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We analyze the radiative coupling of qubits to a common radiation bath in free space and discuss that superra-
diance (collective emission) results in decoherence that scales with the square of the number of qubits. This
decoherence mechanism is nonlocal; the collective emission simultaneously decoheres all the qubits in the com-
puter. Because the noise source is not local, the introduced errors are outside the applicability of the threshold
theorem. As a result, we argue that the errors due to superradiance cannot be corrected using the current models of
fault-tolerant quantum computation. © 2014 Optical Society of America
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1. INTRODUCTION
Over the last decade, quantum computing and quantum infor-
mation processing have emerged as exciting fields of science
due to the potential for solving exponentially large problems
in polynomial time [1,2]. Initial enthusiasm for quantum com-
puting was motivated in part by the polynomial-time prime
factoring algorithm of Shor [3]. It has become increasingly evi-
dent that, in addition to factoring, quantum algorithms can be
used for a broad class of problems, such as finding the eigen-
values and eigenvectors of large matrices [4–6]. The funda-
mental building blocks of quantum computers are quantum
bits, or qubits, which are used to store information. In princi-
ple, qubits can be any quantum mechanical system that can be
in two distinct states. Computations are performed on qubits,
just as operations are performed on classical bits, but qubit
operations can exploit the extraordinary behavior of nature
at the quantum scale. The principles of quantum computing
have now been demonstrated using a variety of physical qu-
bits, including trapped ions [7,8], neutral atoms [9,10], semi-
conductor quantum dots [11], superconducting Josephson
junctions [12], and single photons [13]. Currently, many re-
searchers around the world are working toward constructing
a scalable quantum computer from these qubit building
blocks.

One of the key achievements in the field has been the
discovery of quantum error correction and fault-tolerant
quantum computation [14,15]. In particular, the celebrated
threshold theorem [16–19] has established confidence that,
if quantum gates are constructed with a fidelity better than
a certain threshold, arbitrarily long quantum operations are,
in principle, possible. Although the threshold theorem is a re-
markable achievement, it has a key weakness: all formulations
of the threshold theorem to date make certain assumptions
regarding the properties of the noise that affects the quantum
computer. In particular, the theorem works under the
assumption that the noise must be spatially and temporally

local, affecting only a few qubits at a time. Physically, the
locality of the noise is related to the interaction Hamiltonian
that couples the qubits to the environment. Locality is guar-
anteed if the norm of the interaction Hamiltonian operator
is bounded by a certain value. However, it has been pointed
out that this assumption is not valid for certain models of envi-
ronment-qubit coupling. In such cases, the threshold theorem
becomes extremely sensitive to the high-frequency spectrum
of the environment operators [19]. A number of authors have
also expressed skepticism regarding the assumptions of the
threshold theorem [20,21].

In this paper, we argue that the well-known phenomenon of
superradiance [22–24] gives rise to noise that is not local. By
considering the radiative coupling of L qubits to a common
radiation bath in free space, we discuss that superradiance
results in decoherence that scales with the square of the num-
ber of qubits. This decoherence mechanism is nonlocal in the
sense that the collective emission simultaneously decoheres
all the qubits in the computer. Because the noise source is
not local, the introduced errors are outside the applicability
of the threshold theorem. We also discuss that, although
the use of decoherence free subspaces (DFS) [25–28] will re-
duce the amount of nonlocal noise, they do not eliminate it
completely. The reason for this is that any error in the prepa-
ration or the manipulation of the DFS will in general result in
superradiance. As a result, residual nonlocal noise will re-
main, which will still be outside the applicability of the thresh-
old theorem. Below we discuss radiatively coupled qubits in
free space, so our results are particularly relevant for neutral
atom- and trapped-ion-based quantum computation. However,
our results will likely be applicable to other physical systems,
since a source of collective noise can be found in most situa-
tions; for example, phonons for solid-state-based approaches.

We begin our discussion by considering the interaction of L
two-level atoms with a continuum of radiation modes in the
Schrödinger picture. We will first assume the system to be
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in the superradiant regime, i.e., the system’s physical size is
small compared with the radiation wavelength. Although this
may at first seem like a restrictive assumption, we will show
below that it is not; the argument extends to the case where
the spacing between the qubits is larger than the radiation
wavelength. In the latter case, the essence of the argument
is that, no matter how distant the qubits are, there are spatial
modes of the radiation, which will couple to all the qubits and
induce collective emission.

2. FORMALISM
We consider L two-level atoms, each with levels jgi and jei.
We will denote each individual atom with the index j. The lev-
els of the jth atom will be labeled jgij and jeij . We follow and
extend the formalism of the Wigner–Weisskopf theory of
spontaneous emission as described, for example, in [29]. A
similar approach has recently been discussed in the analysis
of reducing superradiance in the implementation of quantum
algorithms [30]. We label the photon annihilation and creation
operators for each mode s by âs and â†s , respectively. The
Hamiltonian for the combined atom-field system is

Ĥ total �
X
s

ℏνs

�
â†s âs �

1
2

�
�

X
j

1
2
ℏωaσ̂

j
z � Ĥ int; (1)

where

Ĥ int � −

X
j

X
s

ℏgs�âsσ̂j� � â†s σ̂j
−

�;

σ̂jz � jeijjhej − jgijjhgj;
σ̂j� � jeijjhgj;
σ̂j
−

� jgijjhej: (2)

Here Ĥ int is the interaction Hamiltonian that determines the
coupling between the atomic system and radiation modes. It is
important to note that the Hamiltonian of Eq. (2) uses the ro-
tating wave approximation, i.e., only energy-conserving terms
are retained. The summation

P
s sums over all the relevant

radiation modes. The energies of the atomic states jgi and
jei are taken to be −�1∕2�ℏωa and �1∕2�ℏωa, respectively.
We take the initial state of the atomic system to be an arbitrary
(in general, entangled) superposition state and assume that
initially each field mode s is in vacuum state. The initial state
of the combined atom-radiation field system can be written as

jψ�t � 0�i �
X2L−1
q�0

cq;0jq; 0i: (3)

Here, the 0 in state jq; 0i means that all modes s have a zero
photon number. Following the superradiance literature, we
define the following parameter for each atomic state jqi:

2Mq ≡ Number of atoms in state jei
− Number of atoms in state jgi: (4)

With this definition, the energy of the atomic state jqi is
Mqℏωa. Working in the interaction picture, we expand the
wave function as

jψ�t�i �
X2L−1
q�0

cq;0�t� exp�−i�Mqωa�t�jq; 0i

�
X
s

X2L−1
q0�0

cq0 ;s�t� exp�−i�Mq0ωa � νs�t�jq0; 1si: (5)

Here, j1si represents the state of the radiation field in which
the field mode s has one photon, while all the other modes
are in a vacuum state. With these definitions, we use the
Hamiltonian of Eq. (1) and derive the evolution equations
for the probability amplitudes of Eq. (5):

dcq;0
dt

� i
X
s

gs
X

q0∈f �q�
cq0;s�t� exp�−i�νs − ωa�t�;

dcq0;s
dt

� igs
X

q00∈g�q0�
cq00 ;0�t� exp�−i�ωa − νs�t�: (6)

Here, the index q0 runs through all the states that differ
from q by changing one atom from the excited level to the
ground level. For example, if q � jee…ei, then q0 in Eq. (6)
will run through a total of L indices: q0 � jgee…ei; jege…ei;…;
jeee…gi. The symbol f �q� in the summation denotes this set of
indices. Similarly, the index q00 runs through all the states that
differ from q0 by changing one atom from the ground level to
the excited level. The symbol g�q0� in the summation denotes
this set.

To proceed, we follow the usual steps of Wigner–Weisskopf
theory of spontaneous emission. The details of this derivation
will be reported elsewhere. Briefly, we start by formally inte-
grating the second line of Eq. (6) and substituting the result
into the first line. We then replace the summation

P
s with a

frequency integral over the continuum of radiation modes.
Performing the frequency integration under the usual assump-
tions, Eq. (6) reduces to the following coupled differential
equations for the probability amplitudes:

dcq;0
dt

� −

�
Γ
2
� iδω

� X
q0∈f �q�

X
q00∈g�q0�

cq00;0: (7)

Here the quantities Γ and δω are, respectively, the single
atom decay rate and frequency shift (Lamb-shift) due to the
coupling to the radiation continuum.

3. DICKE SUPERRADIANCE
Equation (7) can be thought as the generalization of Dicke
superradiance to an arbitrary initial superposition state. We
note that, for symmetric states, Eq. (7) recovers the well-
known results of Dicke superradiance [22,23]. Assume that
we start from an L atom symmetric state, where �L∕2� �M
atoms are in the excited level and �L∕2� −M atoms are in
the ground level. From Eq. (7), each of the nonzero probability
amplitudes in the symmetric state will evolve in an identical
manner. We can, therefore, replace cq00 ;0�t� with cq;0�t� in
Eq. (7), which now reads

dcq;0
dt

� −

�
Γ
2
� iδω

� X
q0∈f �q�

X
q00∈g�q0�

cq;0: (8)

The
P

q0 summation will have L∕2�M terms, and
P

q00 sum-
mation will have L∕2 −M � 1 terms. Thus Eq. (8) reduces to
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dcq;0
dt

� −

�
Γ
2
� iδω

��
L
2
�M

��
L
2
−M � 1

�
cq;0: (9)

Hence, the new decay rate for the probability jcq;0j2 is

�
L
2
�M

��
L
2
−M � 1

�
Γ; (10)

which is Dicke superradiance. For M � L∕2 (all atoms in the
excited level), the decay rate is LΓ. ForM � 0 (half the atoms
in the excited level, half the atoms in the ground level), the
decay rate is L∕2��L∕2� � 1�Γ. Finally, if M � −�L∕2� � 1
(only one atom is in the excited level), the decay rate is LΓ.

For an arbitrary initial state (not necessarily symmetric),
the precise decay rate will depend on the initial values
of cq;0�t � 0� and can be calculated using the coupled equa-
tions of Eq. (7). We note that quantum algorithms typically
use a large portion of the state space, i.e., in general all
cq;0�t � 0� will be of comparable magnitude. Furthermore,
there are exponentially more states with M ∼ 0 than
M ∼ L∕2. As a result, the vast majority of coefficients will
decay as jcq;0�t�j2 ∼ jcq;0�t � 0�j2 exp�−�L2∕4�Γt�.

4. NONLOCAL NOISE
We next discuss the nonlocal character of the noise due to
superradiance. Physically, the nonlocal character of the noise
can be deduced from the fact that collective emission has con-
tributions from and simultaneously decoheres all the qubits.
As a result, superradiance noise cannot be assumed to affect
only a few qubits at a time. In this section, we will make this
argument more concrete by discussing the error on a single
qubit during, for example, a quantum gate operation. Consider
a certain qubit at a specific location, a. We estimate the error
on this specific qubit by first calculating the reduced density
matrix for this qubit. For this purpose, we write the initial
wave function in a form where the levels of this qubit are
explicit:

jψ�t � 0�i �
X2L−1−1
k�0

ck;0jgia ⊗ jk; 0i �
X2L−1−1
k�0

dk;0jeia ⊗ jk; 0i:

(11)

Here, the index k denotes the state of the remaining L − 1 qu-
bits other than the qubit at a. From the state vector of Eq. (11),
we form the density matrix for the global atomic system
ρ̂ � jψihψ j. We then obtain the reduced density matrix for
the qubit a by tracing over the coordinates of the remaining
L − 1 qubits, ρ̂a � Trk�ρ̂�, which gives

ρ̂a �
X2L−1−1
k�0

jck;0j2jgiaahgj �
X2L−1−1
k�0

jdk;0j2jeiaahej

�
X2L−1−1
k�0

ck;0d�k;0jgiaahej �
X2L−1−1
k�0

c�k;0dk;0jeiaahgj: (12)

In Eq. (11), the states where the qubit a is in the excited
level, jeia will have correlated emission from L atoms.
In contrast, if the qubit a is in the ground level jgia, the
system will have correlated emission from L − 1 atoms. As
a result, jck;0�t�j2 ∼ jck;0�t � 0�j2 exp�−��L − 1�2∕4�Γt� and

jdk;0�t�j2 ∼ jdk;0�t � 0�j2 exp�−�L2∕4�Γt�. Using these expres-
sions in Eq. (12) gives a longitudinal and transverse decay
rates of LΓ∕2 and LΓ∕4 for qubit a, respectively. For a suffi-
ciently small gate time of Δt, we may approximate
exp�−LΓΔt∕2� ≈ 1 − LΓΔt∕2, which yields an error probability
of ϵ � LΓΔt∕2 at the qubit a. This error is nonlocal since it
scales with the number of qubits and the source of error si-
multaneously affects all the qubits.

It is important to note precisely how the formalism gives
rise to nonlocal noise because this is in stark contrast with
the current models of fault-tolerant quantum computation
[19]. In current models, having a constant error threshold re-
quires the norm of the interaction Hamiltonian to be bounded
by some finite value, i.e., ‖Ĥ int‖ < ∞. The interaction Hamil-
tonian of Eq. (1), which gives rise to superradiance, has an
infinite norm and thus does not satisfy this requirement.

5. DECOHERENCE FREE SUBSPACES
Over the last decade, the idea of using DFS has emerged as a
promising way to reduce decoherence in quantum computers
[25,26]. The DFS for the superradiance problem has been
discussed in detail by a number of authors [27,28]. In this
section, we argue that, although the use of DFS will reduce
decoherence, they do not eliminate nonlocal noise com-
pletely. The reason for this is that any error in the preparation
or the manipulation of the DFS will couple the states to the
larger Hilbert space and induce some collective emission.
As a result, some residual nonlocal noise will remain, which
will still be outside the applicability of the threshold theorem.

Within our formalism, the existence of DFS can be seen
from the coupled equations of Eq. (7). These form a linear
set of equations and, when written in a matrix form, will
support a null-space for a specific set of initial values for
the probability amplitudes, cq;0�t � 0�. It is well known that,
for radiatively coupled L qubits, a state of the DF subspace
is a tensor product of the two-qubit singlet states [27]:

jψiDFS �
�

1���
2

p
�
L∕2

⊗L∕2
j�1 �jgei − jegi�: (13)

With the initial values for the probability amplitudes given
by Eq. (13), it can be easily shown that the amplitudes will not
change through the time evolution of Eq. (7) (i.e., there is no
decoherence). The state of Eq. (13) cannot be prepared per-
fectly, and, at a specific point in the computation, one of the
probability amplitudes may differ from its ideal value by a
small amount. The dynamics of the system can then be inves-
tigated by numerically solving the coupled system of equa-
tions of Eq. (7). We have performed this calculation for a
different number of qubits in the computer (the results are
displayed in Fig. 1). Here, we plot the initial rate of change
of the probability amplitudes as the number of qubits in the
system is varied. This rate can also be thought of as the leak-
age rate of the error in jψiDFS to the larger Hilbert space. The
numerical results demonstrate a leakage rate of �L2∕4�Γ,
which is the superradiant decay rate. Physically, this is be-
cause the perturbation to the DFS wave function results in
mixing to the larger Hilbert space. The vast majority of the
states in the larger Hilbert space are superradiant.

These results indicate that errors in the preparation or the
manipulation of the DFS will result in superradiance. Since
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superradiance has contributions from all the qubits, this
results in collective decoherence and, therefore, nonlocal
noise. Thus, we conclude that, although working in a DFS
will reduce decoherence, it will not eliminate collective
decoherence (and therefore nonlocal noise) completely.

6. TOTAL DECOHERENCE DURING THE
COMPUTER RUN
These results suggest that collective emission produces noise
that cannot be corrected using the current models of fault-
tolerant quantum computation. In this section, we calculate
the total decoherence of the system during the implementa-
tion of a quantum algorithm without any encoding in the
DFS. As indicated by Eqs. (7)–(10), the vast majority of the
coherences of the full density matrix will decay as

ρqq0 �t� � cq;0�t�c�q0;0�t� ∼ ρqq0 �t � 0� exp�−L2Γt∕4�: (14)

As above, let Δt be the time it takes for a quantum gate oper-
ation. Also, let R�L� be the total number of gates that will be
used in the computer run. With these definitions, the total
computer run-time will be R�L�Δt. During this time, the coher-
ences will decay to

ρqq0 �t � R�L�Δt� ∼ ρqq0 �t � 0� exp�−L2ΓR�L�Δt∕4�: (15)

Note that Eq. (15) can also be thought of as the success
probability of the computer run:

success probability ∼ exp�−L2ΓR�L�Δt∕4�: (16)

For a reasonably good success probability, we need to keep

L2R�L�ΓΔt∕4 ≪ 1 ⇒ L2R�L�Γ∕4ωa ≪ 1: (17)

Here, we have used the fact that the time required for a gate
will be limited by the energy spacing between the two levels
and, as a result, Δt ∼ 1∕ωa.

7. ELECTRIC- AND MAGNETIC-DIPOLE
TRANSITIONS
In this section, to give a feel for experimental numbers, we
first consider the case that there is a nonzero electric-dipole

matrix element between levels jgi and jei (i.e., this transition
is electric-dipole allowed). To first order, we can relate the
decay rate to other parameters of the atomic system by using,
for example, the classical electron oscillator model:

Γ � e2ω2
a

6πϵ0mc3
: (18)

Using Eq. (18), Eq. (17) now reads:

L2R�L� ≪ 24πϵ0mc3

e2
1
ωa

⇒ L2R�L� ≪ Ωconst

ωa
; (19)

where we have defined Ωconst ≡ 24πϵ0mc3∕e2 �
6.4 × 1023 rad∕s. As an example, for Shor’s factoring algo-
rithm, R�L� ∼ L2, and Eq. (19) reduces to

L4 ≪
Ωconst

ωa
⇒ L ≪

�
Ωconst

ωa

�
1∕4

: (20)

For example, if we take ωa � 2π × 1 GHz, we would have
L ≪ 3200. By using DFS, the decoherence rate will be re-
duced, and the number of qubits can be increased. However,
it is the thesis of this paper that the number of qubits will still
be bounded, since residual nonlocal noise will remain.

For magnetic-dipole transitions, the result can be found by
noting that

Γmagnetic ∼ α2Γelectric; (21)

where the quantity α ≈ 1∕137 is the fine structure constant.
For magnetic-dipole transitions, Eq. (19) would then read

L2R�L� ≪ 1
α2

Ωconst

ωa
: (22)

As an example, if we again do the scaling for Shor’s factor-
ing algorithm, R�L� ∼ L2, we would have the following con-
straint for magnetic-dipole transitions:

L4 ≪
1

α2
Ωconst

ωa
⇒ L ≪

1���
α

p
�
Ωconst

ωa

�
1∕4

: (23)

For higher-order multipole transitions, very similar results
can be found through scaling of Eq. (21) with appropriate fac-
tors of the fine structure constant.

8. QUBITS WITH LARGE SPACING
In the above, we have assumed the system to be fully in the
superradiant regime, where the total size of the computer is
small compared with the wavelength of the radiation,
λa � 2πc∕ωa. In this section, we discuss that even when the
system size becomes larger than the wavelength, the main re-
sults of the above argument remain the same. As shown in
Fig. 2, we consider L qubits in a 3D grid of size w � L1∕3d,
where spacing between the qubits may be much larger than
the radiation wavelength, d ≫ λa. Superradiance in large sam-
ples is known to be difficult to analyze in precise quantitative
detail [23]. However, a number of scaling results are well
known. As discussed in detail in [23], the modes of the electro-
magnetic radiation within the diffraction solid angle of the

Fig. 1. Leakage rate of the error in jψiDFS as the number of qubits, L,
is varied. The leakage rate equals �L2∕4�Γ, which is the superradiant
decay rate. Since superradiance has contributions from all the qubits,
this results in collective decoherence and, therefore, nonlocal noise
even if the system is encoded in a DFS.
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sample, ∼�λa∕w�2, interact with all the atoms and induce col-
lective emission. To the first order, superradiance in large
samples can then be quantified by making the substitution
Γ → μΓ and using the small-sample results. The parameter
μ � �3∕8π2��λ2a∕w2� can physically be thought of as the frac-
tion of the vacuum modes that induce collective emission.
Using this result, the collective emission rate is

L
2

�
L
2
� 1

�
μΓ ∼

3

32π2
λ2a
d2

L4∕3Γ: (24)

Equation (24) indicates that, even when the size of the com-
puter is large compared with the radiation wavelength, there
is a collective decoherence rate (and therefore nonlocal
noise), which scales with the number of qubits. Compared
with the small-sample case, there is one important difference:
the rate of growth is L4∕3 instead of L2. Similar to the above
discussion, for a reasonable success probability of the com-
puter run, we would need to keep

3

32π2
λ2a
d2

L4∕3R�L�ΓΔt ≪ 1; (25)

where Δt is the time required for a quantum gate operation
and R�L� is the total number of gates. For the geometry of
Fig. 2, we can argue that each quantum gate between two qu-
bits will at least require the speed of light propagation time
between the two qubits, Δt ∼ d∕c � �2π∕ωa��d∕λa�. Hence,
Eq. (25) can be reduced to

3
16π

λa
d
L4∕3R�L�Γ 1

ωa
≪ 1: (26)

We note that the total decoherence during the computer run
as expressed in Eq. (26) is an underestimate due to two key
reasons: (1) While deriving Eq. (26), we have only considered
the nearest neighbor gates and usedΔt ∼ d∕c for the gate time.
It is well known that one can perform universal quantum com-
putation using only nearest-neighbor gates; however, there is
in general an overhead. This overhead is not included in
Eq. (26). (2) If unrestricted architecture will be used,
Eq. (26) does not include the additional overhead (in the gate
time) for performing gates between any two qubits within the

computer. Both of these effects will increase the amount of
decoherence during the computer run for the large sample
of atoms. A detailed study of both of these effects is left
for a future publication. Extending Eq. (26) to 1D and 2D
geometries will also be among our future investigations.

9. CONCLUSIONS
We have argued that superradiance produces an error rate on
each qubit that scales as the number of qubits. Furthermore,
the noise affects all the qubits simultaneously and is nonlocal.
As a result, this type of noise cannot be corrected using the
existing models of fault-tolerant quantum computation. We
believe our results give further importance to extending the
current models of fault-tolerant quantum computation to non-
local noise sources. We also note that there may be techniques
to reduce the superradiance noise by modifying the density of
states to suppress spontaneous emission, for example, by
placing the qubits inside a high-finesse cavity. Another alter-
native would be to use degenerate qubit states that are
accessed by polarization selection rules. These will be among
our future investigations.
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