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We predict two-frequency spatial optical solitons formed in atomic systems where a Raman transition is
adiabatically prepared near a maximally coherent state. Using numerical simulations, we demonstrate the
stability of these solitons against perturbations and investigate soliton-soliton collision properties.
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Since the original suggestions of self-trapping for laser
beams �1–3�, there has been a growing interest in generation
of spatial optical solitons due to their rich nonlinear dynam-
ics, and their potential technological applications �4�. Over
the last few decades, spatial optical solitons have been pre-
dicted and demonstrated in a variety of physical systems
utilizing different nonlinear optical processes �5–9�. The for-
mation of spatial optical solitons require a balance between
the lensing effect of the medium and diffraction. In three
spatial dimensions, it is well known that such a balance may
be unstable, leading to collapse and filamentation of an op-
tical wave �3�.

An exciting practical application of spatial optical solitons
is optical information processing. Collision processes be-
tween spatial solitons can be used to efficiently perform all-
optical gates between laser beams. For such practical appli-
cations, there are several key challenges that have to be met:
�1� The optical solitons for the studied physical system must
be sufficiently stable to allow for well-defined collision prop-
erties, �2� the required optical power for each soliton must be
low enough to keep the power requirement for a possible
logic device within reasonable limits.

Recently, spatial Raman solitons formed in molecular sys-
tems were predicted �10,11�. In this Rapid Communication,
we extend this suggestion and analyze the formation, propa-
gation, and collision properties of spatial Raman solitons
formed in far-off resonant atomic systems. Noting Fig. 1, the
key idea is to drive a Raman transition with two laser beams
whose frequency difference is slightly detuned from the fre-
quency of the Raman resonance �12–15�. For sufficiently in-
tense laser beams, almost half of the atomic population can
be adiabatically transferred from ground Raman state �a� to
excited Raman state �b�. For this case, the magnitude of the
coherence of the Raman transition �off-diagonal density ma-
trix element� approaches its maximum value, ��ab��1/2.
The adiabatically prepared atomic coherence significantly
modifies the refractive indices of the driving laser beams.
Depending on the sign of the Raman detuning, ��, the re-
fractive indices of the driving laser beams are either en-
hanced ����0� or reduced ����0�. This modification of
the refractive index can cause self-focusing or self-
defocusing of the driving lasers. As a result, under appropri-
ate conditions, bright ����0� or dark ����0� two-
frequency solitons are formed. Operating near maximum
coherence, ��ab��1/2, assures the stability of these solitons
against perturbations and allows well-defined collision prop-
erties. As we will show below, spatial Raman solitons in

atomic systems decisively meet the required criteria dis-
cussed in the previous paragraph.

Before proceeding we note that there is extensive litera-
ture on self-trapping and pattern formation of laser beams
in atomic vapor cells utilizing one-photon resonances �16�.
There has also been substantial work on electromagnetic-
ally induced focusing in a variety of near-resonance, two-
frequency systems, including three level ladder, �, and
V systems �17–22�. We begin by developing the formal-
ism for a model atomic system, with two Raman states �a�
and �b� and an arbitrary number of excited states �i�, inter-
acting with two driving lasers �termed the pump and the
Stokes�. We follow closely the formalism of Harris and col-
leagues �12–14�. Noting Fig. 1, we consider three-
dimensional propagation of the driving lasers with electric
field envelopes Ep�x ,y ,z , t� and Es�x ,y ,z , t� such that the

total field is Ê�x ,y ,z , t�=Re�Ep�x ,y ,z , t�exp�j��pt−kpz��
+Es�x ,y ,z , t�exp�j��st−ksz��	 where kp=�p /c and ks=�s /c.
The two photon detuning from the Raman resonance is de-
fined as ��= ��b−�a�− ��p−�s�. When the two laser beams
have the same polarization, new frequencies separated by the
Raman transition �higher-order Stokes and anti-Stokes side-
bands� will be generated as described in Refs. �13,14�.
Throughout this paper, for simplicity, we will ignore these
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FIG. 1. Energy level diagram for a model atomic system. Two
sufficiently strong laser beams, Ep and Es, adiabatically prepare a
maximally coherent atomic eigenstate. For ���0, the atomic me-
dium becomes self-focusing and bright two-frequency spatial soli-
tons are formed.
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additional frequencies. The generation of additional frequen-
cies can, in principle, be prohibited by using frequency se-
lective loss elements �23�. For a far-off resonant system
where the detunings from one-photon resonances are large
when compared with the inverse of the pulse width of the
lasers, we can eliminate the derivatives of the probability
amplitudes of the excited states �i�. For this case, the tempo-
ral evolution of the probability amplitudes of states �a� and
�b� is described by the following effective Hamiltonian
�12–14�:

Heff�x,y,z,t� = −
�

2

 A B

B* D − 2��
� , �1�

where A=ap�Ep�2+as�Es�2, B=bEpEs
*, and D=dp�Ep�2

+ds�Es�2. The constants a, b, and d determine the Stark shifts
and the Raman coupling and are

ap,s =
1

2�2�
i

 ��ai�2

��i − �a� − �p,s
� ,

dp,s =
1

2�2�
i

 ��bi�2

��i − �b� − �p,s
� ,

b =
1

2�2�
i

 �ai�bi

*

��i − �a� − �p
� . �2�

Here, �ij are the dipole matrix elements between respective
transitions. The Hamiltonian of Eq. �1� assumes the ideal
case of zero linewidth for the Raman transition, and there-
fore, is valid for laser pulses short when compared with the
inverse of the linewidth of the Raman resonance. When the
elements of the effective Hamiltonian vary slowly when
compared with the separation of the eigenvalues of the
Hamiltonian, the atomic medium can be prepared adiabati-
cally in an eigenstate that is smoothly connected to the
ground state �a�. The nature of preparation is similar to elec-
tromagnetically induced transparency �EIT� and coherent
population trapping �24,25�. Defining B= �B�exp�j	� and
tan 
=2�B� / �2��−D+A�, the adiabatic solution for the den-
sity matrix elements are �12–14�

�aa = cos2


2
� ; �bb = sin2


2
� ,

�ab = 1

2
sin 
�ej	 = sgn����

B/2
��B�2 + ��� − D/2 + A/2�2

.

�3�

With the density matrix elements calculated by Eq. �3�, the
slowly varying envelope propagation equations for the pump
and the Stokes beams in local time, �= t−z /c, are

2kp
�Ep

�z
+ j

�2Ep

�x2 + j
�2Ep

�y2

= − j2���pkpN�ap�aaEp + dp�bbEp + b*�abEs� ,

2ks
�Es

�z
+ j

�2Es

�x2 + j
�2Es

�y2

= − j2���sksN�as�aaEs + ds�bbEs + b�ab
* Ep� , �4�

where N is the atomic density and �= �� /0�1/2. As also dis-
cussed in the introduction, in Eq. �3�, the sign of �ab is de-
termined by the sign of the detuning, ��. The first two terms
on the right-hand side of Eq. �4� determine the refractive
indices of the two laser beams in the absence of Raman
interaction. The Raman coupling between the two laser
beams is in the third term which contains the atomic coher-
ence �ab. The Raman refractive index effect can be qualita-
tively seen from these propagation equations. Depending on
the phase of the atomic coherence, �ab, the third term inter-
feres either constructively or destructively with the first two
terms resulting in refractive index enhancement or reduction.
For the remainder of this paper, we will focus our attention
to the bright soliton case ����0�, since it is easier to imple-
ment experimentally. In the numerical simulations presented
below, we solve the propagation equations for the laser
beams �Eq. �4��, together with the adiabatic solution for the
density matrix elements �Eq. �3�� on a three-dimensional
x-y-z spatial grid.

We proceed with soliton propagation and collision dy-
namics in a real atomic system. We choose our atomic me-
dium to be 87Rb vapor cell with an atomic density of N
=1014 cm−3. The two Raman states are �a���F=1,mF=0�
and �b���F=2,mF=0� hyperfine states of the ground elec-
tronic state 5S1/2. The frequency of the Raman excitation is
therefore 6.834 GHz. We take both of the laser beams to be
of the same circular polarization. We take the frequency of
the pump beam Ep to be 100 GHz red detuned from the
excited state 5P3/2 �D2 line�. For such large one-photon de-
tuning, the absorption of the beams due to the excited state
while propagating through a 1-meter-long vapor cell is about
1% and is negligible. While calculating the constants a, b,
and d, we include all relevant hyperfine states in the excited
state manifold. The collisional dephasing linewidth for the
Raman transition at N=1014 cm−3 is �=2��11 kHz. We
take the two-photon detuning to be ��=2��10 MHz,
which is much larger than both the dephasing linewidth �
and also the two-photon Doppler linewidth. This assures the
adiabatic preparation of atoms in all velocity classes. We also
assume that the vapor cell is filled with a buffer gas of suf-
ficient density �pressure larger than 100 torr� such that the
diffusion of atoms across the spatial profiles of the beams is
negligible for the time scales of interest �1/��10 �s�.

We examine soliton stability and convergence by numeri-
cally propagating Gaussian spatial profiles with sufficient op-
tical power. In Fig. 2, we plot one-dimensional cross sections
for the intensity of the pump laser beam, Ip= �Ep�2 /2�, as a
function of the propagation distance in the cell. In this simu-
lation, the pump and the Stokes beams are assumed to have
identical Gaussian spatial profiles with a Gaussian width of
w0=100 �m at the beginning of the cell. The integrated
power in each beam is 130 mW, which corresponds to a
peak intensity of 828 W cm−2 at the beginning of the cell.
The peak value of the atomic coherence at the beginning of
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the cell is ��ab�=0.44. Noting Fig. 2, the spatial profile of the
pump beam quickly converges to a soliton. The beam does
not diffract and its spatial width is mostly maintained
through 0.5 m of propagation along the vapor cell. The spa-
tial profile of the Stokes beam also shows a very similar
behavior �not plotted in Fig. 2�. The inset in Fig. 2 shows the
normalized peak intensity of the pump laser beam as a func-
tion of propagation distance along the cell detailing the con-
vergence behavior. In the absence of Raman self-focusing,
the beam size would have increased by a factor of 12.5 due
to diffraction.

Figure 3 shows an elastic collision between two solitons
where two solitons collide and pass through each other. Here,
differing from the simulation of Fig. 2, we start with two
Gaussian profiles for both laser beams propagating towards
each other in the x-z plane with a collision angle of 
=4
�10−3 radians. Similar to Fig. 2, for each soliton, each of the
pump and the Stokes beam has a power of 130 mW. In Fig.
3, we plot one-dimensional slices across the spatial profile of
the pump beam as a function of the propagation distance.
The solitons collide and pass through each other. The spatial
profile of the Stokes beam shows a very similar behavior
�not plotted in Fig. 3�. The inset in Fig. 3 shows a contour
plot for the intensity of the pump laser beam in the x-z plane.

Figure 4 shows an inelastic collision between two solitons
where two solitons collide and fuse into a single soliton.
Here, similar to Fig. 3, we start with two Gaussian profiles
propagating towards each other in the x-z plane. However,
we reduce the collision angle to 
=8�10−4 radians such that
each soliton cannot escape from the waveguide created by
the other soliton. As a result, after substantial collision dy-
namics, the solitons fuse into each other.

The numerical simulations presented in Figs. 2–4 demon-
strate the stability of Raman solitons against perturbations in

full three spatial dimensions. We now proceed with an ana-
lytical treatment to obtain insight into these results. For this
purpose, we take the constants a, b, and d of Eq. �2� to be
equal, ap=as=dp=ds=b. We also take the Raman transition
frequency to be much smaller than the frequencies of the
driving lasers and therefore take �p=�s, kp=ks. For the nu-
merical simulations of Figs. 2–4, these are valid assump-
tions. When the pump and the Stokes beams have identical
boundary conditions at the beginning of the cell, Ep�x ,y ,z
=0�=Es�x ,y ,z=0�, the two propagation equations of Eq. �4�
reduce to the same differential equation. Transforming
Ep�x ,y ,z�=Es�x ,y ,z�=E�x ,y ,z�exp�−j���pNapz� in Eq.
�4�, this differential equation is

2kp
�E

�z
+ j

�2E

�x2 + j
�2E

�y2 = − j�
�E�2

�1 + �b�2�E�4/��2
E , �5�

where �=���pkpN�b�2 /��. For �b��E�2 /���1 �unsaturated
regime corresponding to ��ab��0.1�, Eq. �5� reduces to the
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FIG. 3. An elastic collision between two solitons at a collision
angle of 
=4�10−3 radians. The plot shows one-dimensional slices
of the intensity of the pump beam, Ip= �Ep�2 /2�, as a function of the
propagation distance in the cell. The solitons collide, pass through
each other, and continue propagating as solitons. The inset shows a
contour plot of the same numerical simulation.
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FIG. 4. An inelastic collision between two solitons at a collision
angle of 
=8�10−4 radians. The solitons collide and after substan-
tial collision dynamics, fuse into each other. The inset shows a
contour plot of the same numerical simulation.
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FIG. 2. Propagation of an initial Gaussian spatial profile through
a 0.5-m-long atomic vapor cell. The plot shows one-dimensional
slices of the intensity of the pump beam, Ip= �Ep�2 /2�, as a function
of the propagation distance in the cell. After breathing, the profile
converges to a soliton and propagates without further change. The
Stokes beam shows an almost-identical behavior �not shown�. The
inset shows the normalized peak beam intensity as a function of
propagation distance. In the absence of Raman self-focusing, the
size of the beam would have increased by a factor of 12.5 due to
diffraction.
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well-known nonlinear Schrödinger equation. For this case, if
we consider only one spatial transverse dimension, the well-
known sech�…� bright soliton analytical solutions are imme-
diately found. For two spatial dimensions, the soliton profiles
can be found numerically �2�. In the saturated regime where
��ab��1/2, even for single transverse dimension, the analyti-
cal solutions cannot be found and the profiles have to be
calculated numerically �10,11�. The stability of spatial Ra-
man solitons is a direct consequence of the saturation term
on the right-hand side of Eq. �5� �26�.

Throughout this work we have assumed an adiabatic den-
sity matrix solution for the atomic system. Since the nature
of preparation is similar to front edge preparation of electro-
magnetically induced transparency �24�, we expect a prepa-
ration energy requirement for spatial Raman solitons. This
requirement states that the number of photons in the laser
pulses must be large when compared with the number of
atoms contained in the volume swept by the laser pulses,
Vswept=

1
2L�w0

2, where L is the length of the medium �27�.
For 10-�s-long laser pulses, this requirement is satisfied for
the numerical simulations of Figs. 2–4. The calculation of

the exact behavior requires time domain integration of the
Schrödinger equation of Eq. �1� combined with the spatial
integration of the propagation equations of Eq. �4�, which is
beyond our numerical capabilities at this moment. An excit-
ing future direction would be to see if it is possible to com-
bine spatial Raman solitons of this work with temporal Ra-
man solitons �28–30� and to explore the possibility of
observing light bullets �simultaneous trapping in space and
time� �9�. Strongly driven Raman systems may be one of the
few schemes where such light bullets can be observed.

To conclude, we predict a type of spatial optical solitons
in strongly driven atomic systems. These solitons are sub-
stantially stable against perturbations and they have well-
defined collision properties. They also require low optical
powers �about 100 mW for the numerical simulations pre-
sented in Figs. 2–4� and therefore are ideally suited for op-
tical information processing applications.
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