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By utilizing the interference between an absorptive resonance and an amplifying resonance, one can achieve
an enhanced refractive index without an increase in absorption to the beam. We analyze noise added to the
beam due to spontaneous emission while propagating through such an index enhanced medium. We find that,
for a medium with a refractive index of n and of length L, ��n−1��2� /�0�L noise photons are added to the
beam.
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Since the pioneering work of Scully and colleagues �1–6�,
there has been a growing interest in approaches that achieve
an enhanced refractive index for a laser beam without an
increase in the absorption. A key practical application of
these techniques is to optical imaging science. The wave-
length of light inside a refractive medium is �=�0 /n, where
�0 is the wavelength in free space and n is the refractive
index. A large refractive index, therefore, corresponds to a
reduced wavelength inside the medium and enhanced imag-
ing resolution.

It is well known that the interference of an absorptive
resonance and an amplifying resonance can lead to an en-
hanced refractive index with vanishing absorption �3�. As
shown in Fig. 1�a�, the most straightforward way to realize
such an interference is to have two different two-level atomic
species. In practice, such a multiple two-level atom scheme
has not yet been realized since it is difficult to find two
different atomic species with close and easily tunable reso-
nance frequencies. It has recently been suggested that such a
multiple two-level atom scheme can be realized by using
Raman resonances in far-off-resonant atomic systems �7,8�.
As shown in Fig. 1�b�, with an atom starting in the ground
state �1�, a Raman transition involves absorption of one pho-
ton and emission of another photon of different frequency
such that the two-photon resonance condition is satisfied. By
changing the order at which the probe laser, Ep, is involved
in the process, such a Raman resonance can be made absorp-
tive or amplifying. Choosing the frequencies of the two con-
trol lasers, Eg and El, allows precise tuning of the two reso-
nances. Figure 1�c� shows the real part, ��, and the
imaginary part, ��, of the susceptibility as a function of the
frequency of the probe laser beam. The refractive index is
related to the real part through the relation n=�1+�� and the
imaginary part determines the loss or gain on the beam. In
Fig. 1�c�, for simplicity, the two Raman transitions are as-
sumed to have equal parameters including an identical Ra-
man linewidth of �. In the plots, the spacing between the two
Raman transitions is �=10� ,5� ,�, respectively. At the mid-
point between the two resonances, the beam experiences an
enhanced refractive index with vanishing absorption. Re-
cently, this idea has been experimentally demonstrated by
using two Raman transitions in two isotopes of atomic ru-
bidium �Rb� in a vapor cell �9�.

A key question in this scheme is the noise added to the
beam while propagating through such an index enhanced

medium. At the midpoint between the resonances, although
the beam on average experiences vanishing absorption or
gain, due to spontaneously emitted photons, the beam be-
comes noisier as it travels through the medium. In this paper,
by using the Heisenberg-Langevin approach, we estimate the
number of noise photons added to the beam. We find that, at
the point of vanishing absorption, roughly �n−1��2� /�0�L
noise photons are added to the beam at the end of a medium
of length L.

Before we proceed with a detailed analysis, we note that
to obtain a large refractive index, it is critical that the two
resonances are close to each other and interfere strongly �7�.
Figure 2 shows this result. Here, we plot the real part of the
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FIG. 1. �Color online� The interference of an absorptive reso-
nance and an amplifying resonance can lead to an enhanced refrac-
tive index with vanishing absorption. �a� The most straightforward
way to achieve such an interference. Due to various difficulties, the
scheme in �a� is not practical. �b� An equivalent scheme that uses
Raman transitions in far-off-resonant atomic systems. With an atom
starting in the ground state �1�, a Raman transition involves absorp-
tion of one photon and emission of another photon of different
frequency such that the two-photon resonance condition is satisfied.
By changing the order at which the probe laser, Ep, is involved in
the process, such a Raman resonance can be made absorptive or
amplifying. �c� The real part �� �solid line� and the imaginary part
�� �dashed line� of the susceptibility as a function of frequency.
Between plots, the spacing between the two resonances is varied.
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susceptibility as a function of the separation of the two reso-
nances, �, at the point of vanishing absorption �the midpoint
between the resonances�. The real part of the susceptibility,
��, gets its largest value for �=2�. For ���, the system
becomes two isolated Raman resonances and �� drops. In the
other limit of ���, the effects of the two Raman resonances
cancel each other resulting again in a small value of ��.
Throughout this paper, we will mostly consider the region
where the two resonances interfere strongly ���2�� and
therefore the maximum refractive index is achieved.

We proceed with the Heisenberg-Langevin analysis of the
system of Fig. 1�b�. We consider the interaction of a weak
probe beam and two strong control lasers with two different
atomic species �species g �gain� and species l �loss��.
Throughout this paper, we will take the two control laser
beams, Eg and El, to be sufficiently strong such that they can
be treated classically. We will also assume the atomic me-
dium to be sufficiently dilute such that the refractive index is
not too different from unity and the slowly varying envelope
approximation is valid. When the laser beams are far-detuned
from the excited electronic state �e�, the Raman interaction
can be modeled as an effective two level system. Within this
approximation, the following Hamiltonian describes the in-
teraction of the atoms with the fields �7,10�:

Ĥint = − �	
i=1

Ng

�− 	
g�̂g,22
i + �gâ�̂g,12

i + �
g
*â†�̂g,12

i† �

− �	
j=1

Nl

�− 	
l�̂l,22
j + �lâ�̂l,12

j† + �
l
*â†�̂l,12

j � . �1�

Here, â is the slowly varying annihilation operator for the
probe laser beam with the commutation relation �â , â†�=1.
Ng and Nl are the number of atoms in each species and the
quantities 	
g and 	
l are two-photon detunings from the
Raman resonances, 	
g= �
g,2−
g,1�− �
g−
p�, 	
l= �
l,2
−
l,1�− �
p−
l�. Throughout this paper, we will use the in-
dices i and j to denote the individual atoms in gain and loss
species, respectively. The slowly varying atomic operators
for individual atoms are defined as

�̂g,11
i = �1�g

i 
1�, �̂g,22
i = �2�g

i 
2� ,

�̂g,12
i = �1�g

i 
2�exp�− i�
g,1 − 
g,2 + 	
g�t� ,

�̂l,11
j = �1�l

j
1�, �̂l,22
j = �2�l

j
2� , �2�

�̂l,12
j = �1�l

j
2�exp�− i�
l,1 − 
l,2 + 	
l�t� .

In Eq. �1�, the constants �g and �l determine the Raman
coupling and they are

�g =
g,1eg,2e�E

g
*

2�2�
g,e2 − 
p�
, �l =

l,1el,2e�E
l
*

2�2�
l,e1 − 
p�
, �3�

where the quantities  are the dipole matrix elements be-

tween relevant states, and �=� �
p

2�0V is the electric field due to
a single probe photon �V is the quantization volume�. Using
Eq. �1� we can write the Heisenberg equations of motion for
the atomic operators �̂g�l�,v

i�j� and the field operator â. The
equations for the off-diagonal �coherence� atomic operators
and the annihilation operator for the probe beam are

d�̂g,12
i

dt
= i�

g
*â†��̂g,11

i − �̂g,22
i � − ��g + i	
g��̂g,12

i + f̂ g,12
i ,

d�̂l,12
j

dt
= i�lâ��̂l,11

j − �̂l,22
j � − ��l + i	
l��̂l,12

j + f̂ l,12
j ,

dâ

dt
= i�

g
*	

i=1

Ng

�̂g,12
i† + i�

l
*	

j=1

Nl

�̂l,12
j . �4�

Here, �g and �l are the Raman linewidths �including dephas-

ing and population decay� and the operators f̂ are the Lange-
vin fluctuation �noise� operators that accompany dissipation.
We take the fluctuation operators to be Markovian with 	
time correlation functions. These correlation functions can be
found by using the generalized fluctuation-dissipation theo-
rem �Einstein’s relation� and are �11,12�


 f̂ g,12
i† �t� f̂ g,12

i �t��� = �2�g − �g�
�̂g,22
i �	�t − t�� ,


 f̂ g,12
i �t� f̂ g,12

i† �t��� = �2�g
�̂g,11
i � + �g
�̂g,22

i ��	�t − t�� ,


 f̂ l,12
j† �t� f̂ l,12

j �t��� = �2�l − �l�
�̂l,22
j �	�t − t�� ,


 f̂ l,12
j �t� f̂ l,12

j† �t��� = �2�l
�̂l,11
j � + �l
�̂l,22

j ��	�t − t�� . �5�

In the above, �g and �l are the decay rates of the populations
from state �2� to state �1� in each species, respectively.

We proceed with an analysis of the Heisenberg-Langevin
equations �Eqs. �4�� in the perturbative and adiabatic limit.
We take the probe beam to be sufficiently weak such that the
atomic populations stay mostly in the ground state �state �1��
and take �̂g,11

i = �̂l,11
j �1, �̂g,22

i = �̂l,22
j �0. We also make the

adiabatic approximation and assume the rate of change of the
annihilation operator to be much smaller when compared
with the Raman linewidths, dâ /dt��gâ ,�lâ �13–15�. Adia-
batic approximation requires the atomic medium to be suffi-
ciently dilute such that the gain and loss rates on the probe
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FIG. 2. �Color online� The real part of the susceptibility, ��, as
a function of the separation of the two resonances, �, at the point of
vanishing absorption. The real part of the susceptibility, ��, gets its
largest value for �=2�.
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beam are much smaller when compared with the Raman line-
widths. With these assumptions, the solutions of Eq. �4� for
the atomic coherence operators are

�̂g,12
i �t� = i

�
g
*

�g + i	
g

â†

+ �
0

t

exp�− ��g + i	
g��t − t��� f̂ g,12
i �t��dt�,

�̂l,12
j �t� = i

�l

�l + i	
l
â

+ �
0

t

exp�− ��l + i	
l��t − t��� f̂ l,12
j �t��dt�. �6�

In Eq. �6�, we do not make any approximation with regard to
the Langevin fluctuation operators since these operators have
very fast time variation. We then use the solution of Eqs. �6�
in the Heisenberg equation of motion for the probe annihila-
tion operator and reduce the problem to a single differential
equation:

dâ

dt
= �g − l�â + i��g + �l�â + F̂g + F̂l. �7�

Here, g is the gain coefficient experienced by the probe beam
due to Raman excitation in the first species and l is the loss
coefficient due to Raman excitation in the second species.
The quantities �g and �l are the phase accumulation rates
�which will determine the refractive index� due to each Ra-
man interaction, respectively. The expressions for these
quantities are

g =
��g�2Ng

�g
2 + 	
g

2
�g, �g =

��g�2Ng

�g
2 + 	
g

2
	
g,

l =
��l�2Nl

�l
2 + 	
l

2�l, �l =
��l�2Nl

�l
2 + 	
l

2	
l. �8�

In Eq. �7�, the quantities F̂g and F̂l are collective noise op-
erators that accompany gain and loss and they are

F̂g�t� = i�
g
*	

i=1

Ng �
0

t

exp�− ��g − i	
g��t − t��� f̂ g,12
i† �t��dt�,

F̂l�t� = i�
l
*	

j=1

Nl �
0

t

exp�− ��l + i	
l��t − t��� f̂ l,12
j �t��dt�.

�9�

Using Eqs. �9� and �5�, we derive the time correlations of the
collective noise operators:


F̂g
†�t�F̂g�t��� = ��g�2Ng exp�− �g�t − t���exp�− i	
g�t − t��� ,


F̂l�t�F̂l
†�t��� = ��l�2Nl exp�− �l�t − t���exp�− i	
l�t − t��� .

�10�

The collective noise operators have exponentially decaying
correlations as a function of the time difference. All other
time correlations between the collective noise operators van-
ish. Using Eqs. �10� and the formal solution of Eq. �7�, we
can derive the time correlations between the probe annihila-
tion operator and the collective noise operators. Within the
adiabatic approximation, these correlations are


â†�t�F̂g�t�� = 
F̂g
†�t�â�t��† =

��g�2Ng

�g − i	
g

,


â�t�F̂l
†�t�� = 
F̂l�t�â†�t��† =

��l�2Nl

�l − i	
l
. �11�

As expected, using Eqs. �7� and �11�, it can be shown that the
commutator relation for the probe annihilation operator is
preserved at all times, �â�t� , â†�t��=1.

We next evaluate the noise added to the beam due to
spontaneous emission while propagating through an index-
enhanced medium. For this purpose, we define the number of
photons in the probe beam, ��t�= 
â†�t�â�t��. Using the probe
field differential equation �Eq. �7�� and the time correlations
between the probe annihilation operator and the noise opera-
tors �Eqs. �11��, the evolution equation for the number of
photons is

d�

dt
= 2�g − l�� + 2g . �12�

Equation �12� can be solved analytically and its solution is

��t� = exp�2�g − l�t���0� +
g

g − l
�exp�2�g − l�t� − 1

� exp�2�g − l�t���0� + �noise�t� . �13�

The first term in Eq. �13� is the change in the number of
photons due to coherent amplification �or absorption� of the
beam. The second term is the number of added noise photons
to the beam due to spontaneous emission.

We proceed with a discussion of the refractive index and
its relation to the amount of noise. For this purpose, we
consider a free-space traveling wave geometry with beams
propagating in the z direction and replace the time differen-
tial equations with spatial equations, d

dt →c d
dz , in Eqs. �7� and

�12� �16,17�. The classical limit of Eq. �7� can be obtained by
replacing the annihilation operator with its average value a
= 
â�. In this limit, the fluctuations can be ignored and we
obtain a�z�=a�0�exp���g− l� /c�z+ i���g+�l� /c�z. The re-
fractive index for the beam is n=1+ ���g+�l� /c���0 /2��.
The susceptibility curves of Fig. 1�c� are valid in this limit.

When the fluctuations are included, the increased refrac-
tive index comes at the cost of added noise to the beam.
From Eq. �13�, the number of noise photons is �noise�z�
= g

g−l (exp��2�g− l� /c�z−1). We next evaluate the number of
noise photons for the ideal case of equal parameters for the
two Raman transitions: �g=�l, Ng=Nl, Eg=El, and g=l.
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For this case, as shown in Fig. 1�c�, the vanishing absorption
point occurs at the midpoint between the resonances and the
maximum refractive index is obtained for �=2�g. For these
conditions, we have

g = l =
��g�2Ng

2�g

= �g = �l. �14�

For the conditions of Eq. �14�, the number of noise photons
added to the beam is

�noise�z� = 2�g/c�z = ���g + �l�/c�z = �n − 1�
2�

�0
z . �15�

Equation �15� is the central result of this work. At the point
of vanishing absorption, the number of noise photons that is
added to the probe beam equals the phase accumulation due
to enhanced refractive index. As an example, Eq. �15� sug-
gests that for n=1.1 and L=1 mm, the number of noise pho-
tons at the end of the index-enhanced medium will be about
103 and will be negligible for a microwatt level probe laser
beam.

The result of Eq. �15� is valid for the case when the two
resonances interfere strongly, ��2�g, and therefore the
maximum refractive index is achieved. As the spacing be-
tween the two resonances becomes large, ���g, we have
the usual scaling for the refractive index and the dissipative
processes that determine noise. For ���g, the achieved re-
fractive index at the point of vanishing absorption drops as
�1 /�, whereas the noise drops as ��g /�2. As a result, Eq.
�15� reads �noise�z���n−1���g /���2� /�0�z.

We note that Eq. �15� is the number of noise photons
whose frequency overlaps with the probe laser beam which
is tuned to the midpoint of the two resonances. However, the
amplification of spontaneously emitted photons whose fre-
quency lies in the gain region is a concern �amplified spon-
taneous emission�. This effect is common to almost all
index-enhancement schemes and may practically limit the
achievable length of the index-enhanced medium. The noise

photons due to amplified spontaneous emission will have a
different frequency when compared with the probe laser
beam. As a result, after the probe laser leaves the index-
enhanced medium, these photons can be filtered out by using
a narrow-band transmission filter �for example, with a high
finesse cavity that is locked to the probe laser frequency�.
Furthermore, this drawback can, in principle, be overcome
by suppressing the vacuum modes that lie in the gain region
of the susceptibility curves. If the vacuum modes are sup-
pressed, the spontaneous emission at those frequencies will
be prohibited. This can, for example, be achieved by placing
the index-enhanced medium inside a cavity.

We stress, once again, that throughout this paper we have
assumed the atomic medium to be dilute. When this assump-
tion is not satisfied, the slowly varying envelope approxima-
tion breaks down and our formalism is no longer valid. If the
collisional processes can be ignored, we expect Eq. �15� to
apply even when the dilute medium assumption is not satis-
fied. This is because the noise is due to spontaneous emission
and we do not expect any new physics to come into play as
long as collisions do not alter the response of each atom
significantly.

In conclusion we have analyzed the noise added to a beam
while propagating through an index-enhanced medium that
utilizes the interference of an absorptive and an amplifying
resonance. We note that the results of this paper can also be
derived by using appropriately averaged position dependent
operators with spatial derivatives introduced at the start of
the formalism �13–15,18�. Although we have not proven yet,
we suspect that a result similar to Eq. �15� will apply to other
index-enhancement schemes �1–4�. Since all of these
schemes rely on atomic excitation to the excited state, they
must suffer from spontaneous emission to some extent. Prov-
ing a more general result in the spirit of Eq. �15� will be
among our future investigations.
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