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spatiotemporal modulation
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We suggest a type of imaging technique that uses optical nonlinearities and spatiotemporal modulation to
achieve nanoscale resolution in the far field. The technique utilizes intense laser beams to produce an optical
excitation with spatial features that are much smaller than the wavelength of light. Nonlinear mixing with the
excitation can then be used to imprint the information contained in high spatial frequencies into the propagating
region. As a specific example, we study the implementation of this technique using coherent anti-Stokes Raman
scattering (CARS) near maximum molecular coherence. Our simulations suggest that it may be possible to
resolve the structure of complex biological molecules at the nanometer scale in the far field using near-infrared
light.
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As the frontiers of science and technology approach the
nanoscale, it has become ever more important to devise
optical imaging techniques with nanometer resolution. It is
well known that traditional imaging techniques cannot resolve
features that are smaller than the wavelength of light. This
is the diffraction limit, and overcoming this barrier has been
the subject of intense theoretical and experimental research
over the last two decades [1–7]. A simple and efficient optical
technique that can resolve nanometer spatial scales will likely
have significant implications for a number of research areas
including biological imaging and nanotechnology. In this
work, we describe a technique that utilizes saturation of optical
nonlinearities and a specific type of spatiotemporal modulation
to obtain nanoscale resolution. Our approach does not require
a near-field scanning tip, and it achieves super-resolution in
the far field using a relatively simple optical setup. Due to a
nonlinear response, intense laser beams can produce an optical
excitation with spatial features that are much smaller than
the wavelength of light. The key idea is to use nonlinear
mixing with this established excitation to mix down high
spatial frequencies (spatial Fourier components). This mixing
brings the high spatial frequencies, which normally produce
only evanescent waves unavailable for imaging, into the
propagating region. A type of spatiotemporal modulation is
then used to recover the high spatial frequency components
in the image plane. As a concrete example, we focus on
implementing this approach using coherent anti-Stokes Raman
scattering (CARS) near maximum molecular coherence. We
perform numerical simulations of the density matrix for
parameters that are typical of a biological molecule. Our
simulations suggest that it may be possible to resolve the
structure of complex biological molecules at the nanometer
scale in the far field using near-infrared light.

Our approach builds upon a number of super-resolution
concepts that have been discussed in the literature. Using
saturation of the excited fluorescing level, the technique
of stimulated emission depletion microscopy (STED) has
recently achieved about 10 nm resolution in the far field [8–10].
The idea of mixing down high spatial frequencies has recently
been demonstrated by the structured illumination technique

of biological imaging [11,12]. Utilizing advances in ultrafast
lasers, CARS microscopy has evolved into a powerful imaging
tool that does not require a fluorescent agent [13–16]. Various
techniques for improving the resolution of CARS microscopy
beyond the diffraction limit have recently been suggested
[17–19]. Super-resolution using spatiotemporal modulation
in laser scanning microscopy has recently been discussed
[20]. Our approach improves on these pioneering efforts with
the following key advantages: (i) Our technique does not
require scanning of a tight spot. Super-resolution is achieved
using a wide-field image, which considerably simplifies the
experimental setup. (ii) We use a type of spatiotemporal
modulation that produces radiation at different frequencies
for different spatial Fourier domains. As a result, it becomes
possible to retrieve all spatial frequencies simultaneously.
(iii) Since we utilize a nonlinear optical response, our approach
does not require a fluorescent agent. The scheme may therefore
be implemented for a broad range of complex molecules.

We first discuss our approach in a general framework. The
simplified setup is shown in Fig. 1(a). For simplicity, we
will consider a two-dimensional object; that is, the object is
assumed to have infinitesimal depth in the z direction. Suppose
that we induce a dipole moment pattern �μ in the object with
very small spatial features. We work with phasor quantities
and write the induced dipole moment in the form

�μ(x,y,z,t) = êμRe{μ(x,y) exp(−iωt)}δ(z − z0), (1)

where êμ is the unit vector oriented along the dipole and z0 is
the position of the object along the z axis. In Eq. (1), we have
assumed monochromatic excitation (steady state) at frequency
ω. For excitation with pulsed laser beams of sufficient duration,
as is the case in the numerical example that will be discussed
below, the analysis can be extended to apply to the temporal
peak of the pulses. We can decompose the induced dipole
moment into its spatial Fourier components:

μ(x,y) =
∫ ∞

−∞

∫ ∞

−∞
A(kx,ky) exp(ikxx + ikyy)dkxdky.

(2)
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FIG. 1. (Color online) (a) Simplified schematic. The goal is to resolve with nanometer resolution a radiator with dipole moment �μ in the far
field. Two counterpropagating beam pairs form a standing wave intensity pattern in the two transverse directions x and y with a periodicity of
λ/2. For sufficiently high pump laser intensity, the standing wave pattern may induce an excitation structure with spatial features that are much
smaller than the periodicity of the pattern and thus the wavelength of the light. The nonlinear mixing of this excitation with the induced dipole
results in the retrieval of the high spatial Fourier components in the far field. See text for details. (b) Pass band of traditional imaging techniques
in Fourier space. Only spatial frequencies k2

x + k2
y < κ2 contribute to the far-field image. (c) Circular regions (lx,ly) in Fourier space that are

defined by (kx − 2lxκ)2 + (ky − 2lyκ)2 < κ2. The nonlinear interaction of the dipole with the pump beams mixes the high spatial frequencies
down to the propagating range.

The dipole moment �μ will radiate light and Eq. (2) can also
be thought of as a plane wave decomposition of radiation
at z = z0, with wave-vector components kx , ky , and kz.
From Maxwell’s equations these components must satisfy
k2
x + k2

y + k2
z = κ2, where κ = 2π/λ and λ is the wavelength

in free space. The diffraction limit is due to the fact that for
k2
x + k2

y > κ2, kz must be complex, and thus the resulting
waves are evanescent along z and are therefore inevitably
removed from the image. As a result, in the far field only
Fourier amplitudes A(kx,ky) with k2

x + k2
y < κ2 contribute

to the image. As shown in Fig. 1(b), with this in mind,
we can view wave propagation as low-pass filtering of the
spatial frequencies where the pass band is the circular region
k2
x + k2

y < κ2. High spatial frequency Fourier components
outside of this propagating region are filtered out.

One of the key ideas of the technique is that, by using non-
linear mixing, high spatial frequencies can be “mixed down”
into the propagating region [11,12]. Consider a nonlinear in-
teraction of the radiating dipoles with a pump laser beam, EP ,
that is split into two counterpropagating beam pairs to produce
a two-dimensional standing wave intensity pattern IP (x,y).
For simplicity, we will take the wavelength of the pump laser
beam to be similar to the radiated wavelength, λP ≈ λ. The
standing-wave intensity pattern is periodic in each direction
with a period of λ/2 [i.e., IP (x + lxλ/2,y + lyλ/2) = IP (x,y)
for all integers lx and ly]. Now assume that there is a nonlinear,
intensity-dependent excitation due to the pump laser which we
will denote by a general function f (IP ). As we will discuss
below, for the specific CARS scheme, the excitation will be
the coherence of the molecular (vibrational or rotational)
transition. Note that the function f will have the same
periodicity of λ/2 [i.e., f (x + lxλ/2,y + lyλ/2) = f (x,y)].
However, because the intensity dependence can be highly
nonlinear, for sufficiently high pump laser intensities f (x,y)
may have spatial features that are significantly sharper than
those of the standing wave intensity pattern. Such excitation

localization has been discussed extensively in atomic physics
literature [21–27] and has also been experimentally observed
by a number of groups [28–31]. Because f is periodic, it will
have a two-dimensional Fourier series expansion:

f (x,y) =
∞∑

m=−∞

∞∑
n=−∞

cm,n exp(i2mκx + i2nκy). (3)

Assume that we have a mixing nonlinearity that modulates
the induced dipole moment with the function f to produce a
new pattern μnew = f (x,y)μ(x,y). Using Eqs. (2) and (3), we
have:

μnew =
∞∑

m=−∞

∞∑
n=−∞

cm,n

∫ ∞

−∞

∫ ∞

−∞
A(kx,ky)

× exp[i(kx + 2mκ)x + i(ky + 2nκ)y]dkxdky. (4)

Equation (4) indicates that high spatial Fourier components
can be mixed down to the propagating region through
multiplication with the appropriate Fourier series expansion
term so that the resulting waves are no longer evanescent.
Let us divide Fourier space into circular regions of radius
κ for which (kx − 2lxκ)2 + (ky − 2lyκ)2 < κ2 for a given
integer pair (lx,ly), as shown in Fig. 1(c). (0,0) denotes the
propagating region and all other regions (lx,ly) would nor-
mally produce evanescent waves. The high-frequency Fourier
components A(kx,ky) exp(ikxx + ikyy) in region (lx,ly) can
be shifted to the propagating region through multiplication
by c−lx ,−ly exp(−i2lxκx − i2lyκy). Only the components that
have been shifted to the propagating region will contribute to
the far field. Using Eq. (4), the far-field contribution can be
written as a sum of integrals over the regions (lx ,ly), where each
integral is shifted by the appropriate Fourier series expansion
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term:

μfar field
new =

∑
lx ,ly

c−lx ,−ly

∫∫
(lx ,ly )

A(kx,ky) exp[i(kx − 2lxκ)x

+ i(ky − 2lyκ)y]dkxdky. (5)

As shown in Fig. 1(c), this procedure misses the areas
between the circular regions (lx,ly), which cannot be moved
into the propagating region using the multiplication scheme
above. We note that the circular regions contain 78% of the
area in Fourier space and as a result they may be sufficient to
obtain a high-quality image. Furthermore, the missing regions
can be recovered using a number of techniques. For example,
one can rotate the axis of the pump beam standing wave
pattern to a diagonal primed basis, x ′ = x + y and y ′ = x − y.
This results in a subsequent rotation of the (lx,ly) regions of
Fig. 1(c), placing them along the lines kx = ky and kx = −ky in
Fourier space. If the complete image reconstruction procedure
described below is repeated, this allows the retrieval of Fourier
components that lie between the circular regions of Fig. 1(c).

Equation (5) indicates that the far field can, in principle,
include contributions from all spatial frequencies (i.e., there
is no low-pass filtering). We note, however, that the far-field
contribution results from a complicated sum, and we have not
yet addressed how to recover all of the Fourier components
A(kx,ky) from such a sum. To accomplish this, we suggest
using traveling wave modulation such that the intensity pattern
for the pump laser beam is swept at speeds vx and vy in the
two directions. As shown below, this type of spatiotemporal
modulation can be used to recover individual terms in the
summation of Eq. (5). Such modulation can be accomplished,
for example, by having the counterpropagating pump beam
pairs differ slightly in frequency. This would result in an
excitation pattern that moves in the two directions, f (x −
vxt,y − vyt). The two-dimensional Fourier series expansion
now reads

f (x − vxt,y − vyt)

=
∞∑

m=−∞

∞∑
n=−∞

cm,n exp[i2mκ(x − vxt) + i2nκ(y − vyt)]

=
∞∑

m=−∞

∞∑
n=−∞

cm,n exp(−i2mδωxt − i2nδωyt)

× exp(i2mκx + i2nκy), (6)

where we have defined δωx ≡ κvx and δωy ≡ κvy . Equation
(6) shows that each series expansion coefficient cm,n becomes
multiplied by a temporal factor (i.e., a temporal frequency
shift). These temporal factors can be carried out through the
whole formalism and Eq. (5) will then read

μfar field
new =

∑
lx ,ly

c−lx ,−ly exp(i2lxδωxt + i2lyδωyt)

×
∫∫

(lx ,ly )
A(kx,ky) exp[i(kx − 2lxκ)x

+i(ky − 2lyκ)y]dkxdky. (7)

Equation (7) indicates that each of the terms in the summation
are frequency shifted by an amount (2lxδωx + 2lyδωy). As a

result, the Fourier component A(kx,ky) from each circular re-
gion (lx,ly) [corresponding to (kx − 2lxκ)2 + (ky − 2lyκ)2 <

κ2] will be radiated at a slightly different temporal frequency
(assigning a unique temporal frequency to each circular region
requires the ratio vx/vy to be irrational). The individual terms
in the summation of Eq. (7) may therefore be recovered
using spectral techniques. One simple approach, for example,
would be to use a grating and spatially separate these different
components on the optical detector (for example, a CCD cam-
era). The full image may then be recovered by appropriately
combining the information from these different Fourier regions
using a reconstruction algorithm. The complete reconstruction
will require retrieving the phase as well as the amplitude of
the Fourier components. To retrieve the phase, one approach
would be, for example, to interfere the radiated light with a
reference wave on the CCD. We note that the reconstruction
does not necessarily require the precise knowledge of the
Fourier series expansion coefficients cm,n. Since most objects
would produce a continuous and relatively smooth spectrum,
one approach would be to scale the signal levels from
the circular regions so that the Fourier components at the
boundaries would match.

We next focus on a concrete implementation of this
approach using the Raman nonlinearity with the goal of
extending the CARS imaging technique into the nanoscale
regime. Over the last decade, CARS has evolved into a
powerful technique for biological imaging and has recently
been used to obtain images of tissues and living cells with about
one micron resolution [13–16]. Consider a specific |a〉 → |b〉
vibrational or rotational excitation of a molecule as shown in
Fig. 2. Intense pump and Stokes laser beams, EP and ES ,
drive the coherence of the vibrational or rotational excitation,
ρab. The frequencies of the driving laser beams are tuned
close to the Raman excitation frequency ωP − ωS ≈ ωab. A
third laser beam, called the mixing beam EM , may then mix
with the established coherence and produce a nonlinear dipole
moment at frequency ωG = ωP − ωS + ωM . The goal is to
collect scattered light at frequency ωG due to the induced
nonlinear dipole moment and super-resolve the locations of
the vibrations or rotations (and therefore the structure of
a complex molecule). We will take the mixing beam to
be sufficiently weak so that it does not interfere with the
preparation of the molecular coherence. Similar to the above
discussion, we consider near-monochromatic excitation and
write the dipole moment of the form �μnonlinear(x,y,z,t) =
êμRe{μnonlinear exp(−iωGt)}δ(z − z0). In the limit where the
detunings �P and �M are much larger than all of the other
rates in the problem, the population of the excited level |e〉 can
be algebraically evaluated, and the generated nonlinear dipole
moment is [32,33]

μnonlinear = ρab

	M

2�M

μae, (8)

where we have defined the corresponding Rabi frequency
of the mixing beam as 	M ≡ EMμbe/h̄. The quantities μij

are the dipole matrix elements (i.e., the expectation values
of the dipole moment operator) between levels i and j .
Adopting a similar language to that of the above discussion,
Eq. (8) can be thought of as the dipole moment of the
two-level system which is spatially localized to the atomic
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FIG. 2. (Color online) Energy level diagram for CARS technique
near maximum coherence. Intense pump and Stokes laser beams, EP

and ES , drive the coherence of the molecular transition, ρab. A third
laser beam, EM , mixes with the established coherence and generates
the wave EG at frequency ωG = ωP − ωS + ωM . Driven near its
maximum value ρab = 0.5, the established molecular coherence may
have spatial features much smaller than the wavelength of light.

scale, μae(x,y), being modulated by the molecular coherence
ρab. For a spatially varying pump laser beam, the coherence
becomes position dependent ρab → ρab(x,y) and plays the
role of the intensity-dependent function f (x,y) of above. For
this description to be valid, the spatial variation of ρab must
be much slower than the size of the individual dipoles μae

(atomic scale) so that internal states of the molecules are
not significantly perturbed (i.e., the energy level structure of
Fig. 2 is still a valid description). When driven to near its
maximum value of ρab = 0.5 by the intense pump and Stokes
laser beams, the coherence may exhibit spatial structures much
smaller than the wavelength of light. Because we will study
a strongly driven molecular system with realistic parameters,
analytical techniques do not adequately describe the system,
and a numerical approach is needed. The coherence can be
found by solving the density matrix equations that describe
the time evolution of the system [33]:

∂ρab

∂t
= −

(
γ

2
+ γd

)
ρab + i

(
A

2
− D

2
+ �ω

)
ρab

+ i
B

2
(ρbb − ρaa),

∂ρbb

∂t
= −γρbb − Im{B∗ρab}, (9)

∂ρaa

∂t
= γρbb + Im{B∗ρab}.

Here B = EP E∗
Sμaeμ

∗
be/(2�Ph̄2) is the two photon Rabi

frequency, �ω is the two-photon detuning from the Raman
transition, and A and D are the Stark shifts of the relevant levels
due to the intense pump and Stokes laser beams. The quantity
γ is the population decay rate from the excited Raman level to
the ground level, and γd is the dephasing rate of the molecular
coherence due to processes that do not alter population levels.
Within the approximation that the single-photon detunings are
much larger than the other rates in the problem, Eqs. (9) are
exact, and they include effects such as power broadening and
the saturation of the Raman transition.

We proceed with a numerical calculation for a model
molecular system with parameters similar to those of recent
CARS experiments [13–16]. We consider a pump laser beam at
a wavelength of λP = 1 μm and a hypothetical X-Y molecular
vibration with a Raman transition frequency of 1000 cm−1.
As above, for simplicity, we take the wavelength of the
scattered light to be the same as the pump laser wavelength,
λG = λP . We take the detuning of the beams from the excited
electronic level to be �P = 10 000 cm−1 and assume a dipole
matrix element of 1 atomic unit for both the |a〉 → |e〉 and
|b〉 → |e〉 transitions. We take the decay rate from the excited
Raman level to the ground level to be γ = 2π × 1 cm−1 (i.e.,
frequency width of 30 GHz). For simplicity and clarity, we
focus on one spatial dimension x and assume a standing wave
pump beam and a spatially uniform Stokes laser beam. We
take these two beams to be produced by Q-switched pulsed
lasers with 10 ns duration and with a flat-top temporal profile.
We take the beams to be focused to an area of 1 μm × 1 μm
using a microscope objective lens. We numerically solve
Eqs. (9) with the initial condition that the molecular system
starts in the ground level, ρaa(t = 0) = 1, ρbb(t = 0) = 0, and
ρab(t = 0) = 0.

The solid line in Fig. 3 shows the numerically calculated
coherence versus time at the peak of the pump standing wave
and for a pulse energy of 1.5 μJ (per 10-ns-long pulse) for
both the pump and the Stokes laser beams (corresponding to

FIG. 3. (Color online) Solid line shows evolution of coherence at
peak of standing-wave pump profile for pulse energy of 1.5 μJ (per
10-ns-long pulse) for both pump and Stokes laser beams. After some
initial time dynamics, the coherence settles to a value of |ρab| = 0.33.
The dashed line is the numerically calculated coherence for 10%
higher laser intensities. In the simulation of the dotted-dashed line,
the total dephasing rate for the molecular coherence is increased
by 40%. All three results agree reasonably well, demonstrating the
robustness of the coherence preparation.

013817-4



OPTICAL IMAGING WITH NANOSCALE RESOLUTION . . . PHYSICAL REVIEW A 86, 013817 (2012)

an intensity of 15 GW/cm2 for each laser). In this calculation,
we turn on the laser beams in 10 ps, take �ω = 0, and assume
the ideal case of γd = 0. After significant temporal dynamics,
the coherence reaches a steady-state value of |ρab| = 0.33.
We have tested the sensitivity of the scheme to variations
in experimental parameters and have found the results to
be relatively robust against perturbations. For example, the
dashed line in Fig. 3 shows the evolution of the coherence
for 10% higher laser intensities (i.e., 1.65 μJ per pulse for
each beam). The dotted-dashed line is the coherence where we
have an additional dephasing rate of γd = 2π × 0.2 cm−1 (i.e.,
the total dephasing linewidth for the molecular coherence is
increased by 40%). For both cases, the results are reasonably
close to the results of the original simulation, showing the
robustness of the coherence preparation.

In Fig. 4, we repeat the time domain simulations of Fig. 3
at each point along the spatial profile of the standing-wave

FIG. 4. (Color online) Molecular coherence ρab(x) and its nor-
malized Fourier series expansion coefficients cm,0 as pump and Stokes
laser intensities are increased. Here we numerically solve the density
matrix equations (9) for flat-top 10-ns-long pump and Stokes laser
pulses and calculate the coherence at each spatial point along the
standing-wave profile of the pump laser beam. For parts (a) through
(d), the pulse energies are 0.5, 1.5, 4, and 10 μJ (per 10-ns-long pulse)
for both laser beams, respectively. For part (d), the Fourier series
coefficients extend out to about 40κ which results in a corresponding
factor of 40 in the resolution enhancement.

pump laser beam and record the values of the established
coherence after the system reaches steady state. The plots
show the numerically calculated coherence, ρab(x), and its
normalized Fourier series expansion coefficients, cm,0, for
varying levels of pump and Stokes laser intensities. For parts
(a) through (d), the pulse energies are 0.5 μJ, 1.5 μJ, 4 μJ, and
10 μJ (per 10-ns-long pulse) for both laser beams, respectively.
These energy levels are easily generated by Q-switched pulsed
lasers, and the intensities achieved at the focus are comparable
to intensities used in typical CARS experiments [13,34]. As
expected, increased pulse energies produce spatial structures
in the molecular coherence that are much smaller than the
wavelength of the pump light. The drop in the coherence
near the intensity peaks of the standing wave profile is due
to the saturation of the Raman transition. The Fourier series
expansion plots in the right-hand side of Fig. 4 shows how
far the spatial frequencies extend in units of κ . For part (d),
assuming an experimental signal to noise ratio of about 20,
the coefficients extend out to about 2m ≈ 40 (i.e., the spatial
frequencies extend to about 40κ), which would result in a
corresponding factor of 40 in the resolution enhancement.

We next discuss sweeping the intensity of the pump
laser beam with a speed vx to produce the spatiotemporal
modulation. For this purpose, we numerically integrate Eqs. (9)
at a fixed position in space and calculate the coherence as the
standing-wave pump laser profile is swept. Figure 5 shows the
calculated coherence vs time for an energy of 10 μJ per pulse
for both laser beams [i.e., for conditions of the numerical
simulation of Fig. 4(d)]. We choose the speed vx such
that the frequency shift between adjacent orders is 2δωx =
2π × 1 GHz. The coherence calculation of Fig. 5 closely
replicates the spatial structure of Fig. 4(d), demonstrating that
by sweeping the standing-wave pump pattern, we roughly
establish a traveling-wave pattern ρab(x − vxt), as required
by the scheme. We note that, for this procedure to work, it
is critical that steady state in the integration of Eqs. (9) is
achieved at time scales much faster than the time variation of
the pump field as a result of the sweep. This, in turn, requires
δωx 
 γ , which is satisfied for the numerical calculation of
Fig. 5.

FIG. 5. (Color online) Coherence vs time as standing-wave
pump laser is swept for energy of 10 μJ per pulse for each laser
beam. The coherence reasonably replicates the spatial structure of
Fig. 4(d), demonstrating that a traveling-wave pattern of ρab(x − vxt)
is established.
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FIG. 6. (Color online) (a) Hypothetical complex molecular struc-
ture where the positions of the vibrational resonance are indicated
with crosses. (b) Reconstructed image where Fourier series expansion
of coherence extends out to 24κ . The spatial frequencies in the
region −24κ < kx < 24κ and −24κ < ky < 24κ are recovered and
contribute to the image. In parts (c) and (d), the coherence extends
to 50κ and 100κ in the Fourier space, respectively. For all cases, the
imaging is performed with scattered CARS light at a wavelength of
λG = 1 μm.

We next present a calculation that shows the effect of
enhanced resolution on the image. For this purpose, we
consider a hypothetical complex molecular structure that is
shown in Fig. 6(a), where the positions with the X-Y bond
that exhibit vibrations are indicated. Because the molecular
structure is at the 10 nm scale and the wavelength of scattered
light is 1 μm, traditional imaging techniques cannot resolve
the relevant features. Figure 6(b) shows the reconstructed
image where the Fourier series expansion of the coherence
extends out to 24κ , and therefore in the image plane the
spatial frequencies −24κ < kx < 24κ and −24κ < ky < 24κ

are maintained (i.e., the resolution is enhanced by a factor
of 24). Various features of the spatial structure are already
resolved with this enhancement. In Figs. 6(c) and 6(d), we
calculate the image with resolution enhancement factors of 50

and 100, respectively. In Fig. 6(d), almost all relevant features
of the complex structure are resolved. For the conditions of the
numerical calculation of Fig. 4, the results of Figs. 6(b) through
6(d) would be obtained for pump and Stokes pulse energies of
about 4 μJ, 10 μJ, and 40 μJ per pulse, respectively.

One of the key drawbacks of the scheme is the long
integration time required by the low signal levels. By choosing
the parameters of the mixing beam appropriately, photon scat-
tering rates from a single molecule at the generated frequency
of ωG that exceed 1 MHz can likely be achieved. Assuming
10% photon collection efficiency, a 30 pixel × 30 pixel image,
and a resolution enhancement of 30 (producing 30 × 30 = 900
different frequencies that need to be resolved), we would
then have roughly a single collected photon per second per
pixel at each frequency. Obtaining a good signal-to-noise
ratio would then require many minutes of integration. Due to
such long integration times, implementing our approach will
likely require stationary molecular samples where the motion
is negligible during the relevant time scales.

In conclusion, we have suggested a different approach for
optical imaging that has the potential to achieve nanoscale
resolution in the far field. The approach relies on using
optical nonlinearities to mix down high spatial frequency
components into the propagating region. These components
are then recovered in the image plane using an alternative
type of spatiotemporal modulation. As mentioned above, the
main motivation for this work is the possibility of nanoscale
imaging of complex molecular structures. Although we have
focused on a CARS nonlinearity, the approach is general
and can likely be implemented using other nonlinear optical
processes. We note that there are a number of important issues
that we have not addressed in this manuscript. (i) We have
assumed that the scattered light is collected with an ideal
microscope objective that has a numerical aperture of NA = 1.
We have not presented a detailed analysis of image formation
through a real system. (ii) In our CARS analysis, we have not
included the contribution of other nonlinear processes such as
nonresonant four-wave mixing. (iii) We have not addressed the
issues related to the possible optical damage to the molecule.
A detailed study of these issues will be among our future
investigations.
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