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We describe a scheme that performs aSWAP gate between two photons at different wavelengths with near
100% fidelity. The essential idea is the preparation of a near-maximal atomic coherence using electromagneti-
cally induced transparency.
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Over the last decade quantum computation has received
much attention due to the possibility of solving certain prob-
lems more efficiently than a classical computerf1g. Currently
a number of different approaches are being pursued to build
a scalable quantum computer. An attractive physical system
for implementing quantum computation uses photons at dif-
ferent wavelengths as qubitsf1g. Photons are ideal carriers of
quantum information since they suffer little from decoher-
ence. However, it is a real challenge to interact single pho-
tons, since the nonlinearities in typical materials are very
small.

Resonantly enhanced nonlinearities using electromagneti-
cally induced transparencysEITd show considerable promise
for interacting single photons at different wavelengthsf2–7g.
These proposals utilize unique dispersive properties of EIT
to obtain unusually large cross phase or amplitude modula-
tion. One common theme of these proposals is the slow light
associated with the steep dispersion of the refractive index.
The limitations of these proposals are as follows:s1d The
nonlinear effects are proportional to the intensity of light. As
a result very tight focusing is necessary to observe significant
interactions at the single photon level.s2d Since slow light is
essential, the quantum gates that are constructed are neces-
sarily slow.

In this paper, we suggest a scheme that performs aSWAP

gate between two photons at different wavelengths. Our pro-
posal does not suffer from the limitations of the previous
paragraph. However, aSWAP gate alone is not sufficient to
build a scalable quantum computerf8g. Therefore, our
scheme should be thought as supplementing other proposals
f2–7g in building an optical quantum computer. The scheme
that will be analyzed in detail is shown in Fig. 1. We con-
sider a four-level atomic system interacting with four fields.
Two of these fieldsstermed the probe fieldEp and the cou-
pling field Ecd are strong and form a traditional EIT-lambda
scheme. These fields drive the atoms to a dark state and
prepare the coherencesoff-diagonal density matrix elementd
of the nonallowed Ramansu1l to u2ld transition. Two weak
fields stermedEa and Ebd then interact through the estab-
lished coherence of the atomic system. When the coherence
is near its maximum valueur12u<0.5, the propagation dy-
namics ofEa andEb are strongly coupled to one another. As
will be demonstrated below, under certain conditions, the
interaction betweenEa andEb is identical to a conventional
beamsplitter between two spatial modes. The rotation angle
of the beamsplitter is set by the density length product of the
atomic medium. When the rotation angle isp /2, the medium

transfers the quantum state ofEa sEbd to Eb sEad.
Before proceeding further, we would like to cite pertinent

earlier work: Several experiments have demonstrated nonlin-
ear processes at low light levels using EITf9–12g. By using
the schematic of Fig. 1, Jainet al. and Merriamet al. have
demonstrated near 100% conversion efficiencies in lead va-
por f13,14g. Sokolov and colleagues have extended the ideas
of maximum coherence to molecular systems and have dem-
onstrated a very broad comb of Raman sidebandsf15,16g.
The quantum dynamics of four-wave mixing with EIT has
been studied in detail by Fleischhauer and colleaguesf17g.
Reschet al. have demonstrated significant nonlinear effects
at the single photon levels using spontaneous parametric
down conversionf18g.

We now proceed with a detailed description of our
scheme. We are going to assume thatEp and Ec are suffi-
ciently intense such that they can be treated classically. For
the weak fieldsEa andEb, we consider the dynamics of the
photon annihilation operatorsâa andâb, respectively. We as-
sume slowly varying envelopes when compared with the op-
tical k vector. We make the rotating wave approximation and
neglect the contribution of any other atomic levels to the
propagation constant. With these assumptions, the coupled
equations for the annihilation operators are

]âa

]z
= − jbar11âa − jgar12âb,

FIG. 1. The energy level diagram for the proposed scheme. Two
strong fieldsEp andEc adiabatically drive the atoms to a maximally
coherent state. The two weak fieldsEa andEb then influence each
other through the established coherence.
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]âb

]z
= − jgbr12

* âa − jbbr22âb. s1d

Here ri j are the density matrix elements of theu1l to u2l
Raman transition. The weak fields are coupled to each other
through r12, which is the off-diagonal density matrix ele-
ment. The constantsba, bb, ga, andgb determine dispersion
and coupling and they are

ba =
1

2
hvaN

um14u2

"Dv
, bb =

1

2
hvbN

um24u2

"Dv
,

ga =
1

2
hvaN

m14
* m24

"Dv
, gb =

1

2
hvbN

m14m24
*

"Dv
, s2d

with N being the atom number density andh=sm /e0d1/2. mi j

are the dipole matrix elements between respective transitions
andDv is the common detuning of both fields from stateu4l
swe assume exact two photon resonanced. Equations1d can
be derived by first writing the semiclassical slowly varying
envelope propagation equation forEa andEb, and making the
substitutionsEa→ âa, andEb→ âb. Alternatively, these equa-
tions can also be derived by assuming a Hamiltonian of the

form Ĥ="csbar11âa
†âa+gar12âb

†âa+bbr22âb
†âb+gbr12

* âa
†âbd,

and then converting the Heisenberg equations of motion for
the operatorsâa and âb into spatial differential equations
with the change of variablez=ct f19g. We assumeDv to be
sufficiently large such that dissipation can be neglected and
drop the noise operators that would otherwise be on the
right-hand side of Eq.s1d.

The density matrix elements in Eq.s1d are driven by the
strong fieldsEc and Ep. With all atoms starting from the
ground stateu1l, the atomic system can be prepared adiabati-
cally with the system remaining in the dark state at all times.
This is achieved by counterintuitive pulse sequence, i.e.,
turning the coupling fieldEc on before the probe fieldEp

f20g. With the atoms in the dark state, the population of state
u3l is zero, and the density matrix elements of the Raman
transition are given byf13,14,20g

r11 =
uVcu2

uVpu2 + uVcu2
, r22 =

uVpu2

uVpu2 + uVcu2
,

r12 = −
VpVc

*

uVpu2 + uVcu2
, s3d

whereVp and Vc are the complex Rabi frequencies for the
coupling and probe beams and are defined asVp=Epm13/",
Vc=Ecm23/".

The adiabatic solution for the density matrixfEq. s3dg and
the propagation equations for the annihilation operatorsfEq.
s1dg completely describe the field-atom interaction. We now
proceed with the analysis of these equations. To first order,
the density matrix elements that appear in Eq.s1d are inde-
pendent of distance, i.e.,ri jszd=ri js0d. This is because, when
the medium is in the dark state, the probe field,Ep, and the
coupling field,Ec, propagate as in vacuumsi.e., without any
amplitude and phase changed through the EIT medium. With
this assumption, the coupled equations for the annihilation
operatorsfEq. s1dg are linear and their solution is

Sâaszd
âbszd

D = exps− jM% zdSâas0d
âbs0d

D ; SAszd Bszd
Cszd Dszd

DSâas0d
âbs0d

D ,

s4d

where

M% = Sbar11s0d gar12s0d
gbr12

* s0d bbr22s0d
D . s5d

To further simplify the system we take the dispersive and
coupling constants in the above to be the same:ba<bb
<ga<gb;b. For a state of maximum coherence, i.e.,ur12u
=r11=r22= 1

2, the matrix elements of exps−jM% zd that appear
in Eq. s4d are

SAszd Bszd
Cszd Dszd

D = exps− jbz/2dS cossbz/2d − j exps jfdsinsbz/2d
− j exps− jfdsinsbz/2d cossbz/2d

D . s6d

Here we have definedr12= ur12uexps jfd. Equation s6d is
analogous to a conventional beam splitter between two spa-
tial modes with a rotation angle ofbz/2 f1g.

We now consider the evolution of the input states for the
weak fields while propagating through the coherent EIT me-
dium. We define the photon number operators asn̂aszd
= âa

†âa and n̂bszd= âb
†âb. We first consider the case where at

the beginning of the EIT mediumsz=0d, each field is in a
photon number eigenstatesFock stated, uclinput= unlaumlb
= un,ml. The average number of photons in each field while
propagating through the EIT medium and the fluctuations
around this average are thenkn̂aszdl= uAszdu2n+ uBszdu2m,

kDn̂a
2szdl= uAszdu2uBszdu2sn+md, kn̂bszdl= uCszdu2n+ uDszdu2m,

andkDn̂b
2szdl= uCszdu2uDszdu2sn+md. Using Eq.s6d, if the cell

length L is chosen such thatbL /2=p /2, at the end of the
cell the output state of the system will beucloutput
=s−1dn+m expf jsm−ndfgum,nl f21g. The system, therefore,
swaps the number of photons in each field up to a global
phase factor. For the particular case when there is either 0 or
1 photon in each field, we have the following truth table for
the input-output states of the fields:

u0,0l → u0,0l,
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u0,1l → − exps jfdu1,0l,

u1,0l → − exps− jfdu0,1l,

u1,1l → u1,1l. s7d

This truth table constitutes aSWAP gate for single photons. A
photon in fieldEa sEbd is converted into a photon in fieldEb

sEad.
Preparation of maximum coherence is critical for high-

fidelity SWAP operation. ForbL /2=p /2, one can find ana-

lytical expressions for the matrix elements of exps−jM% zd for
an arbitrary value of atomic coherence. These areA=r22
−r11, B=−2r12, C=−2r12

* , and D=r11−r22. For uclinput
= un,ml, the fidelity of theSWAP operation can be explicitly
evaluated and is

F ; ukm,nucloutputu2 = uBmCnu2 = 22sn+mdur12u2sn+md. s8d

In Fig. 2, we plot the swap fidelity as a function of the value
of the atomic coherence for different photon number eigen-
states. For a maximally coherent state,ur12u=

1
2, regardless of

the number of photons in each mode the fidelity of the swap
operation is unity. However, as the value of the atomic co-
herence decreases, the fidelity is substantially reduced.

We next consider a more general input stateuclinput
= uj ,kl whereujl=okckukl and ukl=okdkukl. Here, the coeffi-
cients of the Fock states,ck anddk, are normalized such that

oucku2=oudku2=1. For a maximally coherent medium, and for
bL /2=p /2, the output state is thenucloutput= uk̃ , j̃l where
uk̃l=oks−1dk exps jkfddkukl and uj̃l=oks−1dk exps−jkfdckukl.
If we choose our time origin such thatf=p, we find that the
states of the two fields are again swapped.

To produce entanglement with our scheme, one can apply
Ea andEb in a superposition of two orthogonal polarizations
such that one polarization component interacts with the
atomic coherence, while the other polarization component
does not. Then one produces a polarization entangled state at
the end of the cell which is nonfactorizable.

The experimental parameters to observe these effects is
modest. For an alkili vapor cell with parametersN
=1012 cm−3, Dv=1 GHz, andm14=m24=1 atomic unit, the
necessary cell length to perform theSWAP operation isL
=7 cm. If we assume the radiative linewidth of 1 MHz for
stateu4l, the absorption of the weak fields for these param-
eters is less than 1% and is negligible. The absorptive effects
can be further reduced by increasingDv at the expense of an
increase in the density length product. Preparation of maxi-
mally coherent atoms in alkili samples require laser intensi-
ties on the order of 10 mW cm−2 f22g. The necessary density
length products to observe some of these effects can also be
achieved with cold atomic clouds in magneto optical traps
f10,12g. To reduce nonadiabatic corrections to the dark state
of Eq. s3d, pulses long when compared to the inverse of the
Rabi frequencies of the driving lasers have to be used. To
avoid dephasing effects, pulses shorter than the dephasing
time of the Raman transitionswhich can be as long as several
secondsd are required.

In conclusion, we have suggested a scheme to perform a
SWAP gate between photons at different wavelengths. Al-
though we have considered an atomic system, our scheme
can also be implemented using maximally coherent molecu-
lar systemsf15,16g. Large Raman frequency of the mol-
ecules can enableSWAP operation between two photons at
very different wavelengths, for example a red photon and a
blue photon. We believe our scheme will find applications in
all optical quantum computing architecture.
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