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We suggest a scheme where a laser beam forms an optical trap with a spatial size that is much smaller than
the wavelength of light. The key idea is to combine a far-off-resonant dipole trap with a scheme that localizes
an atomic excitation.
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Over the last two decades, far-off-resonant optical dipole
traps have evolved into one of the most widely used tools in
trapping and manipulating ultracold neutral atoms �1,2�. By
using a sufficiently large detuning from the excited electronic
state, these traps can be made nearly dissipation free with
photon-scattering rates as low as 1 Hz and with trap depths
easily exceeding tens of millikelvins. Depending on the sign
of the detuning from the excited electronic state, the atoms
are trapped in either the intensity maxima or the minima of
the optical field. Since the optical trapping potential is pro-
portional to the intensity of the light, the trap size of a single
focused beam is limited by the wavelength of light, �. A
counterpropagating beam pair can form an optical lattice
with a spatial period of � /2.

For a variety of tasks, optical traps with spatial scales
smaller than the wavelength of light would be useful. As an
example, traps at the nanometer scale may provide an impor-
tant tool to control collisional interaction between two single
atoms with nanometer resolution. Reliable control of such
interactions may allow high-fidelity two-qubit gates between
neutral atoms �3–6�. In this Brief Report, we suggest a
scheme where a focused trapping beam can form an optical
potential with a spatial size that is much smaller than the
wavelength of light. The key idea is to combine a far-off-
resonant dipole trap with a scheme that tightly localizes the
atomic excitation to a specific state �7–14�. It is well known
that by using the nonlinear interaction between atoms and
laser beams, one can localize an atomic excitation to nano-
meter spatial scales. In their pioneering work, Thomas and
co-workers �7,8� suggested and experimentally demonstrated
subwavelength state localization of atoms using spatially
varying energy shifts. Recently, there have been a number of
suggestions that utilize manipulation of atoms at the sub-
wavelength scale �9–14�. We propose to combine these ideas
with a dipole trapping beam and suggest a simple scheme for
obtaining nanometer-scale optical traps.

Before proceeding with a detailed description, we present
a brief summary of our suggestion. Noting Fig. 1, we con-
sider a three-level atomic system interacting with two laser
beams, a trapping beam with a Rabi frequency �S, and a
localization beam with a Rabi frequency �L. The localization
laser couples the two lower metastable states of the atom,
states �1� and �2�. Throughout this Brief Report, we will as-
sume the decay times of these two lower states to be much
longer when compared with the other time scales of the
problem. When �1� to �2� transition is dipole forbidden, the
coupling can be produced by, for example, two Raman
beams that are very far detuned from the excited states. For

this case, the quantity �L is the effective two-photon Rabi
frequency ��L=�r1�r2 /2�r�. If an atom is in state �2� and
with the localization laser turned off ��L=0�, the far-off-
resonant trapping beam forms a nearly conservative optical
potential. This potential is given by the ac Stark shift of state
�2�, U=���S�2 /4�S, and follows the intensity of the trapping
laser. If the atom is initially in state �1� and with �L�0, the
situation is drastically different. Here, due to the ac Stark
shift, the effective detuning �L �and therefore the excitation
to state �2�� becomes position dependent. In the limit where
the magnitude of the Stark shift is much larger when com-
pared with the localization laser Rabi frequency, the popula-
tion of state �2� can be localized to spatial scales that are
much smaller than the beam size of the trapping laser. Since
the atom experiences the optical force due to the trapping
laser only when state �2� has appreciable population,
nanometer-scale optical traps can be constructed.

We proceed with the analysis of the system in Fig. 1. We
make the Raman-Nath approximation and neglect the kinetic
energy of the atoms when compared with the interaction en-
ergy with the fields, �2k2 /2m���L ,��S. If the detuning
from the excited electronic state, �S, is sufficiently large,
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FIG. 1. �Color online� The scheme for constructing subwave-
length optical traps using atomic state localization. The intense trap-
ping beam with a Rabi frequency �S forms a far-off-resonant dipole
trap for the atom if the atom is in state �2�. The weak localization
laser with Rabi frequency �L couples the two metastable states of
the atom. With an atom starting in state �1�, the excitation to state
�2� is tightly localized due to position-dependent ac Stark shift of
this state. As a result, dipole traps that are much smaller than the
wavelength of light can be constructed.
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dissipation due to spontaneous emission may be ignored.
Within these assumptions, the following Hamiltonian de-
scribes the interaction of the fields with the atomic system:

Ĥ = −
�

2� 0 �L 0

�L
� − 2�L �S

0 �S
� − 2�S

� . �1�

The detunings from the atomic transitions are defined as �L
= ��2−�1�−�L and �S= ��3−�2�−�S, respectively.
Throughout this Brief Report, for simplicity, we are going to
consider only one spatial dimension. All of the arguments
and the results can be extended to three spatial dimensions in
a straightforward way. With the Hamiltonian of Eq. �1�, the

force on the atom can be found by F= 		�− �Ĥ
�x �	� and is �1�

F =
�

2

 ��L

�x

21 +

��S

�x

32� + c.c. �2�

Here, the quantities 
21 and 
32 are the off-diagonal density-
matrix elements �coherences� between relevant transitions.
With the average force on the atoms given by Eq. �2�, the
optical potential U can be found by using U=−�Fdx.

We proceed with a perturbative and steady-state solution
of the coupled atom-light system. For this purpose, we take
the Rabi frequency of the localization laser to be sufficiently
small such that most of the population remains in the ground
state, 
111. This assumption requires ��L�� ��L
− ��S�2 /4�S� at all spatial points. With this assumption, the
values of the off-diagonal density-matrix elements at steady
state are


21 =
�L

�

2
�L −
��S�2

4�S
� ,


32 =
��L�2�S

�

8��L −
��S�2

4�S
�2

�S

. �3�

We have verified the validity of the solution of Eq. �3� by
numerically solving the Bloch equations for the density-
matrix elements. With the coherences of Eq. �3�, we can
calculate the force on the atom and therefore estimate the
optical potential. Before proceeding with the numerical re-
sults, we first present an analytical estimate. For this pur-
pose, we take the localization laser to be uniform and assume
Gaussian focusing for the trapping laser beam with a spot
size of WS, �S�x�=�S0 exp�−x2 /WS

2�. We consider the tight-
localization limit where the Rabi frequency of the localiza-
tion laser is much weaker when compared with the peak
Stark shift due to the trapping beam, �L��S0

2 /4�S. In this
limit, if the minimum value of the Stark-shifted detuning,
�L−�S0

2 /4�S, is of order �L, it can be derived from Eq. �3�
that the optical potential will have a spot size of
WS

��L / ��S0
2 /4�S� with a trap depth on the order of ��L.

For a fixed trapping laser beam parameters, by choosing the
ratio �L / ��S0

2 /4�S� to be small, the trap size can be made

arbitrarily smaller than the wavelength of light at the expense
of a reduced trap depth.

We proceed with a numerical example. We choose the
trapping beam intensity and the detuning to give a peak Stark
shift of �S0

2 /4�S=2�100 MHz. We assume a focusing
spot size of WS=0.5 �m and, for simplicity, take the local-
ization laser to be uniform. Figure 2�a� shows the dipole
potential seen by the atom when the atom is in state �2� and
�L=0 �without any localization�. A trap that is proportional
to the intensity of the trapping laser beam with a depth of
about 4.5 mK is formed. Figure 2�b� is the dipole potential if
the atom starts in state �1� with a localization laser Rabi
frequency of �L=2�10 MHz. Here, we choose the detun-
ing �L such that the peak fractional population of state �2� is
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FIG. 2. �Color online� �a� The dipole potential seen by the atom
when the atom is in state �2� and �L=0 �without any localization�.
The trapping beam has a Gaussian spot size of WS=0.5 �m and
induces a peak Stark shift of �S0

2 /4�S=2�100 MHz. A trap with
a size of about 1 �m and a depth of about 4.5 mK is formed. �b�
The dipole potential for an atom that starts in state �1� with a local-
ization laser Rabi frequency of �L=2�10 MHz. �c� The dipole
potential with a localization laser Rabi frequency of �L=2�
1 MHz. The trap has a size of 70.2 nm with a depth of 11.9 �K.
The trapping laser parameters are identical for all three cases. As
the localization laser Rabi frequency is decreased, the trap size
decreases at the expense of a reduced trap depth.
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0.25. In Fig. 4�c�, we reduce the localization laser Rabi fre-
quency to �L=2�1 MHz. The detuning �L is again ad-
justed to give a peak fractional population of 0.25. A trap
with a full width at half maximum �FWHM� size of 70.2 nm
and a depth of 11.9 �K is formed. The trapping laser pa-
rameters are identical for all the three plots of Fig. 2.

Figure 3 shows the trap size as a function of the trap depth
while the localization laser Rabi frequency �L is varied.
Here, we use the same trapping beam parameters as in Fig. 2
and adjust the detuning �L such that the peak fractional popu-
lation of state �2� is 0.25 at all points in the plot. The de-
crease in the trap size comes at the expense of a reduced trap
depth. As the localization laser Rabi frequency �L becomes
small, the validity of Raman-Nath approximation requires
correspondingly smaller atomic temperatures.

One key feature of traps with nanometer spatial scales is
the decreased number of vibrational motional states in the
trap. Figure 4 demonstrates this feature. Here, we consider a
23Na atom trapped in the external trapping potential of Fig.
2�c� �a trap size of 70.2 nm and a trap depth of 11.9 �K�.
We numerically calculate the bound-state eigenvalues and
eigenfunctions by using the Fourier grid Hamiltonian method
�15�. We find two bound states, ��=0� and ��=1�, with con-
finement energies of 5.79 and 0.3 �K, respectively. The
plots show the numerically calculated probability distribu-
tions for the two eigenstates. The eigenfunction for state ��
=0� is localized to a FWHM size of 75.6 nm. Having a small
number of bound states may be advantageous for a number
of reasons. As an example, optical traps with a single bound
state do not require cooling inside the trap.

We envision that the first experimental demonstration of
our suggestion will likely use alkali-metal atoms that are
trapped and cooled inside a magneto-optical trap �MOT�. In
alkali-metal atoms, the stretched states of the hyperfine lev-
els may be used as the two metastable states required by the
scheme. As an example, for 23Na, these states can be chosen
as �1�→ �F=2,mF=2� and �2�→ �F=1,mF=1�. A right-hand
circularly polarized trapping laser beam ��+� may then be

used to couple state �2� to the excited state �3�→ �F�
=2,mF�=2� in the D1 line. Due to angular momentum selec-
tion rules, this configuration suppresses an undesired cou-
pling of states �1� and �3� with the trapping laser beam. The
suppression of coupling requires negligible interaction with
the D2 line, which in turn limits the largest value for the
detuning from the D1 line, �S, that can be used for the trap-
ping beam. This detuning must be small when compared
with the separation of the D1 and D2 lines. For 23Na, this
imposes a limit of �S100 GHz, which results in a sponta-
neous scattering rate of about 10 kHz from the trapping
beam for the numerical simulations of Figs. 2–4. This limi-
tation can be overcome by using an atomic species with a
larger energy separation of the D1 and D2 lines. As an ex-
ample, for 87Rb, the separation of the two lines is 7.1 THz,
and as a result, the undesired photon-scattering rate can be
kept well below 1 kHz.

We also note that the required laser parameters for the
experimental observation of our suggestion with alkali-metal
atoms are modest. Typically, a laser power of only tens of
milliwatts in the trapping beam is required. To avoid fluctua-
tions in the ac Stark shift, the intensity stability of the trap-
ping laser beam is critical. The fractional intensity fluctua-
tions in the trapping laser must be small when compared
with the ratio �L / ��S0

2 /4�S�. The results of Fig. 2�c� would,
therefore, require an intensity stability better than 1%. The
localization coupling rate �L between the lower hyperfine
states may be produced by two laser beams whose frequency
difference equals the hyperfine transition frequency �1.77
GHz in 23Na�. These two lasers can be very far detuned from
the D lines to keep a sufficiently low photon-scattering rate.

In conclusion, we have suggested a scheme for generating
nanometer-scale optical traps. As mentioned before, one
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FIG. 3. �Color online� The trap size and the trap depth of the
optical potential as the localization laser Rabi frequency is varied.
The trapping beam parameters are identical to those of Fig. 2 with
a peak stark shift �S0

2 /4�S=2�100 MHz and a Gaussian spot
size of WS=0.5 �m. As the localization laser Rabi frequency is
reduced, the size of the trap becomes smaller at the expense of a
decrease in the trap depth.
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FIG. 4. �Color online� The bound states of a 23Na atom that is
trapped in the external potential of Fig. 2�c�. We numerically cal-
culate the eigenvalues and eigenfunctions of the Schrödinger equa-
tion and find two bound states, ��=0� and ��=1�, with confinement
energies of 5.79 and 0.3 �K, respectively. The plots show the prob-
ability distributions for the eigenstates, �	�=0�x��2 and �	�=1�x��2.
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exciting application of our scheme is to quantum computing
and quantum information processing. Due to the extremely
small trapping volume, the collisional blockade mechanism
of Grangier and co-workers �16,17� will be very pronounced
while loading our trap from an ultracold gas background. As
a result, only one atom may be loaded to the trap with a very
high fidelity. This may produce a deterministic source of
single atoms, or in a lattice geometry, may allow determin-

istic loading and initialization of a neutral atom quantum
register �18�.
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