decreased, for example, by reducing
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the coupling of the qubits to their environment (recall that HSB is the effective

interaction, not the fundamental one), but this only gets one so far. The strategy

will be to implement quantum error correcting codes which create a higher-level

realization of the algorithm but with an effectively reduced noise ε.

For our purposes, we may consider a quantum error correction code to be the

encoding of the state of one qubit onto the state of a collection of a small number

of qubits. The encoded qubit is called the logical qubit, and each member of the

collection which encodes the state of the logical qubit is called a physical qubit. A

desired measurement of the logical qubit can be realized by a different measurement

on the physical qubits. However, because there are extra pieces of information

(the Hilbert space of the physical qubits is much larger than 2, the size of the

Hilbert space for one qubit), that means there are some measurements that can

be made that will not reveal any information about the state of the logical qubit

and therefore leave it entirely undisturbed. This is the desired property, since those

same measurements can diagnose errors that might have occurred so that they can

protected. Of course if too many errors occur then this is not possible, but for a

single qubit any error is fatal, whereas for the collection of physical qubits some

errors can occur without dooming the computation. If a code can correct p errors,

i.e. if no more than p errors occur among the physical qubits then the correct state

of the logical qubit can be restored, then that code is called distance 2p+ 1. For

example, if a code can correct one error, it is a distance 3 code. The details of the

code are unimportant, because fault-tolerance is not attained through the use of an

extremely high distance code, but rather by concatenating the code many times.

For each concatenation, a physical qubit is turned into a logical qubit and replaced

by a constellation of physical qubits according to the code. If the code encodes one

logical qubit into 7 physical qubits, then after 2 concatenations of the code on a

single qubit, there would be 7× 7 = 49 physical qubits encoding the state of a single

logical qubit; each of the 7 physical qubits after the first concatentation becomes 7

physical qubits after the second. When this encoding happens a single location of

the logical qubits turns into a multitude of locations, since each gate acting on a
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single logical qubit is realized as multiple gates acting on multiple physical qubits.

A code is said to have depth k if it has been concatenated k times. We will call a

collection of locations of this code corresponding to a single location of the original,

logical location a k-location.

For concreteness, we will consider a code which can only fix one error - the essential

result will not change in a different case. In order for a k-location to be faulty, at

least two k − 1-locations must be faulty. Thus the probability of a faulty 1-location

is proportional to the probability of a faulty 0-location squared. Since 0-locations

are governed directly by HSB, this error rate is captured by ε. Thus, if (C.2) is

satisfied for 0-locations, then (C.2) is also satisfied for 1-locations for some new

noise ε(1), related to the old noise ε by

ε(1) = ε2/ε0 or ε(1) = ε0(ε/ε0)2 (C.3)

where ε0 is some constant with units of ε. Using the latter expression above, by

induction the effective noise strength for the k-th level is

ε(k) = ε0(ε/ε0)2k (C.4)

As long as ε < ε0, this quantity quickly goes to 0 for large k. Thus, after performing

k concatenations of the code, the effective noise strength can be made arbitrarily

small, so long as the original noise ε is less than some threshold ε0.

In this manuscript, we challenge the notion that the effective noise ε is finite at all,

much less below some threshold ε0. For r = 1, let us examine
∥∥E(I1)

∥∥ which is a

lower bound on ε. The strategy employed to bound
∥∥E(Ir)

∥∥ is to consider a subset

of the terms which contribute to it which have a fixed time step ∆ at which the first

term from HSB acts on a qubit in that location, and a fixed term H
(a)
j1...ja

which acts

at that time step and contains at least one qubit in the location. The key advantage

to such a subset is that, for all time steps ∆ after the first H(a)
j1...ja

acts on a qubit

in the location, in all future time steps all terms in HSB are allowed and therefore

included. When all of them are included, the time evolution is unitary and therefore
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has unit norm. Before this fixed time step, but still during the location, there is

also unitary evolution according to a modified HSB which has removed from it all

terms which act nontrivially on any qubits in the location. Before the location, all

terms are allowed and therefore the time evolution is unitary.

Thus the sum of all terms contributing to E(I1) with a fixed timestep and term

during the location in I1 which first causes a fault at that location is a unitary

operator times −i∆HI times another unitary operator, where HI is the fixed

term in HSB which affects a qubit in the location. According to the property

that ‖AB‖ ≤ ‖A‖‖B‖ and the fact that unitary operators have norm 1, this

contribution to E(I1) is bounded above by ∆‖HI‖. Since all constituents of

E(I1) have a specific earliest timestep during the location in I1 at which a qubit

in that location is hit, and a specific term in HSB which hits a qubit in that

location in that timestep, all constituents of E(I1) belong to exactly one subset

with a fixed timestep and term described above. In other words, E(I1) is the

sum of all such subsets. Using the property that ‖A+B‖ ≤ ‖A‖ +‖B‖, then,

E(I1) ≤
∑

I

∑
∆ in tg ∆‖HI‖ = tg

∑
I‖HI‖ where the sum over I is the sum over a

from 1 to ∞ and the sum over all choices of a qubits which include at least one

qubit involved in the location or gate in I1. For the case of a single-qubit gate

and the effective boson interaction, it was showed in Chapter 1 that this sum does

not converge, rendering this proof of the Threshold Theorem, in its current form,

inapplicable to that source of noise.

This is clearly not a definitive result; just because a certain upper bound on
∥∥E(Ia)

∥∥
does not converge does not mean that

∥∥E(Ia)
∥∥ diverges. In particular, as discussed

in Chapter 1, the upper bounds used above neglect the phases between the different

HI and therefore is a drastic overestimate in the large N limit where the phases are

random (assuming finite qubit spatial density). In Chapter 2 we go beyond these

crude upper bounds in order to try to determine if a more conservative derivation

of the Threshold Theorem could possibly include that noise. The results there

imply that this is not possible. The theorem could be altered to not be proven in

the N → ∞ limit, but this would be a paradigm shift and create a rift between
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classical and quantum computing, where the analogous error correction results can

be proven for N →∞.

D Source Code for the Numerical

Simulations

D1 Definite Model

In this section is presented the source code for the Definite Model described in

Chapter 4. It is written in python, and outputs a graph of the average number

total number of excitations versus time for a sample with the given parameters. It

is also writes the average number of excitations at each time step, as well as a list

of those time steps, to a file.

1 # import packages that will be needed

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import copy

5

6 # included is the possibility to truncate the interactions at

7 # first order , but for the desired parameters this option

8 # is not used because it is not a good approximation

9 first_order = False

10

11 tau = .000000027 # 27 ns: the lifetime (in seconds) of

12 # the relevant transition

13 wavelength = .00000078 # 780 nm: the wavelength , in

14 # meters , of the relevant transition

15 k = 2*np.pi/wavelength # calculating the wavenumber of

16 # the transition

17

18 N = 160000 # the total number of subsystems

19 coop_amp = .00035 # the e-squared radius of the gaussian
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20 # sample , in meters

21

22 num_samples = 1 # how many times to run the simulation; at

23 # the end , all trials will be averaged over to produce one graph

24

25 initial_excite_prob = .5 # choose what fraction of the

26 # subsystems begin excited; note that the initially excited

27 # fraction is not fixed to be exactly this , rather is

28 # the probability for each to be excited

29

30 # num_steps = 760

31 # total_time = 6 * tau

32

33 num_steps = 30 # total number of time steps

34 total_time = .3 * tau # total duration of simulation

35

36 tstep = total_time/num_steps # calculate the size of each time

37 # step from the specified parameters

38

39

40 # choose two random positions in the gaussian cloud (using

spherical

41 # coordinates), calculate their separation and return the overall

42 # coupling factor given their separation which is equal to 1/5kr (

with

43 # separation equal to r and k being the wavenumber of the

transition)

44 def random_distanced_coupling ():

45 r1 = np.random.normal(0, coop_amp/2, 1) * k

46 r2 = np.random.normal(0, coop_amp/2, 1) * k

47 th1 = 0

48 th2 = np.random.rand()*2*np.pi

49 phi1 = 0

50 phi2 = np.random.rand()*np.pi

51 x1 = r1 * np.sin(th1) * np.sin(phi1)

52 x2 = r2 * np.sin(th2) * np.sin(phi2)

53 y1 = r1 * np.cos(th1) * np.sin(phi1)
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54 y2 = r2 * np.cos(th2) * np.sin(phi2)

55 z1 = r1 * np.cos(phi1)

56 z2 = r2 * np.cos(phi2)

57 random_distance = np.sqrt((x1 -x2)**2+(y1-y2)**2+(z1 -z2)**2)

58 return (1/(5* random_distance))**2

59

60

61 # make a class for a subsystem which has two possible states , up

62 # and down when one is created , it is randomly

63 # assigned the up or down state

64 class Emitter:

65 def __init__(self , lifetime):

66 self.lifetime = lifetime

67 if np.random.rand() < initial_excite_prob:

68 self.state = 1

69 else:

70 self.state = 0

71

72

73 # a class for a collection of Emitters

74 class Ensemble:

75 def __init__(self , amp =0):

76 self.emitters = []

77 self.m_tracker = []

78 self.evolution_step = 0

79 self.amp = amp

80 self.N = len(self.emitters)

81 self.times = []

82

83 # method to add one emitter to the ensemble

84 def add_emitter(self , emitter):

85 self.emitters.append(emitter)

86 self.N += 1

87

88 # method for the emission process in one timestep for one

emitter

89 def single_emit_initial(self , period , emitter_index):
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90 if self.emitters[emitter_index ].state == 1:

91 lifetime = self.emitters[emitter_index ]. lifetime

92 if period / lifetime > 1:

93 print('nonlinearity has become a problem ')

94 if np.random.rand() < period / lifetime:

95 self.emitters[emitter_index ].state = 0

96 photon_count = 1

97 j = 0

98 outcome = 0

99 stim_prob = self.N * self.amp

100 if first_order:

101 if stim_prob > .7:

102 print('stim prob too high for first order

')

103 if np.random.rand() < stim_prob:

104 emitted_index = np.random.randint(self.N)

105 if self.emitters[emitted_index ].state ==

0:

106 self.emitters[emitted_index ].state = 1

107 else:

108 self.emitters[emitted_index ].state = 0

109 else:

110 while (photon_count != 0)and(j < self.N):

111 if j != emitter_index:

112 if self.emitters[j]. state == 1:

113 outcome = self.

single_emit_stimulated(period , j, self.amp)

114 else:

115 outcome = self.single_absorb(

period , j, self.amp)

116 photon_count += outcome

117 j += 1

118

119 # a method used after each emission on every other emitter ,

allowing

120 # the possibility of stimulated emission

121 def single_emit_stimulated(self , period , emitter_index , amp):
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122 if np.random.rand() < random_distanced_coupling ():

123 self.emitters[emitter_index ].state = 0

124 return 1

125 return 0

126

127 # same as above , but for absorption

128 def single_absorb(self , period , emitter_index , amp):

129 if np.random.rand() < random_distanced_coupling ():

130 self.emitters[emitter_index ].state = 1

131 return -1

132 return 0

133

134 # implement one time step of the evolution

135 def time_step(self , period):

136 for i in range(0, self.N):

137 if self.emitters[i]. state == 1:

138 self.single_emit_initial(period , i)

139

140 # returns the total number of subsystems in the up or 'on '

state

141 def total_on(self):

142 result = 0

143 for emitter in self.emitters:

144 if emitter.state == 1:

145 result += 1

146 return result

147

148 # calculate the total time evolution of the ensemble , and

write the results to a file

149 def evolve(self , period , num_steps , file):

150 t_count = 0

151 while t_count < num_steps:

152 self.m_tracker.append(self.total_on ())

153 self.time_step(period)

154 m = self.total_on ()

155 m_str = f"{m}"

156 file.write(m_str)
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157 file.write(", ")

158 data_list.append(m_str)

159 # print(str)

160 t_count += 1

161

162 # creates the array with each time point and initiate the

evolution

163 def evolve_m(self , period , num_steps , file):

164 self.times = [step * period for step in range(0, num_steps

)]

165 self.evolve(period , num_steps , file)

166

167

168 # a class for averaging over many ensembles

169 class EnsembleAverage:

170 def __init__(self , ensemble , file):

171 self.initial_ensemble = ensemble

172 self.file = file

173

174 # prepares a graph of the number of excitations versus time ,

averaging over

175 # many ensembles

176 def graph_m(self , period , num_steps , sample_size):

177 for i in range(0, sample_size):

178 print('progress:', (i+1)/sample_size)

179 ensemble_instance = copy.deepcopy(self.

initial_ensemble)

180 ensemble_instance.evolve_m(period , num_steps , self.

file)

181 if i == 0:

182 times = ensemble_instance.times

183 avg_m = [0 for t in times]

184 avg_m = [avg_m[j] + ensemble_instance.m_tracker[j] for

j in range(0, len(times))]

185 print('samples completed: averaging and plotting

completing or completed ')

186
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187

188 # a function for averaging over a list of all data from many

trials

189 def list_average(long_list):

190 avgd_list = []

191 segment_num = num_samples

192 segment_length = num_steps

193 for i in range(0, segment_length):

194 elem = 0

195 for j in range(0, segment_num):

196 elem += float(long_list[i+segment_length*j])

197 avgd_list.append(elem/segment_num)

198 return avgd_list

199

200

201 # prepares files to be written to so that the outcomes are saved

202 data_file = open(" out_emitters.txt", "w")

203 data_list = []

204 times_file = open(" t_emitters.txt", "w")

205 times_list = []

206

207 # make instances of the above classes

208 cloud = Ensemble(coop_amp)

209 for emitter_count in range(0, N):

210 cloud.add_emitter(Emitter(tau))

211

212 D = EnsembleAverage(cloud , data_file)

213

214 # check to make sure the timestep is small enough

215 if tstep/tau > .05:

216 print('tstep is too high ')

217

218 # perform the evolution and graph preparation on ensemble D

219 D.graph_m(tstep , int(total_time/tstep), num_samples)

220

221 # prepare the time axis for graphing

222 times_table = np.arange(0, total_time , tstep)
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223 times_str = f"{ times_table }"

224 times_file.write(times_str)

225

226 # perform the average over all instances

227 avg_pop = list_average(data_list)

228

229 # open the averaged file for writing , then write to it

230 data_file_avg = open(" avg_out_emitters.txt", "w")

231 for i in avg_pop:

232 wstring = f"{i}"

233 data_file_avg.write(wstring)

234 data_file_avg.write(", ")

235

236 # make the plot for displaying purposes , along with a plain

exponential for comparison

237 times = np.arange(0, total_time -.5*( total_time/num_steps),

total_time/num_steps)

238 plt.plot(times , np.log(avg_pop), times , np.log(N*

initial_excite_prob*np.exp(-((times+tstep /2)/tau))))

239

240

241

242 # close the files that were being written to

243 data_file.close ()

244 data_file_avg.close ()

245 times_file.close ()

246

247 # show the population versus time plot

248 plt.show()

D2 Approximate Decoherence Simulations

In Chapter 4, the decoherence of a single subsystem was compared between the

exact evolution of the ensemble of two level systems and an approximate method

which uses many of the assumptions necessary for the scaling arguments of Chapter
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2 to hold. The source code for this approximate method is contained here. First,

for the given parameter values, the width of the gaussian energy spectrum is to

be calculated. That width will determine the gaussian from which eigenvalues are

drawn to approximate the decoherence of the single subsystem due to decoherence.

Although only the second moment is needed in the large N limit, it is useful to

also calculate higher order moments in order to see how well the large N limit

applies. For example, one can compare what the fourth moment actually is to

what it should be according to the second moment in the large N limit, where the

spectrum becomes perfectly gaussian and so the fourth moment can be deduced

simply from the second. Such calculations have shown that, at least in this sense,

the large N limit is not a bad approximation for the parameter values used.

Below is the code used to calculate all moments, although it becomes very slow

past the sixth order. It is written for python, and outputs the desired moment

averaged over many specific instances of subystem locations, as well as the standard

deviation and standard deviation of the mean, of that average.

1 # import the necessary packages

2 import numpy as np

3 import itertools as it

4 import copy

5 import numpy.linalg as lin

6 from sympy.utilities.iterables import multiset_permutations

7

8 # define parameters for the calculation

9 N = 5 # number of subsystems

10 moment = 2 # which moment to calculate

11 kL = 1098052 # unitless size of the sample - make >>100 to

randomize interaction phases

12 F = 1 * kL # set the coupling constant in the same units of

sample size

13 dim = 2 # spatial dimensions of the subsystem positions

14 duplicate_check = False

15 exact_positions = True

16 random_phases = False



D2 Approximate Decoherence Simulations 120

17 verbose = False

18 show_coupling = True

19 show_it_all = False

20 samples = 594940

21 shell = .2

22

23

24 total_shell_count = 0

25

26 result = []

27 secondmom_list = []

28 thirdmom_list = []

29 fourthmom_list = []

30 fourthmom_listapprox = []

31 fourth_correction_list = []

32

33

34 # makes all lists of numbers which add up to the target

35 def subset_sum(numbers , target , partial =[], sub_result =[]):

36 s = sum(partial)

37 if s == target:

38 sub_result.append(partial)

39 if s >= target:

40 return

41 for i in range(len(numbers)):

42 n = numbers[i]

43 remaining = numbers[i:]

44 subset_sum(remaining , target , partial + [n], sub_result)

45 return sub_result

46

47

48 # takes all combinations of 2 qubits in available qubits , along

with partially constructed patterns , and

49 # and coincides them in all possible ways into new patterns

50 def assign(partial_pattern , qubits_for_assignment):

51 constructed_pattern = []

52 qubit_list = [qubit [0] for qubit in qubits_for_assignment]
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53 for pair in it.combinations(qubit_list , 2):

54 new_partial_pattern = copy.deepcopy(partial_pattern)

55 new_partial_pattern.append(pair)

56 new_available_qubits = copy.deepcopy(qubits_for_assignment

)

57 to_remove = []

58 for i in range(0, len(new_available_qubits)):

59 if new_available_qubits[i][0] in pair:

60 if new_available_qubits[i][1] == 1:

61 to_remove.append(i)

62 else:

63 new_available_qubits[i][1] += -1

64 shift_count = 0

65 for j in to_remove:

66 new_available_qubits.pop(j - shift_count)

67 shift_count += 1

68 constructed_pattern.append ([ new_partial_pattern ,

new_available_qubits ])

69 return constructed_pattern

70

71

72 # get rid of extra formatting in pattern lists

73 def flatten(unflat_patterns):

74 flatpat , empty = zip(* unflat_patterns)

75 if len(flatpat) == 1:

76 return flatpat [0]

77 else:

78 return flatpat

79

80

81 # returns all qubits that appear in a given pattern

82 def get_qubits(pattern):

83 flat_qubit_index_list = [item for sublist in list(pattern) for

item in sublist]

84 return set(flat_qubit_index_list)

85

86
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87 #

88 def check_arrangement(arr , pattern):

89 contemp_arr = list(copy.deepcopy(arr))

90 for pair in pattern:

91 if contemp_arr[pair [0]] == contemp_arr[pair [1]]:

92 return 0

93 else:

94 contemp_arr[pair [0]] = (contemp_arr[pair [0]] + 1) % 2

95 contemp_arr[pair [1]] = (contemp_arr[pair [1]] + 1) % 2

96 if contemp_arr == list(arr):

97 return 1

98 else:

99 return 0

100

101

102 # calculate how many times a given pattern will contribute to the

given moment

103 def pattern_mult(pattern):

104 multiplicity = 0

105 unique_qubit_num = len(get_qubits(pattern))

106 if show_it_all:

107 print('finding multiplicity for ', pattern)

108 for num_excited in range(1, int(np.ceil(unique_qubit_num /2))):

109 for start_arr in multiset_permutations(list(np.ones(

num_excited)) + list(np.zeros(N-num_excited))):

110 if check_arrangement(start_arr , pattern):

111 multiplicity += 2

112 if unique_qubit_num % 2 == 0:

113 for later_arrs in multiset_permutations(list(np.ones(int(

unique_qubit_num /2))) + list(np.zeros(int(unique_qubit_num /2 -

1)))):

114 start_arr = [0.0] + later_arrs

115 if check_arrangement(start_arr , pattern):

116 multiplicity += 2

117 if show_it_all:

118 print('found one!', start_arr)

119 multiplicity = multiplicity * np.power(2, N - unique_qubit_num
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)

120 if show_it_all:

121 print('total multiplicity with pattern:', multiplicity ,

pattern)

122 return multiplicity

123

124

125 # gets multiplicities for all patterns

126 def get_mults(flattened_patterns):

127 if len(flattened_patterns [0]) == 2:

128 flattened_patterns = [flattened_patterns]

129 multiplicities_list = []

130 for pattern in flattened_patterns:

131 multiplicities_list.append(pattern_mult(pattern))

132 return multiplicities_list

133

134

135 # removes patterns with zero multiplicity , then combine the

remaining

136 # patterns with their nonzeor multiplicities

137 def combine_pat_mult(plain_patterns , plain_multiplicities , zeros=

False):

138 mults_w_pat = []

139 if len(plain_patterns [0]) == 2:

140 plain_patterns = [plain_patterns]

141 for i in range(0, len(plain_patterns)):

142 this_mult = plain_multiplicities[i]

143 if zeros or (this_mult != 0):

144 mults_w_pat.append ([this_mult , plain_patterns[i]])

145 return mults_w_pat

146

147

148 # returns the separation difference between two positions

149 def get_separation(pos1 , pos2):

150 difference_vec = [pos1[x] - pos2[x] for x in range(0, len(pos1

))]

151 return lin.norm(difference_vec)
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152

153

154 # returns the coupling given the sample size and the normalized

distance

155 def coupling_term(distance , kL):

156 factor = distance * kL

157 if random_phases:

158 term = F * np.sin(np.random.rand()*2*np.pi)/factor

159 else:

160 term = F * np.sin(factor)/factor

161 return term

162

163

164 # find the total contribution to the moment from a given pattern

for a given set of qubit positions

165 def pattern_contribution(pat , poslist):

166 global shell_count

167 contribution = 0

168 qubits = get_qubits(pat)

169 num_qubits = len(qubits)

170 all_qubits = [i for i in range(0, N)]

171 for qubit_choices in it.combinations(all_qubits , num_qubits):

172 term = 1

173 for pair in pat:

174 pseparation = get_separation(poslist[qubit_choices[

pair [0]]] , poslist[qubit_choices[pair [1]]])

175 if separation < shell:

176 shell_count += 1

177 print('bumped into shell!')

178 term = term * coupling_term(pseparation , kL)

179 contribution += term

180 return contribution

181

182

183 # calculates the moment for a given list of qubit positions

184 def get_moment(patterns_with_mults , poslist):

185 numerical_moment = 0
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186 for p in patterns_with_mults:

187 numerical_moment += p[0] * pattern_contribution(p[1],

poslist)

188 return numerical_moment/np.power(2, N)

189

190

191 # calculates the moment many times and prints the progress

192 print_counter = 0

193 for sample in range(0, samples):

194 # print out progress

195 if print_counter == 100:

196 print('fraction complete:', sample/samples)

197 print_counter = 0

198 else:

199 print_counter += 1

200

201 # for counting how many times the r shell is needed

202 shell_count = 0

203

204 # generate patterns of qubit coincidence in even numbers

205 even_list = np.arange(2, moment + 1, 2)

206 pattern_pairs = subset_sum(even_list , 2 * moment , [], [])

207

208 # make initial list of all qubits with the number of each for

each coincidence pattern from above

209 available_qubits_list = []

210 for r in pattern_pairs:

211 available_qubits = []

212 for j in range(0, len(r)):

213 available_qubits.append ([j, r[j]])

214 available_qubits_list.append ([[], available_qubits ])

215

216 # generate all patterns and multiplicities

217 all_assigned = False

218 while not all_assigned:

219 assigned_indicator = 0

220 for elem in available_qubits_list:
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221 if elem [1] != []:

222 available_qubits_list.remove(elem)

223 available_qubits_list = available_qubits_list +

assign(elem[0], elem [1])

224 assigned_indicator += 1

225 if assigned_indicator == 0:

226 all_assigned = True

227

228 patterns = flatten(available_qubits_list)

229 multiplicities = get_mults(patterns)

230 combined = combine_pat_mult(patterns , multiplicities)

231

232 # make the positions list

233 positions , separations , coupling_list = [], [], []

234 while len(positions) < N:

235 next_position = np.random.rand(dim)

236 separation_pass = True

237 for j in range(0, len(positions)):

238 if get_separation(positions[j], next_position) < shell

:

239 separation_pass = False

240 if separation_pass:

241 positions.append(next_position)

242 for j in range(0, len(positions) -1):

243 separation = get_separation(next_position ,

positions[j])

244 separations.append(separation)

245 coupling_list.append(coupling_term(separation , kL)

)

246

247 # either print the result , if there 's only 1 sample , or add

the result of each sample to a list

248 if samples == 1:

249 print(f'moment {moment}:', get_moment(combined , positions)

)

250 print(f'parameters: N= {N}, kL={kL}, F={F}')

251 else:
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252 mom = get_moment(combined , positions)

253 result.append ([ shell_count , mom])

254

255 # if there is more than 1 sample , compile and print the final

results

256 if samples != 1:

257 shell_counts , moment_instances = zip(* result)

258 sigma = np.std(moment_instances)

259 print('average:', np.average(moment_instances))

260 print('std , std of the mean:', sigma , sigma/np.sqrt(samples))

Next we will use the width, calculated from the code above, to approximate the

decoherence time.

1 # import the necessary packages

2 import numpy as np

3

4

5 width = np.power (13.29 , 1/2) # set the width of the gaussian

distribution

6 sample_num = 450 # number of times to sample from the

distribution each time

7 sample_size = 500 # number of times to run the simulation

8 step_size = .001 # the step size for time evolution

9

10

11 # a function to evolve the off diagonal matrix element according

12 # to either real or imaginary eigenvalues

13 def offdagrho_evolution(samples , t, real):

14 if real:

15 exp_factor = 1

16 else:

17 exp_factor = 0 + 1j

18 result = 0

19 for s in samples:

20 result += np.exp(-exp_factor * s * t)

21 return np.abs(result)/len(samples)

22



128

23

24 # a function to identify when the off diagonal matrix element

reaches the threshold

25 def find_t1(samples , step_size , real):

26 result = 0

27 t = step_size

28 while result == 0:

29 if offdagrho_evolution(samples , t, real) < 1/np.e:

30 result = t

31 else:

32 t += step_size

33 return result

34

35

36 # find t1 many times and average over them

37 t1_avg = 0

38 for x in range(0, sample_size):

39 samples = np.random.normal(0, width , sample_num)

40 # print(find_t1(samples , step_size , False))

41 t1_avg += find_t1(samples , step_size , False)

42

43 # display the result

44 print('average:', t1_avg/sample_size)

E Derivation and Discussion of the

Exchange Hamiltonian

Since the seminal paper by Dicke [35, 41], the problem of an ensemble of two level

systems coupled to a common boson bath, often in the context of the specific

phenomenon of super- or sub-radiance, has been analyzed by a large number of

authors and this problem continues to be relevant for a wide range of physical

systems [61–70].
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Throughout this section we will take all the qubits in the computer to be in the

“causality cone", that is sufficient time evolution is allowed so that each qubit in

the computer can be causally influenced by every other qubit. For concreteness

we will focus on square and cube geometries with a regular spacing of d between

adjacent qubits. However, the results are insensitive to the precise shape of the

geometry and also to the regular nature of the array (i.e., the qubits can be taken

as randomly distributed within the considered region). We denote each individual

qubit with the index j and consider a continuum of bosonic modes with annihilation

and creation operators âκε and â†κε respectively. These operators act on the mode

of the field with wave-vector κ and polarization ε. The total Hamiltonian for the

system when only the energy conserving terms are retained (under the rotating

wave approximation) is:

Ĥtotal =
∑
j

1

2
~ωaσ̂zj +

∑
κε

~νκε
(
â†κεâκε +

1

2

)
−

∑
j

∑
κε

~gκε
[
âkε exp (i~κ · ~rj)σ̂+

j + â†κε exp (−i~κ · ~rj)σ̂−j
]

, (E.1)

where

σ̂zj = |1〉j j〈1| − |0〉j j〈0| ,

σ̂+
j = |1〉j j〈0| ,

σ̂−j = |0〉j j〈1| . (E.2)

In Eq. (E.1), the first two terms describe the qubit array and the bosonic modes

in the absence of any interaction whereas the third term describes the coupling

between the two systems. ~rj is the position of the j’th atom and the energies of

the qubit states |0〉 and |1〉 are taken to be −1
2
~ωa and 1

2
~ωa, respectively. The

Dicke limit of the above equations is obtained when the total size of the sample is

assumed to be small compared to the κ-vector of the relevant modes, i.e., ~κ ·~rj → 0.

It is now well-understood that the key physical effect that describes many different

aspects of correlated decay and superradiance is the exchange interaction. Starting
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with the Hamiltonian of Eq. (E.1), this interaction has been derived using a variety

of approaches by a number of authors [52, 53, 71, 72]. This derivation follows steps

that closely mimic the Wigner-Weiskoppf theory of spontaneous decay [73]. We take

the the initial state of the qubit system to be an arbitrary (in general entangled)

superposition state and assume that we start with zero photons in each field mode

κε. The initial state of the combined atom-radiation field system can be written as:

|ψ(t = 0)〉 =
2N−1∑
q=0

cq,0|q〉 ⊗ |0〉 . (E.3)

Here, the index q runs through all possible 2N combinations for the qubits and cq

are the expansion coefficients. We define the following parameter for each atomic

state |q〉:

2Mq ≡ # of atoms in state |1〉 −# of atoms in state |0〉 . (E.4)

With this definition, the energy of the atomic state |q〉 is Mq~ωa. Working in the

interaction picture, we expand the wavefunction as:

|ψ(t)〉 =
2N−1∑
q=0

cq,0(t) exp
[
−i(Mqωa)t

]
|q〉 ⊗ |0〉

+
∑
κε

2N−1∑
q′=0

cq′,1κε(t) exp
[
−i(Mq′ωa + νκε)t

]
|q′〉 ⊗ 1κε〉 .

(E.5)

Here, |1κε〉 represents the state of the radiation field in which the field mode κε has

one photon while all the other modes are in vacuum state and the quantity νκε is

the frequency of this mode. With these definitions, the Schrödinger equation

i~
d|ψ(t)〉
dt

= Ĥtotal|ψ(t)〉 , (E.6)
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yields the following continuum of coupled equations:

dcq,0
dt

= i
∑
κε

gκε
∑
j

exp (i~κ · ~rj)cq	j,1κε(t) exp
[
−i(νκε − ωa)t

]
,

dcq	j,1kε
dt

= igκε
∑
k

exp (−i~κ · ~rk)cq	j⊕k,0(t) exp
[
−i(ωa − νκε)t

]
. (E.7)

Here we use the notation |q 	 j〉 to mean the configuration that equals |q〉 at all

qubits except the qubit j which has undergone |1〉j → |0〉j transition. The quantity

~rj is the position vector of the qubit j. Similarly, the configuration |q 	 j ⊕ k〉

differs from |q 	 j〉 by raising qubit k (at the position ~rk) from |0〉k → |1〉k. The

coupled equations of above are intuitive. Each specific configuration |q〉 is coupled to

configurations where a qubit is lowered (configurations |q	 j〉) by emitting a photon

into the bath. Similarly, each configuration |q 	 j〉 is coupled to configurations

where a qubit is raised (configurations |q 	 j ⊕ k〉) by absorbing a photon from

the bath. We then formally integrate the equations that contain bath excitations

cq	j,1κε

cq	j,1κε(t) = igκε
∑
k

exp (−i~κ · ~rk)
∫ t

0

exp
[
−i(ωa − νκε)t′

]
cq	j⊕k,0(t′)dt′ .(E.8)

Here, it is assumed that the coupling to the radiation modes is turned on at t = 0.

It is also assumed that the initial conditions for the continuum mode amplitudes

are cq	j,1κε(t = 0) = 0. Using Eq. (E.8), the differential equation for cq,0 in Eq. (E.7)

now reads

dcq,0
dt

= −
∑
κε

|gκε|2
∑
j

∑
k

exp (i~κ · ~rjk)
∫ t

0

exp
[
−i(νκε − ωa)(t− t′)

]
cq	j⊕k,0(t′)dt′ ,(E.9)

where we have defined ~rjk ≡ ~rj − ~rk. This way, the problem is reduced to a set

of coupled integro-differential equations for the initial probability amplitudes cq,0.

Each state |q〉 is coupled to all states that differ by lowering one qubit and raising

another qubit in the configuration (i.e., to states |q 	 j ⊕ k〉 ). We next rewrite the
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summation as an integral since we are considering a continuum of radiation modes:

∑
κε

|gκε|2 →
V

(2π)3

∫
κε

|gκε|2d3κ . (E.10)

Here, κ = |~κ| and V is the quantization volume which is assumed to be much

larger than the qubit ensemble. We proceed in spherical coordinates and replace

d3κ integral with d3κ = κ2 sin θdκdθdφ. The coupling constants gκε depend on the

matrix element between the two levels and also the angle between the polarization

of a particular electromagnetic mode and the orientation of the atomic dipole:

|gκε|2 =
νκεµ

2

2ε0~V
(~ε · ~εa)2 . (E.11)

Here, µ is the coupling matrix element between the two levels (electric-dipole or

magnetic-dipole), ~ε is the polarization vector of the mode with frequency νkε, and

~εa is the orientation vector of the atomic dipole. With these definitions, Eq. (E.9)

reads:

dcq,0
dt

= − µ2

2(2π)3ε0~c3

∑
j

∑
k

∫ ∞
0

ν3
κ

[∫ π

0

∫ 2π

0

sin θ(~ε · ~εa)2 exp (i~κ · ~rjk)dθdφ

]

×

[∫ t

0

exp
[
−i(νκ − ωa)(t− t′)

]
cq	j⊕k,0(t′)dt′

]
dνκ .(E.12)

We have used the identity κ = νκ/c to convert the outermost integral from dκ to

dνκε. The middle angular integral can be evaluated analytically:

∫ π

0

∫ 2π

0

sin θ(~ε · ~εa)2 exp (i~κ · ~rjk)dθdφ =

4π(1− cos2 θjk)
sin(κrjk)

κrjk
+ 4π(1− 3 cos2 θjk)

[
cos(κrjk)

(κrjk)2
− sin(κrjk)

(κrjk)3

]
.

(E.13)

Here rjk = |~rjk| and the angle θjk is the angle between the atomic dipole moment
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vector ~εa and the separation vector ~rjk:

cos θjk =
(~εa · ~rjk)2

r2
jk

. (E.14)

To evaluate the time and frequency integrals in Eq. (E.12), we employ the usual Born-

Markov approximation. For this purpose we replace cq	j⊕k,0(t′) with cq	j⊕k,0(t) and

take this quantity outside the integral. We also consider the t→∞ limit of the inner

time integral, which results in
∫∞

0
exp

[
i(νκ − ωa)t′

]
dt′ = πδ(νκ − ωa) + iP{ 1

νκ−ωa}

(δ is the Dirac delta function and P{} stands for the principal value). Using all of

these results and simplifications, Eq. (E.12) reduces to:

dcq,0
dt

= −
∑
j

∑
k

Fjkcq	j⊕k,0 , (E.15)

where Fjk are the exchange coupling coefficients,

Fjk = Fkj = −(i
Γ

2
+ δω)(

3

8π
)
[
4π(1− cos2 θjk)

sinκarjk
κarjk

+ 4π(1− 3 cos2 θjk)(
cosκarjk
(κarjk)2

− sinκarjk
(κarjk)3

)
](E.16)

In the large N and constant density limit where almost all pairs of subsystems

are very far from one another, this expression approaches the simpler Fjk ∼

sin(krjk)/krjk which is used in the main text.

E1 Beyond the Born-Markov Approximation

The Born-Markov approximation that allows the derivation of the effective exchange

Hamiltonian assumes the evolution time-scales for the state coefficients to be slow

compared to the correlation time scales of the bath. It is important to understand our

system beyond this approximation, since as N →∞ the system dynamics become

ever faster and Born-Markov approximation is violated. Without the Born-Markov
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approximation, the state coefficients evolve according to an integro-differential

equation of the form:

dcq
dt

= −
(

3

8π

)
Γ

2

∑
j

∑
k

(1− cos2 θjk)

∫ t

0

exp
[
iωa(t− τ)

]
G(t− τ)cq	j⊕k(τ)dτ .(E.17)

where

G(t− τ) ≡ 2π

(rjk/c)
Box

[
t− τ

(rjk/c)

]
− i 2

(rjk/c)
ln

[
(rjk/c) + (t− τ)

|(rjk/c)− (t− τ)|

]
. (E.18)

Here, the Box function equals one when its argument is between 0 and 1, and

equals zero otherwise. The integration Kernel G(t − τ) captures the correlation

(memory) time scales of the bath, which has a width of order rjk/c. We have verified

that the above model is consistent with many other formulations of large-sample

superradiance, as discussed in detail, for example, in the review article Ref. [41],

Section 7. The above model clarifies the effect of the Born-Markov approximation

in large samples. If the evolution time scales for the state coefficients are slow

compared to the width of the function G(t− τ), then the Kernel effectively acts

like a delta-function. Under these conditions, cq	j⊕k(τ) coefficients can be taken

outside the integral and be replaced by cq	j⊕k(τ) ≈ cq	j⊕k(t). If the coefficients are

not slowly varying, then this approximation cannot be applied. When Born-Markov

approximation is not satisfied, the rate of change in each coefficient cq is not only

influenced by the values of the coefficients at that particular time, cq	j⊕k(t), but

instead depend the values of the coefficients over the time window [t, t− rjk/c]. We

note that all the scaling results that we discuss in the manuscript result from N

dependent sums over the prefactors in fronts of these coefficients, which have almost

random phases (due to large spacings) and 1/rjk scaling factors. It is very hard to

see how any of these scaling results could be altered when one considers not just the

values of the coefficients at that particular time, but also takes into account their

evolution history, since neither phases nor the average strengths of the prefactors

are altered.
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A good physical model for correlated decay in large samples can be summarized as

follows: consider a specific qubit j in the ensemble. The radiated fields from all the

other qubits in the computer interfere at the position of the qubit j producing a

randomly fluctuating field. This fluctuating field results in random phase rotations

and population transfer in qubit j, causing bit-flip and decoherence errors. When

Born-Markov approximation is satisfied, we evaluate the field values at a specific

point in time and consider their interference. When Born-Markov approximation is

violated, we need to take into account not only each emitted field at a specific point

in time, but also the history of the field over the window [t, t− rjk/c]. But for both

cases, neither the number of fields that are interfering, nor the average strength of

each field is altered. As a result, the scaling results that we discuss should remain

valid even when the Born-Markov approximation is violated.
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