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Giant Kerr nonlinearities using refractive-index enhancement
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By utilizing refractive-index enhancement with vanishing absorption, a scheme is suggested that achieves giant
Kerr nonlinearities between two weak laser beams. One application of this scheme is discussed and an all-optical
distributed Bragg reflector is proposed that works at very low light levels.
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Over the past decade, there has been a growing interest
in techniques that achieve significant nonlinear interactions at
the single-photon level [1]. These schemes are exciting and
important because of both practical and fundamental reasons.
Key practical applications include all-optical switches that can
operate at an energy cost of a single photon [2] and two-
qubit quantum gates between two single photons [3]. From
a more basic science perspective, these schemes significantly
modify our understanding of light-matter interactions. We now
know and are comfortable accepting that light beams can be
slowed down to m/s group velocities [4,5], can be brought to
a complete stop [6–8], or can even be made to travel backward
inside an atomic medium [9].

Perhaps the most promising approach for achieving sig-
nificant nonlinear interactions at the single-photon level is
the technique of electromagnetically induced transparency
(EIT) [10]. Since the pioneering work of Imamoglu and
colleagues [11], various schemes to achieve single-photon
switches and gates using EIT have been proposed [12–14]. EIT
relies on quantum interference to create a narrow transmission
window in an otherwise highly absorbing and opaque medium.
At the point of vanishing absorption, there is a steep variation
of the refractive index. This steep dispersion of the index,
and therefore the phase accumulation, lies at the heart of
all EIT-based proposals. Zhu and colleagues demonstrated
EIT-based switches that work at an energy cost of less than
one photon per atomic cross section [15]. Recently, significant
nonlinear interactions with only several hundreds of photons
have been demonstrated by using ultracold atomic clouds
inside a hollow-core fiber [16].

In this paper, we suggest an alternative approach to achieve
significant nonlinear interactions between single photons. Our
approach uses refractive-index enhancement with vanishing
absorption to achieve a giant Kerr nonlinearity between
two weak laser beams. Before proceeding with a detailed
description, we would like to summarize the key achievement
of this paper. Let’s first consider a laser beam interacting with
an ensemble of two level atoms. For this simple case, the third-
order nonlinear susceptibility of the medium is proportional
to χ (3) ∼ 1

|�+j�|2(�+j�) , where � is the (amplitude) decay
rate of the excited state and � is the detuning of the laser
beam from the transition. This third-order susceptibility is
responsible for well-known effects such as intensity-dependent
refractive index and optical self-focusing. Now consider two
off-resonant beams that are very largely detuned from the
excited electronic state interacting with a three-level atomic
system in a � configuration. If the frequency difference of the
two beams is close to the frequency of the Raman transition,

the third-order susceptibility is enhanced and is proportional to
χ (3) ∼ 1

|�+j�|2(δω+jγ ) , where γ is the decay rate of the Raman
transition and δω is the two photon detuning. Typically, to
reduce nonlinear absorption, one chooses δω � γ such that
the imaginary part of the susceptibility is much smaller than
the real part: Im(χ (3)) � Re(χ (3)). The key achievement of
our scheme is to obtain a purely real third-order nonlinear
susceptibility of χ (3) ∼ 1

|�+j�|2γ due to destructive interfer-
ence in the imaginary part. If the decay rate of the Raman
transition is negligible (γ ≈ 0), one can therefore obtain an
arbitrarily large value for χ (3) and obtain significant nonlinear
interactions between weak beams. The key advantage of our
scheme over EIT is that it does not require a strong-coupling
laser beam. The key disadvantage is that single-photon linear
absorption of the beams is not eliminated. As we will see, this
drawback limits the minimum energy required to be on the
order of tens of photons per atomic cross section.

Figure 1 shows the energy level diagram of our suggestion.
The scheme relies on recently suggested refractive-index
enhancement with vanishing absorption that utilizes the
interference of two Raman transitions [17,18]. Although the
scheme is general, for concreteness, we focus on a real
system and consider a 87Rb D1 line transition with the
level structure shown in Fig. 1. We choose the ground state
of the system to be |g〉 → |F = 2,mF = 0〉 and the two
excited Raman states to be |1〉 → |F = 2,mF = −2〉 and
|2〉 → |F = 2,mF = 2〉. Two off-resonant beams, termed the
probe and control beams, couple the ground state |g〉 to excited
Raman states |1〉 and |2〉. The two beams have opposite circular
polarizations (σ+ for Ep and σ− for Ec). The quantities δω1

and δω2 are two photon detunings of the laser beams from
each Raman transition, respectively, and they are defined as
δω1 = (ω1 − ωg) − (ωp − ωc) and δω2 = (ω2 − ωg) − (ωc −
ωp). The refractive-index enhancement scheme as originally
suggested requires two separate control laser beams whose
frequencies can be tuned to control the position of the two
resonances independently. In the scheme of Fig. 1, however,
there is only one control laser. The position of the Raman
resonances can be controlled by shifting the hyperfine levels
through a combination of a Stark shift and Zeeman shift. The
Zeeman shift can simply be provided with a magnetic field
pointing along the propagation direction of the laser beams.
The Stark shift can either be provided with a dc electric field
or a separate detuned laser beam. We define the quantity
δ ≡ δω1 + δω2 to represent the separation of the two Raman
resonances as the probe (or the control) laser frequency is
scanned.
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FIG. 1. (Color online) The proposed scheme. For concreteness,
we focus on a real atomic system and consider two off-resonant
laser beams, Ep and Ec, interacting with 87Rb atoms through the
D1 line. The two laser beams are opposite circularly polarized and
couple the ground state |F = 2, mF = 0〉 to two excited Raman states
|F = 2, mF = −2〉 and |F = 2,mF = 2〉. The quantities δω1 and
δω2 are two photon detunings of the laser beams from each Raman
transition, respectively. The positions of the Raman resonances as the
probe laser frequency is scanned can be independently controlled by
a combination of Zeeman and Stark shifts of the hyperfine states.

We proceed with an analysis of the scheme of Fig. 1. With
� much larger than the decay width �, we can adiabatically
eliminate the probability amplitudes of the excited states. We
also take the two beams to be weak enough such that the
power broadening of the Raman transitions can be ignored.
With these assumptions, the polarization of the medium at the
two laser frequencies can be written as [17]

Pp = ε0χ
(1)Ep + ε0χ

(3)|Ec|2Ep,
(1)

Pc = ε0χ
(1)Ec + ε0χ

(3)∗ |Ep|2Ec,

where χ (1) and χ (3) are the linear and nonlinear third-order
susceptibilities of the medium, respectively. These quantities
are [17]

χ (1) = N

ε0h̄

|µij |2
� + j�

,

(2)

χ (3) = N

4ε0h̄
3

1

|� + j�|2
( |µij |2|µjk|2

δω1 − jγ1
+ |µil|2|µlm|2

δω2 + jγ2

)
,

where N is the atomic density, µij are the dipole matrix
elements between relevant states, � is the decay rate of
the excited state, and γ1 and γ2 are dephasing rates of the
Raman transitions, respectively. As expected, the third-order
nonlinear susceptibility is a sum of two terms due to two
Raman transitions. It is the interference of these two terms that
results in the enhancement of the real part while resulting in the
vanishing imaginary part. Figure 2 shows the real (solid line)
and the imaginary (dashed line) parts of χ (3) as the probe laser
frequency is scanned for three different values of the separation
of Raman resonances, δ = 10γ , 5γ , and γ , respectively. Here,
for simplicity, we assume that the two Raman transitions have
the same parameters, including an identical Raman linewidth
of γ1 = γ2 ≡ γ . At the midpoint between the two resonances,
δω1 = δω2, the imaginary part vanishes while the real part is
enhanced due to constructive interference.
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FIG. 2. (Color online) The real (solid line) and imaginary (dashed
line) parts of the nonlinear susceptibility as a function of probe laser
frequency for three different values of the separation of two Raman
resonances, δ = 10γ , 5γ , and γ . At the midpoint between the two
resonances, the real part is enhanced due to constructive interference
whereas the imaginary part vanishes due to destructive interference.

At the point of the vanishing imaginary part, the third-order
nonlinear susceptibility is purely real and is given by

χ (3) = N

2ε0h̄
3

|µij |2|µjk|2
|� + j�|2

δ/2

(δ/2)2 + γ 2
. (3)

While deriving Eq. (3), for simplicity, we have again
assumed the two Raman resonances to have identical param-
eters. From Eq. (3), we note that the value of the nonlinear
susceptibility strongly depends on the separation of the two
Raman resonances, δ. The maximum nonlinear susceptibility
is obtained when δ = 2γ and is given by

χ (3)
max = N

4ε0h̄
3

|µij |2|µjk|2
|� + j�|2

1

γ
. (4)

Equation (4) is the central result of this paper. The nonlinear
susceptibility is purely real and, in the limit of very long
dephasing and decay time of the Raman transitions (γ ≈ 0), it
can become arbitrarily large.

From the nonlinear susceptibility of Eq. (4), we can also find
the expression for the intensity-dependent refractive index,
n2 = ηχ (3), where η = √

µ0/ε0. Before proceeding further,
we evaluate the intensity-dependent refractive index for experi-
mentally achievable parameters. We consider an ultracold 87Rb
atomic cloud with N = 1014 atoms/cm3. We take � = 10�,
where � is the decay rate of 5P1/2, 2� = 2π × 5.74 MHz. We
assume a Raman transition linewidth of γ = 2π × 10 kHz.
With these modest parameters, we calculate an intensity-
dependent refractive index of n2 = 75.8 cm2/W, which is com-
parable to what has been achieved in recent EIT experiments.

We proceed with the evaluation of the nonlinear phase shift
of the probe laser due to few-photon control laser pulses.
For this purpose, we consider a control laser beam pulse of
Gaussian temporal shape that contains nc photons. By using
Eqs. (1)–(4), the nonlinear phase accumulation of the probe
laser beam and the corresponding linear power absorption
coefficient can be derived (for the specific scheme of Fig. 1):

φnonlinear = 3

32
√

π
nc(NσL)

�2

�2 + �2

σ

A

1

γ τ
,

(5)

αlinear = 1

4
(NσL)

�2

�2 + �2
,

where σ = λ2/2π is the atomic cross section, A is the
transverse area of the beam, and τ is the temporal Gaussian
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FIG. 3. (Color online) The setup for constructing an all-optical
mirror. The counterpropagating control lasers form a standing-wave
pattern which results in a periodic variation of the refractive index.
As a result, a photonic band gap is formed for the probe laser beam
and the probe wave is reflected off the medium.

width of the pulse. While deriving Eq. (5), we have assumed
that the excited states are purely lifetime broadened and ne-
glected nonradiative broadening effects such as collisions. As
expected, Eq. (5) shows that the nonlinear phase accumulation
is intrinsically related to the linear loss. If we assume the ideal
case of τ ≈ 1/γ and consider tightly focused beams, A ≈ σ ,
Eq. (5) reduces to

φnonlinear = 3

8
√

π
ncαlinear. (6)

From Eq. (6), if we limit the linear power loss to 50%
(αlinear = 0.7), a single control photon (nc = 1) per atomic
cross section causes a nonlinear phase shift of 0.15 rad. A
nonlinear phase shift of π rad would therefore require about
21 control laser photons per atomic cross section.

We next discuss a type of optically controlled optical
device using our scheme [19]. Due to the intensity-dependent
refractive index, an intensity pattern on the control laser
produces a refractive-index pattern for the probe laser beam.
By using an appropriate intensity pattern, one can, therefore,
engineer an all-optical device. Figure 3 shows a simple scheme
where we consider an ultracold atomic cloud interacting with
a probe and a counterpropagating pair of control laser beams.
Due to the standing-wave intensity pattern of the control
laser, the probe wave experiences a periodic variation of
the refractive index. Under these conditions, within a certain
frequency range, a photonic band gap is produced and the
propagation of the probe wave is forbidden inside the medium.
Within the photonic band gap, the incident probe laser cannot
penetrate the medium and is reflected. The idea of utilizing
a periodic variation of the refractive index was motivated by
the recent work of Lukin and colleagues, who proposed and
experimentally demonstrated optically induced photonic band
gaps using EIT and slow light [20,21].

To calculate the reflectivity of such a medium, we use the
coupled mode theory of Yariv and Yeh [22]. Figure 4 shows the
results of a calculation for an ultracold 87Rb cloud. Here, we
choose the medium parameters and the control laser intensity
such that the nonlinear index enhancement is n2I

max
c = 10−3.

Due to the standing-wave pattern, the refractive index varies
between n = 1 and n = 1 + 10−3 with a period of λc/2 ≈
397 nm. We take the atomic cloud to be sufficiently cold
(temperature of about 1 µK) such that two-photon Doppler
broadening of the Raman transitions can be ignored. This
assumption simplifies the problem considerably since the
probe beam interacts with both control lasers in the same way.
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FIG. 4. (Color online) (a) The reflection coefficient for the probe
wave, R, as a function of the length of the index-enhanced medium,
L, for n2Ic = 10−3 and θ = 0. The reflection coefficient exceeds 99%
for L = 1.5 mm. (b) The reflection coefficient as a function of the
angle of incidence, θ . The angle of incidence, θ , is defined as the
angle between the probe beam and one of the control lasers, as shown
in Fig. 3. For L = 1 mm, if we set the medium parameters such that
there is 50% power loss due to linear absorption (αlinear = 0.7), then
these results require about nc = 13 control laser photons (in each
beam) per atomic cross section.

Figure 4(a) shows the power reflection coefficient, R, for the
probe wave as a function of the length of the medium, L. Here,
we take the probe wave-propagation direction to coincide
with one of the control lasers (θ = 0). For L = 1.5 mm,
the reflection coefficient exceeds 99%. Figure 4(b) shows the
reflection coefficient as a function of the angle of incidence, θ ,
for a medium length of L = 1 mm. The angle of incidence, θ ,
is defined as the angle between the probe beam and one of the
control lasers as shown in Fig. 3. The reflection coefficient
remains high for about 1.5◦ and then drops sharply. For
L = 1 mm, if we set the medium parameters such that there is
50% power loss due to linear absorption (αlinear = 0.7), then
the results of Fig. 4 require about nc = 13 control laser photons
(in each beam) per atomic cross section.

Before concluding, we would like to draw attention to
the recent work of Shapiro and colleagues [23,24] and Gea-
Banacloche [25]. By using a multimode quantum-mechanical
treatment, these authors argue the impossibility of achieving
large nonlinear phase shifts using single-photon wave packets.
The key reason is the loss of fidelity due to spontaneous
emission. Their results suggest that achieving large nonlinear
phase shifts with reliable fidelity would require beam energies
at least at the tens of photons level, independent of the specific
scheme that is used.

In conclusion, we suggested an alternative approach for
achieving a large nonlinear Kerr effect between two weak
laser beams while maintaining vanishing nonlinear absorption.
Differing from EIT, the linear absorption of the beams is not
eliminated and, as a result, high nonlinear phase shifts require
beam energies at the level of tens of photons per atomic cross
section. The key advantage over EIT is that there is no strong-
coupling laser and as a result the total energy requirement is
at the level of tens of photons. We have also suggested a type
of all-optical distributed Bragg reflector that utilizes periodic
variation of the refractive index due to a standing-wave pattern.
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Foundation.
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