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Left-handed electromagnetic waves in materials with induced polarization and magnetization
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We analyze the properties of electromagnetic waves inside materials with induced polarization and
magnetization. We show that if the polarization and magnetization of the material are sufficiently large and
appropriately phased, then the system supports the formation of left-handed waves. In some respects, such a
system behaves similarly to materials with a negative index of refraction, yet there is one important advantage:
Left-handed waves in materials with induced polarization and magnetization do not require as stringent material
properties (such as the strength of resonances and the density of radiators). We numerically investigate the
formation and propagation of such left-handed waves using finite-difference approximation to Maxwell’s
equations. We also discuss possible experimental observation of these ideas in a rare-earth-doped crystal.
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I. INTRODUCTION

Over the past decade, the interest in left-handed electro-
magnetic waves where E, H , and k vectors form a left-handed
triad has been continuously growing. The most well-known
example of materials that support left-handed waves are
negative-index materials. These materials were first predicted
by Veselago, who argued that materials with a simultaneously
negative permittivity and permeability would exhibit a negative
refractive index (throughout this paper the term negative
refractive index is reserved for materials in the sense exactly
described by Veselago) [1]. Although the interest in negative
index remained a scientific curiosity for a long time, it is
now understood that these materials may have important
applications such as constructing lenses that beat the diffrac-
tion limit [2–4] and engineering electromagnetic cloaks [5,6].
Two different (and somewhat complementary) approaches are
currently being pursued to construct negative-index materials:
(i) metamaterials [7–16] and (ii) atomic systems [17–23]. Neg-
ative refraction has so far been experimentally demonstrated
in both the microwave [7–10] and the optical [11–16] regions
of the spectrum, with all experiments thus far relying on meta-
materials. The second approach uses sharp electric-dipole and
magnetic-dipole transitions of atoms to modify the permittivity
and permeability appropriately to achieve a negative refractive
index. In the spirit of electromagnetically induced transparency
(EIT) and related techniques [24,25], the idea is to dress the
atomic system with strong lasers in such a way to produce a
negative refractive index for a weak probe beam.

Constructing negative-index materials has so far been
challenging due to a number of difficulties: (i) The permittivity
and permeability have to be simultaneously modified, and as
a result, one needs both electric and magnetic resonances near
the same wavelength. (ii) The electric and magnetic resonances
of the system have to be strong, which translates into stringent
requirements on the number of radiators required. In atomic
systems, all suggested schemes require atomic densities in
excess of 1016 atoms/cm3 [17–23]. In many experimental sys-
tems it is simply not possible to achieve such high densities and
simultaneously preserve sharp atomic transitions (linewidths
at the level of 1 MHz are required). (iii) An ensemble of
radiators that satisfies these first two requirements typically
produces large absorption [26]. This is particularly pronounced

in the optical domain where the imaginary part of the refractive
index is typically almost as large as the real part. This is
a key limitation for many potential applications since light
is largely absorbed within a few wavelengths of propagation
inside the material. There has been some recent progress on
overcoming absorption using active metamaterials [27]. In
atomic systems, absorption can, in principle, be overcome
using quantum interference ideas such as EIT or the inter-
ference of two Raman transitions [19,21]. Nevertheless, these
difficulties that are outlined in this paragraph are formidable
for many experimental implementations of negative index.
Due to these difficulties, negative index in atomic systems has
not yet been experimentally observed. Furthermore, although
there have been many exciting experimental results from the
metamaterial community, the performances of the constructed
negative-index materials are still far from what is needed for
practical applications. For example, it is still not clear if it will
be possible to construct widely applicable super-resolution
optical microscopes using negative-index materials.

We therefore feel strongly that it is important to investigate
alternative ideas that exhibit some of the physics and appli-
cations of negative-refractive-index materials. In this paper,
we study the propagation of electromagnetic waves inside
a material where the medium is polarized and magnetized
externally (i.e., through means other than the incident electro-
magnetic wave). We argue that if the induced polarization and
magnetization are sufficiently large and appropriately phased,
then the medium will support the formation of left-handed
waves. Such materials appear to manifest much of the physics
of negative-index materials. Compared to materials with a
negative refractive index, there is one clear advantage of
materials with induced polarization and magnetization: The
formation of left-handed waves does not require the stringent
material properties (such as the strength of the resonances, the
density of radiators, and so on). As a result, the ideas presented
in this paper may result in (1) an observation of left-handed
waves in atomic systems and (2) more practical and flexible
metamaterials for left-handed wave studies.

II. FORMALISM AND ANALYTICAL RESULTS

We begin our discussion by rewriting Maxwell’s
equations inside a polarized and magnetized
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material:

∇ × �E = −∂ �B
∂t

,

∇ × �H = ∂ �D
∂t

,

(1)∇ · �D = 0,

∇ · �B = 0,

where the displacement vector �D and the magnetic field �B are
modified inside a material to include the polarization ( �P) and
the magnetization ( �M):

�D = ε0 �E + �P,
(2)�B = μ0 �H + μ0 �M.

The medium can be polarized and magnetized at a specific
frequency ω using a number of processes. The most obvious
one would be if the frequency of the incident electromagnetic
wave is close to an electric-dipole (or a magnetic-dipole)
resonance, then the incident wave itself can polarize (or mag-
netize) the medium through the linear response of the material.
Physically, macroscopic polarization can be visualized as an
ensemble of microscopic electric dipoles oscillating in unison.
Similarly, macroscopic magnetization can be visualized as an
ensemble of magnetic dipoles (current loops) oriented along a
common direction. It is important to note that the medium can
also be polarized or magnetized at a frequency ω using external
means (i.e., processes that do not depend on the incident
electromagnetic wave). Throughout this paper, we focus on
externally induced polarization and magnetization. This can
be accomplished, for example, by applying powerful lasers
at other frequencies and using the nonlinear response of the
material. We discuss a specific scheme later in this paper.

Using Eq. (2), the first two of the Maxwell’s equations
inside a material can be reduced to

∇ × �E = −μ0
∂ �H
∂t

− μ0
∂ �M
∂t

,

(3)

∇ × �H = ε0
∂ �E
∂t

+ ∂ �P
∂t

.

We now look for plane wave solutions of Eq. (3). We
assume that the medium is polarized and magnetized at
the same frequency ω with exactly the same k vector and
take �P = �P exp (i�k · �r − iωt) and �M = �M exp (i�k · �r − iωt).
With the assumed polarization and magnetization, we look for
forced-wave solutions for the fields, �E = �E exp (i�k · �r − iωt)
and �H = �H exp (i�k · �r − iωt). With plane waves, Maxwell’s
equations reduce to

�k × �E = μ0ω( �H + �M),
(4)�k × �H = −ω(ε0 �E + �P ).

From Eq. (4), we see that if the �E and �H vectors are chosen
to be of appropriate magnitude and π out of phase with the
induced polarization and magnetization, there would be sign
flips on the right-hand side of the equations. A particularly
interesting case, which we focus on in the remainder of
this paper, is if the field quantities are chosen such that

E
M

H

P

k

FIG. 1. (Color online) Left-handed waves inside a material with
induced polarization and magnetization. If the medium is polarized
and magnetized at the same frequency ω with exactly the same k

vector, then there are forced-wave solutions with the vectors �E, �H ,
and �k forming a left-handed triad. The solutions are such that the field
quantities �E and �H are π out of phase with the induced polarization
and magnetization.

�H = − �M/2 (or equivalently �M = −2 �H ), and �E = − �P/2ε0

( �P = −2ε0 �E), which results in

�k × �E = −μ0ω �H,
(5)�k × �H = ε0ω �E.

The relations given in Eq. (5) are identical to the ones
in free space, except for a sign change on the right-hand
side of the equations. We note that this sign change can
also be thought of as flipping the signs of permittivity and
permeability; i.e., we would have obtained Eq. (5) if we had
started with Maxwell’s equations in free space and had made
the substitution μ0 → −μ0 and ε0 → −ε0 (as is the case for
n = −1). Equation (5) indicates that the vectors �E, �H , and
�k now form a left-handed triad. This is shown in Fig. 1.
Furthermore, using the product of the two equations, it can
be seen that the dispersion relation is identical to that of free
space: k = ω/c (k ≡ |�k|, c: speed of light in vacuum). It is
remarkable that, under these conditions, the wave propagates
without absorption or gain even though the medium is highly
polarized and magnetized. The consistency of the solutions
requires a particular relationship between the magnitudes
of the induced polarization and magnetization: | �M| = c| �P |.
Inspecting Eq. (5), as the frequency of the wave increases,
the direction of the k vector remains unchanged (i.e., the
wave remains left-handed) while its magnitude increases. As a
result, the group velocity of the wave, dω/dk, is parallel to the
k vector. This is in contrast to negative-index materials where
the phase and group velocities are antiparallel. It therefore
appears that the analogy with negative-index materials should
not be carried too far. Although there are many similarities be-
tween materials with induced polarization and magnetization
and negative-index materials, there are also major differences.
We discuss one similarity below, where we numerically show
negative refraction at an interface. It is important to note that
the above analytical treatment is valid for a single-spatial mode
of light (i.e., for only a single k vector). As we discuss below,
our numerical results show that these ideas remain valid even
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FIG. 2. (Color online) Beam refraction at normal incidence from
a right-handed material into a material with induced polarization and
magnetization. The boundary conditions at the interface dictate that
�E2 = �E1 and �H2 = �H1. If the induced polarization and magnetization
in medium 2 are �M = −2 �H2 and �P = −2ε0 �E2, then forced left-
handed waves are excited. These waves satisfy both the boundary
conditions at the interface and Maxwell’s equations in the material.

for spatial wave packets, i.e., when there are many k vectors
simultaneously present.

We next discuss how to excite these forced waves inside
the material by considering refraction at an interface at normal
incidence. Consider an electromagnetic wave refracting from a
“normal,” right-handed material (medium 1) to a material with
induced polarization and magnetization (medium 2) as shown
in Fig. 2. For simplicity, we take medium 1 to be free space,
though the arguments hold for any right-handed material. The
boundary conditions at the interface state that the tangential
components of the E and H fields must be continuous at the
interface. For the geometry of Fig. 2, we must have �E2 = �E1

and �H2 = �H1. We assume that in medium 2, we are able to
prepare appropriately phased polarization and magnetization
with �M = −2 �H2 and �P = −2ε0 �E2 (imitating a material with
n = −1). The refraction problem is particularly simplified
for this case since the two materials are impedance matched
and there is no reflected wave. Under these conditions, the
forced left-handed waves of Eq. (5) satisfy both the boundary
conditions at the interface and the Maxwell’s equations in the
material.

III. SPECIFIC IMPLEMENTATION USING
SECOND-ORDER NONLINEARITY

For concreteness, we next focus on a specific scheme for
the implementation of these ideas in a model atomic system.
We discuss possible experimental implementation in a rare-
earth-doped crystal later in the paper. As shown in Fig. 3, to
polarize and magnetize the medium, we utilize second-order
nonlinearity (χ (2)) using three intense laser beams with fields
Ea , Eb (electric field), and Bc (magnetic field). The energy
level diagram of Fig. 3 can be realized experimentally using,
for example, laser-cooled rare-earth atomic clouds or rare-
earth-doped crystals [22]. The beams two-photon excite an
electric-dipole (|g〉 → |e〉) and a magnetic-dipole (|g〉 → |m〉)
transition through an intermediate level |r〉. The states |g〉 and
|m〉 have the same parity, which is opposite to the parity of
states |r〉 and |e〉. To simplify the problem, we focus on the

g
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1

3

2

P, M at

FIG. 3. (Color online) Inducing polarization and magnetization
using second-order atomic nonlinearity χ (2). Three intense laser
beams with fields Ea , Eb (electric), and Bc (magnetic), two-photon ex-
cite an electric-dipole (|g〉 → |e〉) and a magnetic-dipole (|g〉 → |m〉)
transition through an intermediate level |r〉. The nonlinear response
produces polarization and magnetization at the sum frequency of
ω = ωa + ωb = ωa + ωc.

second-order response of Fig. 3 and ignore other nonlinear
processes. The polarization and magnetization induced in the
medium are

P = Ndgeρge,
(6)

M = Nμgmρgm.

Here N is the density of radiators, and we have defined
P ≡ | �P | and M ≡ | �M|. The quantities dge and μgm are
the electric and magnetic dipole matrix elements between
respective states. ρge and ρgm are the coherences, and within
the perturbative limit they are given by

ρgm = �a�b

4(	1 + i
r/2)(	2 + i
m/2)
,

(7)
ρge = �a�c

4(	1 + i
r/2)(	3 + i
e/2)
.

In Eq. (7), the quantities �a = Eadgr/�, �b = Ebdrm/�,
and �c = Bcμre/� are the Rabi frequencies of the applied
fields. The detunings from respective levels are defined
as 	1 = (ωr − ωg) − ωa , 	2 = (ωm − ωg) − (ωa + ωb), and
	3 = (ωe − ωg) − (ωa + ωc). 
r , 
e, and 
m are the decay
rates of the respective levels. The microscopic coherences
calculated using Eq. (7) produce the macroscopic polarization
and magnetization at the sum frequency of ω = ωa + ωb =
ωa + ωc. The induced polarization and magnetization then
interact with the electric and magnetic field components (E
and H ) of the probe wave to produce left-handed waves
under appropriate conditions. We note, once again, the essen-
tial difference of our approach compared to negative-index
materials. In negative-index materials, the medium would
be polarized and magnetized by the probe wave itself. This
essentially means that the coherences of the magnetic-dipole
and electric-dipole transitions would be proportional to the
electric and magnetic field components of the probe wave. In
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contrast, in our approach, the coherences of Eq. (7) are induced
externally with additional laser beams.

IV. LEFT-HANDED WAVE INTENSITY

A key advantage of the proposal of this paper is that
these effects can be observed at low atomic densities. There
is not a strict density threshold as there is for constructing
negative-index materials. Rather, the density of radiators limits
the magnitudes of the induced polarization and magnetization,
which in turn limit the E and H fields (and therefore
the intensity) of the left-handed waves. Figure 4 shows
the calculated relationship between atomic density and left-
handed wave generation. In these calculations, we consider a
model atomic system with electric and magnetic dipole matrix
elements dge = ea0 (e is electron charge, a0 is Bohr radius) and
μgm = μB (μB is Bohr magneton). We also assume the ideal
case of maximum coherence for the respective transitions;
i.e., ρge ≈ ρgm ≈ 1/2. Such high coherences would require
Rabi frequencies for the fields of order the detunings from the
respective transitions, � ∼ 	. Under these conditions, for a
given atomic density N , we calculate the maximum possible
polarization and magnetization that can be achieved in the
material [Eq. (6)], which in turn determines the field values
for the left-handed waves (using | �H | = | �M|/2 and | �E| =
| �P |/2ε0). We find that the maximum possible magnetization
of the material places a more stringent requirement on the
intensity of the waves than that of the polarization. This
is similar to the problem of constructing negative-index
materials where the strength of the magnetic interaction is
typically the chief difficulty. In Fig. 4, we plot the intensity
of the left-handed waves that can be formed as the atomic
density is varied. We find that even at atomic densities as
low as 1012/cm3, left-handed waves can be formed with
intensities that can be measured with state-of-the-art detection
techniques. In contrast, all negative-index proposals in atomic

FIG. 4. (Color online) The calculated intensity of the left-handed
waves that can be formed as the atomic density is varied. For atomic
densities of 1012/cm3 (which is achievable with most vapor cells
or laser-cooled ultracold clouds), left-handed waves with intensities
of about 1 pW/cm2 can be formed. In contrast, all negative-index
proposals in atomic systems require densities exceeding 1016/cm3.

systems require densities exceeding 1016/cm3 [17–23]. As a
result, our proposal may be the only practical proposal with the
possibility to observe left-handed waves in atomic systems.

V. NUMERICAL SIMULATIONS

We proceed with a discussion of the numerical simu-
lations [28]. To facilitate the simulations, we consider TE
waves in two spatial dimensions x and y with electric
and magnetic field components �E = ẑEz(x,y,t) and �H =
x̂Hx(x,y,t) + ŷHy(x,y,t). The corresponding polarization
and magnetization components are �P = ẑPz(x,y,t) and
�M = x̂Mx(x,y,t) + ŷMy(x,y,t). With these components,

Maxwell’s equations written in a form most suitable for the
finite-difference technique are

∂Ez

∂t
= 1

ε0

(
∂Hy

∂x
− ∂Hx

∂y

)
− 1

ε0

∂Pz

∂t
,

∂Hx

∂t
= − 1

μ0

∂Ez

∂y
− ∂Mx

∂t
, (8)

∂Hy

∂t
= 1

μ0

∂Ez

∂x
− ∂My

∂t
.

We take the polarization and magnetization to be known
functions of space and time (externally induced) and numeri-
cally integrate Eqs. (8) to find the electric and magnetic field
components at all time points. We perform the numerical
integration in a three-dimensional spatiotemporal grid with
grid spacings of 	x, 	y, and 	t . To assure numerical stability,
we choose 	t << 	x/c,	y/c. We start the integration with
the specified initial conditions Ez(x,y,t = 0), Hx(x,y,t = 0),
and Hy(x,y,t = 0), and use the fourth-order Runge-Kutta
algorithm to advance the field quantities in time.

Figure 5 shows pure left-handed wave propagation through
a polarized and magnetized material. Here, we assume
externally induced polarization and magnetization waves
propagating along +x direction with the functional forms:

Pz = Pz0 cos [k(x − ct)] exp
[−(x − ct)2/W 2

x

]
,

(9)
My = My0 cos [k(x − ct)] exp

[−(x − ct)2/W 2
x

]
,

and Mx = 0. As mentioned above, in Eq. (9), the quantities
Pz0 and My0 are related through the speed of light, My0 = cPz0.
We take the wavelength to be λ = 2π/k = 1 μm. The quantity
Wx determines the width of the wave packet and is chosen
to be Wx = 7 μm. For the numerical simulation of Fig. 5,
we choose the initial conditions for the field values to be
the ideal case as required for left-handed wave excitation
Ez(x,y,t = 0) = −Pz(x,y,t = 0)/2ε0 and Hy(x,y,t = 0) =
−My(x,y,t = 0)/2. Figure 5 shows the snapshots for the
electric field Ez along the x coordinate at t = 0, t = 1, and
t = 60 fs. The two plots at t = 0 and t = 1 fs clearly show
that the phase velocity and therefore the k vector is oriented
along the +x direction (for visual aid, the dashed vertical line is
aligned to t = 0). This is a left-handed wave since the electric
and magnetic field components are oriented along +z and +y

directions, respectively. Furthermore, the group velocity of the
wave is also oriented along the +x direction. As expected from
the analytical solution discussed above, the wave propagates
without any absorption or gain and at the speed c.
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FIG. 5. (Color online) Finite-difference numerical simulations of
Maxwell’s equations that demonstrate left-handed waves inside a
material with induced polarization and magnetization. The plots show
the snapshots for the electric field of a wave packet at three different
instants in time, t = 0, t = 1, and t = 60 fs. Both the phase and
group velocities are oriented along the +x direction. The electric and
magnetic field components are oriented along +z and +y directions,
respectively.

Figure 6 shows the results of numerical simulations where
the initial field values are chosen to be Ez(x,y,t = 0) =
Hy(x,y,t = 0) = 0. Other parameters are identical to those
of the numerical simulation of Fig. 5. The plots in Fig. 6
show the snapshots for the electric field Ez at t = 0, t = 1,
t = 30, and t = 60 fs, respectively. In addition to a left-handed
wave, a right-handed wave of appropriate amplitude is formed.
This result can be understood as follows. From superposition
principle, we may add any homogeneous solution to Maxwell’s
equations to the left-handed wave solutions. Homogeneous
solutions are the solutions without any driving terms, i.e.,
without any externally induced polarization and magnetization
(right-handed waves). If the initial conditions for the fields are
different from those required for pure left-handed wave exci-
tation [Ez(x,y,t = 0) = −Pz(x,y,t = 0)/2ε0 andHy(x,y,t =
0) = −My(x,y,t = 0)/2], then we may add an appropriate
right-handed wave solution such that the initial condition is
satisfied. For zero-field initial condition, as is the case in the
numerical simulation of Fig. 6, the right-handed component
has an equal magnitude and opposite phase such that there is
perfect destructive interference with the left-handed wave at
t = 0.

We next present a more detailed analysis of refraction at
an interface. Similar to the discussion of Fig. 2, consider an
electromagnetic wave refracting from free space to a material
with induced polarization and magnetization (medium 2)

-30 -20 -10 0 10 20 30
x (micron) 
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t=1 fs 

t=30 fs 

t=60 fs 

left-handed right-handed 

FIG. 6. (Color online) Wave propagation with the initial field
values chosen to be Ez(x,y,t = 0) = Hy(x,y,t = 0) = 0. In addition
to a left-handed wave, a right-handed wave with equal amplitude and
opposite initial phase (phase at t = 0) is formed.

but now with an arbitrary angle as shown in Fig. 7(a).
The boundary conditions at the interface state that (i) the
tangential components of E and H must be continuous at
the boundary and (ii) the normal components of B and D must
be continuous at the boundary. We assume that in medium 2
we are able to prepare appropriately phased polarization and
magnetization with �M = −2 �H and �P = −2ε0 �E. Note that
using the geometry of Fig. 7(a), the E field only has a tangential
component whereas the H field has both a tangential and
a normal component. We therefore have �E2 = �E1, and also
�Ht2 = �Ht1. The requirement that �Bn2 = �Bn1 further implies

that �Hn2 + �Mn = �Hn1, which with the assumed magnetization

H1

Hn1

Ht1 H2

Hn2

Ht2

E1 E2

k1 k2 k1 k2

FIG. 7. (Color online) (a) Beam refraction from a “normal,”
right-handed material into a material with induced polarization
and magnetization. The wave refracts with a negative angle of
refraction. (b) The time-reversed case where the wave refracts
from the material with induced polarization and magnetization into
right-handed material.
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FIG. 8. (Color online) Wave refraction from a material with induced polarization and magnetization into free space. Here, we assume
polarization and magnetization waves in the material propagating along the k vector as shown in Fig. 4(b) and start with zero initial field
values, Ez(x,y,t = 0) = Hy(x,y,t = 0) = 0. Before the polarization and magnetization exist in the region on the right, there is no generated
EM wave (a). Once the induced polarization and magnetization appear at the interface, a refracted right-handed wave appears in the region of
free space (b). As the polarization and magnetization generate the left-handed wave in the region of x > 0 a refracted wave is generated along
with it in the region of free space. The direction of the polarization, magnetization, electric field, and magnetic field are indicated (c). After the
pulse of polarization and magnetization has completely entered the region of x > 0 the left-handed wave inside the material and the refracted
right-handed wave outside the material become two separate pulses and propagate as expected (d).

yields �Hn2 = − �Hn1. From these considerations, we conclude
that the beam will refract at the interface with a negative
angle, with the k vectors as shown in Fig. 7(a). Note that
this analysis is very similar to Veselago’s original analysis of
wave refraction into a negative-index material [1]. Figure 7(b)
shows the time-reversed case where the wave refracts from the
material with induced polarization and magnetization into free
space.

In Fig. 8, we numerically simulate refraction of a wave from
the material with induced polarization and magnetization into
free space [i.e., for the conditions of Fig. 7(b)]. Here, we
assume polarization and magnetization waves in the material
propagating along the k vector as shown in Fig. 7(b), away
from the interface. Similar to the numerical simulation of
Fig. 6, we start with zero initial field values, Ez(x,y,t = 0) =
Hy(x,y,t = 0) = 0. The induced polarization and magnetiza-
tion generates the left-handed wave in the material, which in
turn refracts into free space. The false-color plots in Fig. 8
show the snapshots for the electric field Ez in the two spatial
dimensions, x and y, at t = 0, t = 30, t = 60, and t = 90 fs.
The boundary between the two regions is at x = 0. The region
x < 0 is free space and the region x > 0 is the material with

induced polarization and magnetization. As expected, the wave
refracts into free space with a negative angle of refraction.

VI. IMPLEMENTATION USING A
RARE-EARTH-DOPED CRYSTAL

Rare-earth ions in doped crystals at cryogenic temperatures
offer a promising route for the studies of left-handed electro-
magnetic waves in atomic systems. The chief difficulty for
observing these effects in the optical region of the spectrum is
the weakness of the magnetic response. Although externally
polarizing a sample is relatively straightforward, producing
substantial magnetization requires a strong magnetic-dipole
transition with a narrow linewidth, which is challenging to
achieve. This challenge can be overcome using the intra-
configurational 4f → 4f transitions of rare-earth ions [29–
34]. Rare earths typically form trivalent ions in crystals with
only 4f electrons remaining in the outer shell in the ground
configuration. The 4f shell is tightly bound to the nucleus
and the 4f electronic configuration interacts weakly with
the crystal environment. As a result, the intraconfigurational
4f → 4f transitions are sharp, and they are very much like
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free-ion transitions that are only weakly perturbed by the crys-
tal field. At cryogenic temperatures, homogeneous linewidths
well below 1 MHz are routinely observed for the 4f → 4f

transitions [29,35,36]. Optically excited fluorescence level
lifetimes exceeding 1 ms have also been demonstrated in these
systems. Furthermore, due to the absence of atomic motion,
there is neither Doppler broadening nor atomic diffusion.
Because of these properties, rare-earth-doped crystals more
closely resemble ultracold clouds than warm vapors.

Another attractive feature of these systems is that doping
fractions of ∼0.1% are routinely used, which corresponds to
rare-earth ion densities exceeding 1019/cm3. These densities
are much higher than what can be achieved in neutral ultracold
clouds or atomic vapors. The rare-earth ion-ion interactions do
not significantly effect the 4f configuration at these densities.
However, because of the interaction with the crystal field, there
is an inhomogeneous broadening of the intraconfigurational
4f → 4f lines [29,35]. This broadening depends on the
crystal host and the specific levels but is typically a few
GHz. This broadening is unusually small for a solid-state
system, which is again a result of the 4f configuration being
relatively well shielded from the cyrstalline environment.
These attractive properties have been essential in recent
demonstrations of quantum interference effects such as EIT
and slow light in rare-earth-doped crystals [37–42].

4f6 7F0 

4f6 5D1 

Ea

Δ2

4f55d 

Δ1

Eb
M at ω

FIG. 9. (Color online) Proposed scheme for exciting left-handed
waves in a Eu-doped crystal. The magnetization (M) is induced
using the 7F 0 → 5D1 strong magnetic-dipole transition of the Eu3+

ions. Two-photon excitation with infrared light at a wavelength of
1054 nm is used to generate the coherence between the two levels.
The two-photon excitation is through the 4f 5d configuration as the
intermediate level. The polarization can be induced using a number of
processes. One approach would be to use the second-order nonlinear
response of the host crystal. The second-order susceptibility (χ (2)) of
the crystal can produce a nonlinear polarization P = ε0χ

(2)E2
c using

a separate infrared laser with field amplitude Ec.

FIG. 10. (Color online) The predicted intensity of left-handed
waves that can be excited inside a 0.1% doped Eu:YSO crystal. Here
we take the power of the infrared laser beam (λ = 1054 nm) to be 1 W
and calculate the magnetization that can be induced in the material
as we vary the focused beam size. The induced magnetization in
turn determines the field values and therefore the intensity for the
left-handed waves.

We have identified europium (Eu)–doped crystals to be
particularly suitable for the studies of left-handed waves [43].
One of the main reasons is that we have found a strong
magnetic-dipole transition from the ground level in Eu3+,
7F 0 → 5D1 transition in the 4f shell at an experimentally
accessible wavelength of 527 nm. Figure 9 shows a specific
scheme that can be used to magnetize the crystal. To generate
the coherence between the two levels, two-photon excitation
with an intense beam of infrared light at a wavelength of 1054
nm can be used. The transitions within the 4f shell in a free ion
are dipole forbidden due to parity selection rules (inside the
crystal, these transitions become weakly dipole allowed due to
the mixing with the crystal field; however, this mixing is small).
However, a two-photon excitation using the high-lying 4f 5d

configuration as an intermediate level can be used [44–47].
The goal would be to produce a reasonably large coherence
of the magnetic dipole transition, ρgm, and therefore produce
a substantial magnetization at the doubled frequency. To find
the magnetic-dipole matrix element between the 7F 0 and 5D1

levels of the 4f shell, we used Cowan’s atomic structure
code [48]. Cowan’s code gives the magnetic-dipole decay rate
(Einstein A coefficient) from the excited level 5D1 to 7F 0 to
be 7.1 s−1. We have found two references that have either
experimentally measured or numerically calculated this decay
rate. They specify this decay rate to be 10.3 s−1 [49] and
10.8 s−1 [50], respectively, which is in reasonable agreement
with our calculation using Cowan’s code. Based on the decay
rate, we calculate the magnetic-dipole matrix element for the
7F 0 → 5D1 transition to be μgm ≡ 〈J ||μ̂||J ′〉 ≈ 0.1μB , which
is reasonably strong.

Figure 10 shows the calculated intensity of left-handed
waves that can be excited in a Eu-doped crystal with experi-
mental parameters that can be achieved relatively easily. Here
we assume a 0.1% doped crystal and take the power of the
1054-nm infrared beam to be 1 W. For a given focused spot size
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of the infrared beam, we calculate the induced magnetization
using the following procedure. We first calculate the Rabi
frequency for each step in the two-photon excitation, which is
proportional to the product of the electric field and the dipole
matrix element between the 4f and 4f 5d configurations. We
then calculate the established coherence of the magnetic-dipole
transition using Eq. (7) with 	1 = 50 000 cm−1 (which is
the large detuning from the 4f 5d configuration) and 	2 =
1.5 GHz (which is the inhomogeneous linewidth of the
transition). With the established coherence calculated, we
calculate the induced magnetization in the crystal using Eq. (6).
The induced magnetization in turn determines the field values
for the left-handed waves (using | �H | = | �M|/2). Figure 10
shows the calculated intensity of the left-handed waves as
the focused spot size of the 1054-nm beam is varied. Even for
a reasonably large spot size of 100 μm, it should be possible to
excite left-handed waves with easily detectible intensity levels.

A quick calculation reveals that inducing polarization in the
crystal should be relatively straightforward. One idea would,
for example, be to use the second-order nonlinearity of the
host crystal. Due to the second-order susceptibility, χ (2), a
separate infrared field Ec will produce a nonlinear polarization
of magnitude P = ε0χ

(2)E2
c . Even if we assume a second-

order susceptibility which is many orders of magnitude smaller
than other common crystals [for example, quartz (SiO2) and
many other crystals have χ (2) ≈ 10−12 m/V], we calculate that
it is not difficult to induce a sufficiently large polarization in the
crystal as required for left-handed wave generation of Fig. 10.

VII. CONCLUSIONS

In conclusion, we have discussed left-handed waves in
materials where the medium is polarized and magnetized exter-

nally, i.e., by processes that do not depend on the incident wave.
Compared to materials with a negative refractive index, there is
one clear advantage of materials with induced polarization and
magnetization: The formation of left-handed waves does not
require the stringent material properties. We have presented
analytical results as well as numerical simulations that show
left-handed wave propagation and negative refraction at an
interface. We have also discussed a realistic approach to
generating left-handed waves in a rare-earth-doped crystal.
Left-handed electromagnetic waves manifest a lot of exciting
physics and have the potential for a number of practical
applications. Over the past decade, negative-index materials
have generated a lot of enthusiasm. It is now well understood
that these materials have important practical applications
such as constructing “perfect lenses” that can, in principle,
image objects with arbitrarily high resolution. Materials with
induced polarization and magnetization appear to share much
of the physics of negative-index materials. Perhaps many
of the applications of materials with induced polarization
and magnetization will be revealed by exploring the exact
correspondence between these materials and negative-index
materials. However, we note that because materials with
induced polarization and magnetization appear to have unique
properties (such as the direction of the group velocity), they
deserve a careful study on their own.
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