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We have performed simulations and analytic calculations
that show strong carrier-envelope phase dependence in the
ionization of hydrogen atoms using intense sub-cycle sub-
femtosecond laser pulses.When the pulse width is comparable
to the classical orbit time of the initial bound state, sine-like
pulses can ionize more than cosine-like pulses that have the
same fluence. This result is the opposite of what is expected
from a tunneling-like model, where the ionization probability
primarily depends on the peak amplitude of the electric field
during the pulse. © 2018 Optical Society of America
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Since the laser was invented in 1960, physicists have pushed the
boundaries of ultrafast intense-field physics by producing ever
shorter and more powerful laser pulses. Every time the boun-
dary has been pushed back, exciting new physics is discovered.
Solid-state femtosecond lasers based on Ti:sapphire or fiber
laser technology are now routine laboratory tools, giving phys-
icists insight into fast quantum processes [1]. The next frontier
to explore is the precise control of electron motion using sub-
femtosecond, sub-cycle laser pulses [2].

Our particular interest in this regime is how sub-cycle modi-
fication of the waveform produced by a given power spectrum
affects the interaction with the target system. For example,
high-harmonic generation (HHG) processes can depend on
the carrier-envelope phase (CEP) of the driving field [3].
Kolesik and colleagues have studied history-dependent effects
in ionization using sub-cycle pulse trains [4]. Nakajima and
coworkers found phase-dependent effects in the multi-photon
regime when using sub-cycle pulses [5], as well as unexpected
ionization probabilities in few-cycle pulses [6]. We are also mo-
tivated by the experiments with Rydberg atoms that used pico-
second-timescale optical pulses to demonstrate that ionization
processes behaved very differently when the duration of the
pulse was similar to the classical orbit time of the initial state
[7,8]. Heuristics and intuition based on the carrier frequency or
instantaneous intensity of the laser field tend to have difficulty
describing these effects because of interference between many
quantum states.

In this Letter, we explore an example of the physics that
could be seen with a sub-femtosecond, sub-cycle pulse. We
present a numerical study of ionization by an intense laser pulse
with duration close to the classical orbit time of the ground
state of the hydrogen atom, and develop an approximate de-
scription for the ionization process in this regime based on
the strong field approximation (SFA). Surprisingly, we find that
pulses with sine-like CEPs can have greater ionization proba-
bilities than cosine-like pulses that have the same power spec-
trum. This result is the opposite of what is expected from an
intuitive tunneling-like model, which would predict that pulses
with the largest electric field amplitudes would ionize more
than pulses with smaller amplitudes.

We perform our numerical TDSE simulations on a spherical-
harmonic/radial mesh in the length gauge. We evolve the wave-
function in time using equations of motion derived from the
Lagrangian density and a split-operator version of the interaction
term [9]. We generate a numeric eigenstate basis by partially
diagonalizing the field-free discrete Hamiltonian using sparse
matrix techniques. This basis is used to determine the initial state
and to calculate inner products with field-free eigenstates. Our
boundary condition is a radial cosine mask [10].

We consider linearly polarized laser pulses in carrier-
envelope form [11] with an additional window function:

E�t� � W τ�t��E0F τ�t� cos�ωc t � φ� � Ec �, (1)

where E0 is an amplitude prefactor, F τ is an envelope function,
W τ is a window function, ωc is the carrier frequency, φ is the
CEP, and Ec is the DC correction field amplitude. We call the
parameter τ the pulse width.

We describe φ � 0 pulses as “cosine-like” and φ � π∕2
pulses as “sine-like” based on their behaviors near t � 0, which
are similar to envelope-less cosine or sine waves, respectively. For
the same power spectrum (and, therefore, the same fluence) a
cosine-like pulse has a peak electric field approximately

ffiffiffi
2

p
times

larger than the sine-like pulse. We choose to use a sinc-shaped
envelope, sinc�x� ≡ sin�x�∕x, because its Fourier transform
has constant power over its bandwidth, such as an ideal super-
continuum source. Specifically, we use F τ�t� � sinc�πt∕τ�. This
envelope has zeros at t � nτ, n � �1, � 2,…, and τ is the
inverse of the cyclic frequency bandwidth of the pulse. We set
a small fixed minimum frequency for the spectrum so that the
pulse shape is nearly constant as we change τ. For the pulses used
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in this Letter,ωmin � 2π ×30 THz (a wavelength of λ ≈ 10 μm ),
so that ωc � ωmin � π∕τ. The window function cuts off the
electric field with a logistic rise/decay:

W τ�t� �
1

1� exp�−�t � tw�∕td �
−

1

1� exp�−�t − tw�∕td �
:

(2)

Typical parameters are tw � 30τ and td � τ∕5. The window
decreases the numeric fluence of the pulses compared to the ana-
lytic value by at most a few tenths of a percent. It also introduces
Gibbs ringing at the edges of the spectrum. To correct for the
introduction of a zero-frequency electric field component that
is caused by windowing when φ ≠ π∕2, we add a small constant
electric field Ec that shares the same window function as the pulse,
with an amplitude numerically chosen so that

R tf
t i dtE�t� � 0.

This correction also causes small changes in the low-frequency
components of the electric field. Combined, these effects cause
perturbations in the ionization probability (compared to a sim-
ulation with infinite time bounds and no window) on the level of
∼0.5% (verified by simulations with longer time bounds, with-
out DC correction, or with fluence correction), which is not sig-
nificant for the following discussion.

Pulse width scans showing the initial state overlap after in-
teracting with a laser pulse for various fluences, and CEPs are
shown in Fig. 1. A heatmap of the ratio between the initial state
overlap of sine-like and cosine-like pulses is shown in Fig. 2.

Note that because we keep the pulse’s fluences fixed, their
bandwidths become very broad (hundreds of electron volts),
and their electric fields become very large (tens of atomic elec-
tric fields) at short pulse widths. We expect our simulations to
be less accurate in this regime since we neglect relativistic effects
and spatial variation of the electric field. As a conservative limit,
we cut off the curves and heatmap when the peak electric field
of the cosine-like pulse reaches three atomic electric fields. Also
note the large perturbations to the otherwise smooth curves
near τ ≈ 400 as. This seems to be caused by the first inclusion
of 10.4 eV photons to the pulse’s spectrum, which allow single-

photon transitions from the 1s ground state to the excited
bound state 2p. Unlike the rest of the scan, the simulations near
this pulse width are quite sensitive to the perturbations of the
pulse spectrum caused by windowing. We do not attempt to
describe the behavior near τ ≈ 400 as in the following discussion.

As mentioned above, in this Letter, we are primarily con-
cerned with the strong CEP dependence of the ionization prob-
ability at short pulse widths, comparable to the classical orbit
time of the hydrogen ground state (T cl ≈ 150 as). The fact that
such a dependence exists is not inherently surprising. For ex-
ample, at longer pulse widths (τ ≈ 1 fs), cosine-like pulses ion-
ize more than sine-like pulses. This is what we should expect
from electric field amplitudes below the barrier-suppression re-
gime: the dominant ionization mechanism is tunneling and,
therefore, the dominant dependence of the ionization is on
the maximum electric field amplitude [11]. Since the maxi-
mum electric field amplitude is larger for a cosine-like pulse
than a sine-like pulse, the cosine-like pulse ionizes more.
However, at pulse widths comparable to the classical orbit time,
we see exactly the opposite behavior over a continuous range of
pulse widths and fluences: sine-like pulses consistently ionize
more than cosine-like pulses. Our intuition about how an in-
stantaneous field amplitude relates to final ionization probabil-
ity is not correct when the pulse is extremely short and has very
high amplitude (large enough to be in the barrier-suppression
regime, instead of the tunneling regime).

To investigate why the CEP dependence at short pulse
widths develops and, in particular, why the sine-like pulses ion-
ize more than the cosine-like pulses, despite having lower
amplitudes, we have developed a simple description of the
non-linear strong field interaction at these timescales. We begin
with an expansion often used to analyze HHG using the SFA
[12]. Our approach is similar to the techniques that lead to
continuum state probability amplitudes that include rescattered

Fig. 1. Population remaining in the initial 1s state of hydrogen after
interacting with a laser pulse as the pulse width τ is varied. For each
fluence H , we perform numerical TDSE calculations for three values
of the CEP φ. As the pulse width becomes comparable to the classical
orbital period of the initial hydrogen ground state (T cl ≈ 150 as), the
sine-like pulse (φ � π∕2) ionizes much more than the cosine-like
pulse (φ � 0), even though its peak electric field amplitude is lower
by a factor of approximately

ffiffiffi
2

p
.

Fig. 2. Population remaining in the initial 1s state of hydrogen
post-interaction for cosine-like (φ � 0) and sine-like (φ � π∕2)
pulses, calculated using the TDSE over a range of fluencesH and pulse
widths τ. Blue (red) coloration means that the sine-like pulse ionized
more (less) than the cosine-like pulse. The white region is a result of
cutting off the heatmap when the pulse’s peak electric field amplitude
reaches three atomic electric fields. The fractional difference in the
remaining population can be very large (several orders of magnitude),
despite the two pulses having the same fluence and pulse width.
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electrons [13] but, instead, we focus on calculating the bound
state population directly.

Consider a system with a single bound state produced by a
field-free Hamiltonian bH0 that interacts with a linearly polar-
ized external electric field E�t�, calculated in the length gauge,bHI � −qE�t�bz. We expand the wavefunction as

jΨ�t�i � cb�t�jbi �
Z

∞

0

dk
X

l, jmj≤l
cklm�t�jklmi, (3)

where jbi is the ket of the bound state, jklmi is the ket of a
delta-normalized (in wavenumber) continuum state labeled by
the free-space wavenumber k and angular momentum quantum
numbers l and m, and cb�t� and cklm�t� are the probability am-
plitudes for the bound and continuum states, respectively. In a
typical ATI/HHG calculation, our goal would be to calculate
cklm�t� and determine the photoelectron spectrum [12]. Instead,
we will calculate cb�t� to directly determine the ionization rate.

If we plug Eq. (3) into the TDSE, take the inner product
with hbj or hklmj, and make the SFA, we get a set of coupled
ordinary differential equations (written without explicit time
dependences here for compactness):

_cb � −iωbcb � i
q
ℏ
E

X
l, jmj≤l

Z
∞

0

dkcklmhbjbzjklmi, (4a)

_cklm � −iωklmcklm � i
q
ℏ
Ecbhklmjbzjbi

� i
q
ℏ
E

X
l, jmj≤l

Z
∞

0

dk 0ck 0l 0m 0 hklmjbzjk 0l 0m 0i, (4b)

where ωb � Eb∕ℏ and ωklm � Eklm∕ℏ are the angular
frequencies of the bound and continuum states, respectively.
The last term in Eq. (4b) is the direct continuum-continuum
coupling. There has been much discussion of ways to treat this
interaction due to its importance in HHG [14–16]. In this Letter,
we will neglect it entirely and formally integrate Eq. (4b), yielding

cklm�t� � −i
q
ℏ
hklmjbzjbiZ t

t i
dt 0cb�t 0�E�t 0�e−iωklm�t−t 0�, (5)

where t i is the initial time, cb�t i� � 1, and we take the limit
t i → −∞. Neglecting the continuum-continuum interaction
seems to be a reasonable approximation for the ultra-short
timescales we are considering (at least for investigating the
source of the CEP dependence reversal, as we will see).
Plugging Eq. (5) back into Eq. (4a) results in a single integro-
differential equation (IDE):

_b�t� � −
q2

ℏ2 E�t�
Z

t

−∞
dt 0b�t 0�E�t 0�K b�t − t 0�,

K b�t − t 0� �
X

l, jmj≤l

Z
∞

0

dkjhklmjbzjbij2e−i�ωklm−ωb��t−t 0�, (6)

where b�t� � cb�t� exp�iωbt� and K b�t − t 0� is the kernel func-
tion. We use this IDE to analyze the behavior of the hydrogen
atom, keeping in mind that it only describes coherent transi-
tions between a single bound state and the continuum states
that it can directly transition to, and that it ignores tunneling-
like effects.

To compare the IDE to the TDSE, we numerically integrate
the IDE with an approximate kernel. The bound state is the
analytic hydrogen ground state, but the continuum states

are approximated by wavenumber-delta-normalized spherical
partial waves, ϕklm�r, θ,ϕ� ≈

ffiffiffiffiffiffiffiffi
2∕π

p
kjl�kr�Y m

l �θ,ϕ�, where
k is the free-space wavenumber, and jl is the spherical Bessel
function with index l. The resulting kernel, normalized by
K b�0� � a20 (the Bohr radius squared), is shown in Fig. 3.

We numerically integrate the IDE using a fixed-time-step
fourth-order Runge–Kutta algorithm (RK4) with Δt ≈ 1 as.
To check the accuracy of this method, we compared it to a
general iterative algorithm for solving IDEs [17,18]. Both
algorithms converged to the same results.

The pulse width and CEP scans calculated using the IDE are
shown in Fig. 4, where they are compared to TDSE simulation
scans. The IDE ionization probabilities do not have as much
structure as those calculated using the TDSE and do not pre-
dict any significant ionization when the pulse amplitudes be-
come small, as the pulse width increases at constant fluence.
Nevertheless, the IDE scans display qualitatively similar fea-
tures to the short-pulse-width regime of the TDSE scans: they
predict that the ionization probability has a reversed CEP
dependence when the pulse width becomes comparable to the
classical orbit time. Since the IDE is modeling the second-order
interaction between the bound state and the continuum states
that it can transition to, we conclude that the primary driver of
the CEP dependence in this regime is interference between the
low-l continuum electron wavefunction and the remaining
bound state population, as described by K b�t − t 0�.

An intuitive picture can be seen by approximating the IDE
by restricting the integral in Eq. (6) to going back only by a
time Δ ≈ T cl (on the basis that the kernel amplitude decreases
exponentially as the time difference grows). We then approxi-
mate b�t 0� ≈ b�t�, pull it out of the integral, and write

_b�t� ≈ −
1

ℏ2 �qE�t��b�t�
Z

t

t−Δ
dt 0�qE�t 0��K b�t − t 0�,

_b�t� ≈ −F �t�ṽ�t, t − Δ�b�t�∕Eh, (7)

where F �t� is the electric force on the electron, Eh is the
Hartree energy, and ṽ�t, t − Δ� is interpreted as the velocity
of an electron in the laser field at time t after ionization at time

Fig. 3. Approximate kernel function K b�t − t 0� of the hydrogen
ground state, calculated using delta-normalized spherical partial waves
ϕklm�r, θ,ϕ� ≈

ffiffiffiffiffiffiffiffi
2∕π

p
kjl�kr�Y m

l �θ,ϕ�, where k is the free-space
wavenumber, and jl is the spherical Bessel function with index l,
as the continuum states. The kernel has been normalized by
K b�0� � a20, the Bohr radius squared. The timescale of the kernel
is close to the classical orbit period of the ground state, T cl ≈
150 as (vertical black dotted line).
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t − Δ. This interpretation comes from the Lewenstein model of
HHG, where the electron’s action is integrated forward from
the time of ionization to determine its dynamics [13]. The driv-
ing term can then be thought of as a quasi-classical quantity:
the power (force multiplied by velocity) that the laser field is
delivering to the electron compared to the binding energy.

A different way of approximating the IDE may be useful for
longer pulses. For a femtosecond pulse, E�t 0� and b�t 0� do not
change significantly over the kernel timescale. We can pull
them out of the integral in Eq. (6) and write

_b�t� ≈ −
q2

ℏ2 E
2�t�b�t�

Z
∞

0

dδK b�δ�, (8)

where δ � t − t 0. The instantaneous ionization rate for a long
pulse would then be proportional to E�t�2. Empirically-deter-
mined instantaneous ionization rates like this for femtosecond
pulses with amplitudes in the barrier-suppression regime have
been reported by other researchers [19,20]. We expect that in-
cluding the continuum-continuum interaction in the IDE will
give good agreement with these empirical rates, and we are
interested in exploring this connection in future work.
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