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Eigenvectors of a Raman Medium
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We show the existence of discrete sets of Raman sidebands which self-consistently establish a Raman
coherence and propagate without change in amplitude and relative phase. Equivalently, there exist peri-
odic femtosecond-time-scale, temporal pulse shapes which propagate without change in shape.

PACS numbers: 42.50.Gy, 32.80.Qk, 42.65.Dr, 42.65.Tg
Two laser beams whose frequency difference is close,
but not exactly equal, to that of a Raman resonance in a
molecular medium will drive the resonance so as to estab-
lish a phased and, in effect, propagating molecular coher-
ence. If the magnitude of this coherence rab is comparable
to the magnitude of raa and rbb (Fig. 1), the effective dis-
tance for the generation of additional Raman sidebands is
comparable to the distance in which the relative phase of
adjacent sidebands would slip by p radians. When this is
the case, it is predicted that the medium will generate a
collinearly propagating comb of Raman sidebands which,
for vibrational scattering in H2, has a spectral width ex-
ceeding 60 000 cm21 [1].

By using spectral pulse modification techniques [2,3]
it is, in principle, possible to independently adjust the
relative amplitude and phase of each spectral component
of such a Raman-generated spectral comb. One is, there-
fore, motivated to ask the question: Do there exist sets
of Raman sidebands which will self-consistently establish
the molecular coherence and propagate without change in
amplitude or relative phase? Equivalently, do there exist
periodic trains of femtosecond-time-scale optical pulses
which establish the coherence and propagate without
changing shape?

In this Letter we discuss the conditions for the existence
of Raman eigenvectors as described in the previous para-
graph. These conditions are as follows: (i) In analogy to
electromagnetically induced transparency (EIT) in atoms,
one must use the antiphased molecular state. (ii) There is
a requirement on the magnitude of the Raman polarizabil-
ity as compared to the background dispersive polarizabil-
ity. (iii) The pulse train as a whole (for example, 20-ns
long for typical Q-switched lasers) must have an energy
which is sufficiently large that the total number of photons
is large as compared to the number of molecules in the laser
path. When these conditions are satisfied, also in analogy
to EIT, the Raman coherence is self-consistently prepared
by pulses in the front of the pulse train. Once prepared,
assuming infinite dephasing time of the Raman transition,
the medium will transmit all further pulses without change
of pulse shape.

Before proceeding we note that there has been consider-
able theoretical and experimental work on multifrequency,
on-resonance Raman generators [4,5]. The possibility of
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Raman solitons has been noted [6]. Off-resonance excita-
tion has been suggested as a means for obtaining a reduc-
tion in the refractive index [1] and also for generating a
sinusoidally, frequency-modulated beam which, by using
group velocity dispersion, can be temporally compressed
into a train of subfemtosecond pulses [7]. Other pertinent
work is listed in Refs. [8–10].

We begin by assuming monochromatic fields and show-
ing the existence of self-consistent sets of Raman side-
bands (eigenvectors) which propagate without change in
amplitude or relative phase and, at the same time, pro-
duce the specified coherence. In the latter portion of
this Letter, we numerically show how such eigenvectors
and associated coherence may be established by applying
smooth field envelopes to molecules which are initially in
the ground state.

Proceeding as in Harris and Sokolov [1] and noting
Fig. 1, the angular frequencies of the Raman sidebands
are vq � v0 1 q�vb 2 va 2 dv� � v0 1 qvm.
The frequencies of the ground and excited vibrational-
rotational states are va and vb and the detuning from
Raman resonance is dv. We assume the ideal case of
zero linewidth for the Raman transition. We allow for
an arbitrary number of states ji� with energies h̄vi and
matrix elements from states ja� and jb� to these states

FIG. 1. Energy level schematic showing the interaction of
Raman sidebands with the molecular states. In the configuration
shown, the two-photon detuning dv is negative.
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mai and mbi. By assuming that the derivatives of the
probability amplitudes of the upper states ji� are small as
compared to the detunings from these states, the problem
may be written in terms of an effective Hamiltonian
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The quantities A�2 and D�2 are the Stark shifts of states
ja� and jb�, respectively, and B is the effective Rabi fre-
quency. With the dispersion and coupling constants de-
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the matrix elements in Eq. (1) are A �
P

q aqjEqj
2, B �P
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q21, and D �
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2.
Working in local time, t � t 2 �z�c�, the one-

dimensional propagation equation for the qth sideband is
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where N is the number of molecules per volume and h �
�m�e0�1�2.

Using the effective Hamiltonian of Eq. (1), the equations
for the density matrix elements, also in local time, are
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where raa � 1 2 rbb . We assume that at t � 0 all the
molecules are in a single, nondegenerate ground state;
therefore, raa�z, 0� � 1 and rab�z, 0� � rbb�z, 0� � 0.

If the elements of the effective Hamiltonian vary slowly
as compared to the separation of the eigenvalues and with
B � jBj expjw, the solution of the density matrix which
evolves smoothly from the ground state is
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In molecular systems with large one-photon detunings
A � D. The sign of the detuning dv from Raman reso-
nance determines the sign of the coherence rab . If dv is
negative, then rab has the opposite sign than its driving
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two-photon Rabi frequency B. We, therefore, refer to this
coherence as antiphased. We will see that, for a normally
dispersive medium, only an antiphased coherence will lead
to the eigenvectors of this work.

We choose the time origin so that rab is real and define
a vector E with components E2q, . . . , E0, . . . , Eq. The
propagation equations may then be written as

dE
dz

� M ? E . (6)

From Eq. (3), the nonzero matrix elements of M, each
multiplied by 2jhh̄vqN are

Mq,q21 � b�
qrab ,

Mq,q � aqraa 1 dqrbb ,

Mq,q11 � bq11r�
ab .

We seek self-consistent solutions of the steady-state
density matrix [Eq. (5)] and the propagation equation
[Eq. (6)]. If the density matrix elements are independent
of distance, then a solution of Eq. (6) is

E�z� � jknk expjkkz , (7a)

where

M ? nk � jkknk . (7b)

nk and jkk are the normalized eigenvectors and eigen-
values of M at an assumed value of coherence such that
u�z� � u�0� � u0 and w�z� � w�0� � 0. With dv cho-
sen, we define Ajnk � A0, Bjnk � B0, Djnk � D0. Con-
sistency requires

2jjk j
2jB0j

2dv 2 jjkj2D0 1 jjkj2A0
� tanu0 , (8a)

Arg�B0� � w�0� � 0 . (8b)

If a solution for jjkj
2 exists, then the eigenvector nk

propagates with a constant state of the molecular system
�u�z� � u0�. In the frequency domain, the components
Eq of the eigenvector propagate with unchanged ampli-
tude. Each sideband accumulates an absolute phase of kkz
so that the relative phase of the sidebands is unchanged.
Equivalently, the Fourier transform of these sidebands is a
periodic function of time which is independent of distance.

We find numerically that, for a normally dispersive
medium, for Eq. (8b) to be satisfied, the quantity u0 must
be negative. Equivalently, only the antiphased state (ob-
tained by tuning above the Raman resonance) will yield
self-consistent eigenvectors. In molecules, the dispersive
parameters aq and dq are often of the same magnitude.
When this is the case, the ratio of the coupling parameter
bq to either of these parameters determines the range of u0
(i.e., coherence) over which a solution exists. Because of
the Franck-Condon factors, 0 , jb�aj , 1; at the lower
limit, the only self-consistent eigenvectors are those which
approximate a single frequency when propagating alone.
For intermediate values of jb�aj, solutions for jjkj

2 exist
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for some values of u0 but not for others; at sufficiently
large jb�aj, solutions exist for all values of u0.

The fundamental rotational transition of H2
�vm � 354 cm21� is an example where the ratio
jb�aj is large and where the matrix elements (for Lyman
and Werner bands) are known [7,11]. With states ja� and
jb� as the J 00 � 0 and J 0 � 2 rotational states of the H2
ground vibrational level and an applied center frequency
of v0 � 25 500 cm21 (frequency-doubled Ti:sapphire),
jb�aj � 0.67. Figure 2 shows the spectral components
of an eigenvector which is generated at a coherence of
rab � 20.025. For this eigenvector, about ten sidebands
have substantial amplitudes. In time domain this eigen-
vector corresponds to a combination of amplitude and
frequency modulation, with both modulation frequencies
equal to the oscillation frequency and phased such that the
peak in amplitude corresponds to the peak in frequency.
For N � 2.23 3 1019 molecules�cm3 the eigenvalue
kk � 210.7 rad�cm is a measure of the phase retardation
of the eigenvector as an entity. To this accuracy, the phase
accumulation of the zeroth sideband, if propagating alone
in an incoherent medium, is the same. If two sidebands
propagate through the medium with rab � 20.025 and
N � 2.23 3 1019 molecules�cm3, approximately one
additional sideband is generated after every 2 cm of
propagation [7].

In general, we choose the basis set large as compared to
the number of sidebands which have substantial amplitude.
When this is the case truncation of the M matrix does
not affect the existence or shape of the eigenvectors. The
reason for this is that M is tridiagonal and each sideband
is coupled only to its nearest neighbors.

We next consider the dynamic preparation of the
medium. To do this we assume that at t � 0 all of the

FIG. 2. An example of an eigenvector for the rotational tran-
sition in H2. The molecular coherence is rab � 20.025.
molecules are in the ground state. At z � 0 a smoothly
rising pulse with a rise time of 10 ns is imposed on each
component Eq of the selected eigenvector. The density
matrix and propagation equations [Eqs. (3) and (4)] are
solved numerically by the method of lines; at each point
in the cell we solve the time domain density matrix
equations for the matrix elements and use these elements
to advance the propagation equations to the next step.

The results of this numerical simulation for the
eigenvector of Fig. 2 are shown in Figs. 3 and 4.
These figures assume H2 at a density of N � 2.23 3

1019 molecules�cm3 and a cell length of 35 cm. At z �
0 the power per area of center sideband is 1.15 3

108 W�cm2, corresponding to jjkj � 1.9 3 106 V�cm.
Figure 3 shows, with the same normalization as Fig. 2,

the amplitudes of several components of this eigenvector
as a function of time, evaluated at z � 0 and z � 35 cm.
One notes that in the preparation period, i.e., for times
less than about 24 ns, the amplitudes of the components
differ from their steady-state values. After preparation is
complete there are no further changes. Figure 4 shows
the phase accumulation for these same sidebands. Fol-
lowing preparation, all sidebands accumulate a common
phase kkL. In analogy with EIT [12], we have found
that the total number of photons in the preparation time
is within a factor of 10 (depending on the magnitude

FIG. 3. The amplitudes of E23, E21, E1, and E3 at z � 0
(solid line) and at z � 35 cm (dashed line) of the H2 cell at
a density of N � 2.23 3 1019 molecules�cm3. After all side-
bands have evolved to their steady-state values, the envelopes at
z � 0 and at z � 35 coincide.
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FIG. 4. Normalized phase shifts �f� between z � 0 and z �
L � 35 cm of the respective sidebands. After preparation, all
sidebands accumulate a common phase kkL.

of the coherence) of the number of molecules in the
laser path.

This work has shown that there are sets of Raman side-
bands which self-consistently establish a molecular coher-
ence and propagate without change in amplitude or relative
phase. Equivalently, even in a dispersive medium, there ex-
ist periodic trains of femtosecond-time-scale optical pulses
which propagate without changing shape. In common with
EIT in three-state systems, these effects require sufficient
pulse energy to establish an antiphased coherence.
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