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Abstract: We propose the extension of existing molecular modulation techniques for continuous-
wave optical modulation to Raman-active microresonators. Intense pump and Stokes modes inside
a microresonator prepare a high coherence of the Raman transition between two ro-vibrational
states. With the coherence prepared, any laser in the optical region can be coupled to the
microresonator and be modulated. We perform numerical simulations which predict that these
“microresonator-based molecular modulators” could have modulation efficiencies on the order of
1% at 10 THz-scale frequencies for any optical wavelength.
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1. Introduction

Optical modulators are powerful tools that have found a wide variety of uses, ranging from
encoding information to synthesizing ultrafast waveforms. Acousto-optical and electro-optical
modulators (AOMs and EOMs) provide frequency shifts limited to the electrical frequencies
that drive them, with a maximum of a few hundred GHz. Although new techniques continue to
incrementally improve electrically-driven modulators [1–5], there is little prospect for pushing
them to significantly higher modulation frequencies. Optical modulators with THz-scale
modulation frequencies need to be driven by optical processes.
Over the past decade our group created a 90THz continuous-wave (CW) optical modulator

based on a technique called molecular modulation, a kind of driven four-wave mixing based
on CW Raman lasing [6–15]. Molecular modulation was originally developed using pulsed
pump lasers [16–27], but these systems suffer from large linewidths and low repetition rates [28].
Using CW driving beams for our modulator avoided these problems, but required the use of an
optical cavity to reach the high intensities necessary for molecular modulation to occur. Using a
large gas-filled cavity ultimately limited the usefulness of the modulator due to its complexity of
operation and sensitivity to mechanical and thermal fluctuations, all of which negatively impacted
the steady-state modulation efficiency ε .

In this work we propose the extension of CWmolecular modulation to solid-state Raman-active
microresonators and discuss the prospective characteristics of such a device, which we call a
Microresonator-based Molecular Modulator (MMM). We also present numerical simulations
that indicate that an MMM based on a silica microsphere could achieve a frequency shift of
∼ 12 THz with modulation efficiencies of ε ≈ 1% at any optical wavelength.
Microresonator modes have small volumes and high quality factors over a wide range of

wavelengths, which make them ideal platforms for building nonlinear optical devices [29,30].
For example, Grudinin et al. demonstrated an ultra-low-threshold Raman laser in a CaF2
microresonator which required just 15 µW of launched pump power [31,32]. Other groups have
used microresonators to create high-quality stabilized optical frequency combs or explore more
exotic nonlinear behavior such as soliton formation [33–35]. As an added benefit, the smaller
overall system size and better mechanical and thermal stability offered by microresonators will
help mitigate the issues that limited the efficiency of our previous device. Microresonators could
also be integrated into complex optical systems much more readily.
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Figure 1 shows a cartoon of the specific kind of proposed MMM we characterize in this
work. A pump laser is evanescently coupled to one of the whispering gallery modes of a silica
microsphere using a tapered fiber [36]. This “pump mode” builds up to high intensity. The pump
mode then generates a high-intensity Stokes mode through stimulated Raman scattering (SRS).
Once the pump and Stokes modes have both built up to high intensities, molecular modulation
can occur: a separate low-power “mixing” beam is coupled to the resonator and is modulated via
driven four-wave mixing to produce light at the “target” frequency.

Fig. 1. A cartoon of our molecular modulation scheme implemented using a microsphere
made of Raman-active material with frequency shift ωm coupled to a tapered fiber. The
launched pump beam at frequency ωP drives a Stokes mode at frequency ωS = ωP −ωm via
Raman lasing. Then a launched “mixing” beam at frequency ωM is modulated by the intense
pump and Stokes modes via four-wave mixing to produce light at the “target” frequency
ωT = ωM + ωm.

2. Theoretical modeling

To characterize the theoretical performance of MMMs we have derived a model of the four-wave
mixing process in an arbitrary resonator. Typically, models of this process either do not perform a
spatial decomposition at all (leading to the “sideband model”) [37,38], or assume the well-known
regular mode structure of a Fabry-Perot cavity [7,39,40]. In contrast, we decompose the electric
field into the spatial modes of a generalized resonator as well as in time. We combine this
description with models of the underlying quantum mechanics and of how light couples to the
resonator (see [36,41,42]) to create an end-to-end, time-dependent model of the modulator.

The primary advantage of this model is that it makes no assumptions about the mode structure
of the resonator or which inter-mode couplings might be more important than others. Instead,
these relationships will arise emergently from the model, as they would in a real experiment. As
we will see, this turns out to be critically important to understanding the behavior of the MMM.

An additional advantage of our model is that it includes all of the time-dependent behavior
of the resonator (i.e., it is not solely concerned with steady-state behavior). We can use this to
look at, for example, how long it takes the mode energies to reach steady-state after the pump
laser turns on. Knowing that timescale will be critical for building optical modulators that
can interoperate with other devices. A delay of several microseconds before the output power
stabilizes could be important for both downstream and upstream devices. We plan to explore this
aspect of the model in future work.
The full derivation of the model is too long to be included here, but we will briefly sketch it.

Instead of starting from a set of classical master equations, we begin with a low-level description
of the underlying quantum mechanics, to ensure that we capture the physics we are looking for
(as expected, the final result is equivalent to what one would get by starting with the classical
description). We begin with a decomposition of the molecular state as a function of position
in the cavity r and time t into two ro-vibrational states |a〉 and |b〉 with frequencies ωa and ωb
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respectively, along with a set of electronic states |i〉 (frequencies ωi) [40]:

|Ψ(r, t)〉 = ca(r, t) e−iωat |a〉 + cb(r, t) e−iωbt |b〉 +
∑

i
ci(r, t) e−iωit |i〉 . (1)

The Hamiltonian in this basis is Ĥ = Ĥ0 + ĤI , where

Ĥ0 = ~

[
ωa |a〉〈a| + ωb |b〉〈b| +

∑
i
ωi |i〉〈i|

]
(2)

ĤI = −
∑

i
E(r, t) · µai |a〉〈i| −

∑
i
E(r, t) · µbi |b〉〈i|

−
∑

i
E∗(r, t) · µ∗ai |i〉〈a| −

∑
i
E∗(r, t) · µ∗bi |i〉〈b|

(3)

and where E is the electric field vector and µxy is the dipole moment between states |x〉 and |y〉.
There are no direct transitions between states |a〉 and |b〉 (i.e., µab = 0).

We decompose the electric field into cavity modes indexed by q (frequencies ωq).

E(r, t) = 1
2

∑
q

[
Eq(t) e

−iωqt uq(r) + E∗q(t) eiωqt u∗q(r)
]
, (4)

where uq(r) is the mode shape function for mode q. We use lower-case subscripts for generic
mode indices and upper-case color-coded subscripts for specific modes throughout. An energy
level diagram for this system is shown in Fig. 2.

Fig. 2. The energy level diagram for molecular modulation. Two stable molecular ro-
vibrational states |a〉 and |b〉 interact with four photons via two intermediate virtual states
(both labeled |i〉). The Raman frequency shift ωm is the frequency difference between the
molecular states. The arrows are in the correct direction for term MSP→ T .

Armed with this decomposition, we eliminate the electronic states |i〉 from the evolution
equations for ca(r, t) and cb(r, t), assume that the interaction is perturbative, and solve for the
molecular polarization in terms of the Eq. This polarization is inserted into the evolution
equations for the Eq themselves, which include additional terms for the intrinsic decay of the
mode energy as well as input power from launched beams coupled to the resonator [41,42]. After
much simplification, we arrive at a final result that is similar in form to the sideband model:

ÛEq(t) = −
ωq

2Qq
Eq +

1
2

√
ωq

QC
q Eq

∑
l

√
Sl e−i(ωq−ωl)t

+ i
∑
r,s,t

Grstq ωq Er E
∗
s Et

Vrstq

Vqq

(
1
δ∗st
+

1
δts

)
ei∆rstq t ,

(5)
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where q is the index of the cavity mode whose derivative we are evaluating, and r, s, and t are
indices for a sum over all of the cavity modes (including mode q).
Each mode q has an intrinsic quality factor QI

q, which describes the decay of the mode’s
stored energy, and a coupling quality factor QC

q , which describes how easily light can move from
it into the fiber or vice-versa. The total effective quality factor for each mode Qq is given by
1/Qq = 1/QI

q + 1/QC
q . The first term of Eq. (5) thereby accounts for both the intrinsic decay of

the mode energy and the power that couples out to the fiber.
The second term is the power that couples into the mode from the fiber. It keeps track of each

launched beam l with frequency ωl and power Sl independently. The factor Eq is the prefactor in
the mode energy Uq = Eq |Eq |

2.
The terms in the sum are the nonlinear four-wave mixing interaction, with a mode-dependent

Raman gain coefficient Grstq. Two volume factors appear; both are volume integrals of mode
shapes uq over the resonator volume, defined by

Vabc· · · =

∫
d3r |ua | |ub | |uc | · · · . (6)

Vrstq is a four-mode shape overlap, and Vqq is simply the mode volume. Two frequency differences
appear in these terms: the two-mode Raman detuning δxy = (ωx − ωy) − ωm + iγR (where γR is
the Raman linewidth), and the four-mode detuning ∆rstq = ωr − ωs + ωt − ωq. For convenience,
we consolidate the various prefactors of each term to get the following form:

ÛEq = −Dq Eq + Pq
∑

l

√
Sl e−i(ωq−ωl)t + i

∑
r,s,t
Grstq Er E

∗
s Et ei∆rstq t . (7)

The primary differences between Eq. (7) and the sideband model are that we have not restricted
the sum over possible four-wave mixing terms, and that we have allowed more than one launched
beam. One can reduce Eq. (7) to the sideband model by restricting the sums appropriately, and
we have confirmed that in that form the model reproduces expected behavior such as clamping
during cascaded SRS [38], which we also see in the full model.

Even in the fully-general case, the most important terms in the sum for a given mode q can be
identified in advance by a simple graphical algorithm using the energy level diagram in Fig. 2.
We label the terms by the four modes they involve, so the term iGMSPT EME

∗
SET exp(i∆MSPT t)

is labeled MSP→ T . The notation indicates that this term is the one where modes M, S, and P
contribute to the derivative of T .

The arrows on the diagram must form a closed loop (their directions may need to be reversed)
to have small ∆rstq (see Sec. 3.2), so important terms must be either of the form qrr→ q (two
pairs of modes) or rst→ q (all four modes different). Additionally, arrows that do not touch the
same energy level must not appear next to each other (e.g., T cannot appear next to S). Finally,
the last mode’s arrow must point upward (this corresponds to an arbitrary sign convention in the
derivation and has no physical significance; if the sign choice were reversed, the term with the
last arrow pointing downward would be the important one).
For example, the most relevant terms for the target mode T must be of the forms Trr → T

or rst → T . For the first form, rr could be either MM, PP, or SS. These correspond to the
possibility of stimulated Raman scattering (SRS) between the target and mixing, pump, or Stokes
modes. For the second form, the T arrow must point upward, so we are forced to go around
the diagram in an order that gives us the term MSP→ T . This term corresponds to molecular
modulation: it says that energy can be delivered to the target mode from the other three modes
via four-wave mixing.
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3. Computational modeling

We can make some predictions about the behavior of an MMM by simulating Eq. (7) numerically.
In this section we will first lay out the assumptions behind our simulations, then discuss the
dependence of the modulation efficiency ε on a variety of parameters.
We evolve the mode amplitudes in time using a simple Runge-Kutta scheme with a time step

of a few picoseconds, which is enough to resolve frequency detunings of up to a few hundred
GHz (more than large enough to resolve all of the important terms in Eq. (7)). For consistency,
four-wave mixing terms in Eq. (7) that have a ∆qrst larger than the Nyquist frequency for the
chosen time step are not included in the calculation. The simulations are converged with respect
to the time step and always reach a steady-state with constant energy in each mode. The final
energies do not depend on the relative timing of the launched pump and mixing beams being
turned on, so we turn both beams on at the beginning of the simulation.
We take the resonator to be a silica microsphere with radius R = 50 µm. We model the silica

Raman shift as a Lorentzian with ωm = 2π × 12 THz and a linewidth of 2 THz, and the Grstq are
calculated from the bulk Raman coefficient [43]. We take the intrinsic quality factors of all of the
modes to be 108 (quality factors this high have been regularly achieved in practice [36]), except
in Sec. 3.4 where we look at how the modulation efficiency depends on it.

Light is coupled to and from the resonator using a tapered fiber. We generally either calculate
the coupling quality factors from Eq. (35) of [44] with a 1 µm taper radius and the pump mode
critically coupled to the launched pump beam (“pump-critical”), or we take all of the modes to
be critically coupled (“all-critical”). The pump-critical case does not give the highest modulation
efficiency, but it does have the lowest threshold (this will be addressed in Sec. 3.5).

The all-critical case is roughly equivalent to adding a second tapered fiber to the system, with
coupling optimized for the mixing mode instead of the pump mode. This kind of coupling
scheme is common for communications applications [45,46], and could be re-purposed for the
MMM. It would be necessary to prevent the secondary fiber from disturbing the coupling between
the first fiber and the microsphere, perhaps by suppressing any propagating fiber modes near
that wavelength using an engineered stopband [47]. However, the purpose of this case is just to
approximate the maximum possible theoretical efficiency of the system, and in our simulations
we simply assume it might be possible without implementing a model of how it would work in
practice. As we will see in Sec. 3.5, even this is not the most ideal coupling scheme.

For better control over the parameters of the simulation, we use representative modes instead
of real cavity modes. The mode volumes and four-mode shape overlaps of the representative
modes are given values calculated from averages over real cavity modes, while we set the modes
frequencies and intrinsic quality factors arbitrarily. It is important to control the mode frequencies
exactly because the modulation efficiency is quite sensitive to the four-mode detuning ∆rstq,
which is a measure of the timescale over which the modulation process conserves energy. We
will generally set the four-mode detuning for the molecular modulation path to zero. A possible
method for control of the four-mode detuning will be discussed in Sec. 3.2.
As mentioned above, the mode volumes Vqq and four-mode shape overlaps Vrstq are given

uniform values for all modes that are representative of the average volumes and overlaps calculated
from real cavity modes [36,48]. The actual mode volumes and four-mode shape overlaps vary up
and down somewhat-independently from mode to mode over the range of mode wavelengths
we use by approximately an order of magnitude, depending on the wavelengths of the modes,
their angular momentum and radial quantization numbers, and their polarizations. Since the
four-wave mixing terms in Eq. (5) depend only on the ratio between a four-mode overlap and a
mode volume, we expect the real modulation efficiencies to be within an order of magnitude of
those calculated with the representative values.
For simplicity, we assume that cascaded SRS has been suppressed. This could perhaps be

achieved in practice [49], but actually turns out to be irrelevant. We have run the same simulations
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with enough higher-order Stokes modes to capture the full cascade at the highest launched pump
powers that we show below, and there is no significant difference in the modulation efficiency
compared to simulations without the cascaded modes (this surprising result will be discussed in
Sec. 3.1). The launched mixing power is always SM = 1 µW, which is below the threshold for the
mixing mode to create its own Stokes mode.
Our simulations do not take into account other nonlinear processes, such as generation of

parametric sidebands through self-phase modulation, which is due to the Kerr nonlinearity [50].
The Kerr and Raman nonlinearities are both third order, so one would expect their thresholds to
be comparable. In a real experiment, there will likely be additional modes excited near the pump
mode due to Kerr mixing. However, there is good reason to believe that the existence of these
additional excited modes will not significantly change our results.
First, the primary effect of these modes will be to deplete the energy of the pump mode.

However, in Raman lasing, the pump energy inside the resonator is clamped once it reaches the
Stokes lasing threshold [38]. When a Raman laser is pumped far above threshold, a large fraction
of the incident pump power does not couple into the resonator. This excess incident pump
power can overcome any additional depletion of the pump beam due to the presence of other
nonlinear optical processes. Second, the additional four-wave mixing pathways made available
by these extra excitations will not, in general, produce a target frequency that is aligned with a
resonator mode frequency (i.e., these terms will have large four-mode detunings). As we will see
in Sec. 3.2, this should suppress any additional modulation of the mixing beam. However, a
detailed analysis of all of these additional nonlinear processes in addition to Raman generation is
beyond the scope of this work, and possibly too computationally expensive to explore with the
mode-based simulations we use.

3.1. Dependence on launched pump power

An important metric for a modulator is the modulation efficiency ε , which we define to be the
output power of the target mode PT divided by the launched mixing power SM (ε = PT/SM). Since
the molecular modulation process only relies on establishing coherence between the molecular
states through SRS, we should only expect non-zero modulation efficiency as soon as the pump
mode energy goes above the threshold to produce a Stokes mode. Figure 3 shows that this is
indeed the case.

The modulation efficiency curves are quite unlike what we expected based on the behavior of
our previous device. In that system the mixing and target frequencies were not resonant in the
cavity, so the target light was produced in a single pass of the mixing beam through the system.
The modulation efficiency was very low, so the pump mode, Stokes mode, and mixing beam
were essentially unperturbed by the molecular modulation process. This allowed the modulation
efficiency to scale roughly like the Stokes mode energy in the ideal case. In contrast, the situation
in the MMM is shown in Fig. 4. The mixing mode energy decreases after an initial plateau,
corresponding to the decrease in the modulation efficiency.

To investigate this counterintuitive decrease, we start by noting that the complex mixing mode
amplitude EM is constant at steady-state (not just the mode energy UM) because it is externally
pumped. Therefore, we can set the derivative of EM to zero at steady-state, assume that it is too
far detuned from the launched pump beam to interact with it, and write

ÛEM = 0 = −DMEM + PM
√

SM + i
∑
r,s,t
GrstM Er E

∗
s Et ei∆rstM t (8)

EM =
PM

DM

√
SM + i

∑
r,s,t

GrstM

DM
Er E

∗
s Et ei∆rstM t . (9)

This equation does not let us determine EM from the initial conditions, but it does let us explain
why EM has the steady-state value it does phenomenologically. The most important terms in
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Fig. 3. The modulation efficiency ε as a function of launched pump power SP for three
different mixing wavelengths λM . The modulation efficiency is ε = PT/SM , where PT is the
target mode output power and SM is the launched mixing power. The pump mode wavelength
is λP = 1064 nm, and it is critically coupled to the launched pump beam.

Fig. 4. The energy stored in each resonator mode Uq as a function of launched pump power
SP. After threshold, UP is clamped and US grows like the square root of the launched pump
power. After an initial plateau following threshold, UM and UT begin to decrease, which
reduces the modulation efficiency.

Eq. (9) are shown in Fig. 5 for one of the curves from Fig. 3. Note that all of these terms
have a four-mode detuning of zero in these simulations, so they do not have time-dependent
phases that do not arise from the mode amplitudes themselves. As expected, the launched mixing
beam and the four wave mixing are both important. However, another term is also important:
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MSS→ M, which corresponds to SRS between the mixing mode and the Stokes modes (the next
most important is MPP→ M, not shown).

Fig. 5. The real and imaginary contributions of the three most important terms in Eq. (9) to
the mixing mode amplitude (magnitude plotted as |EM |): the launched mixing beam, the
molecular modulation term TPS → M, and the SRS term MSS → M. These three terms
together almost entirely compose the steady-state mixing mode amplitude (the magnitude of
their sum is plotted in dotted green).

SRS would normally be suppressed between these modes because they are not on Raman-
resonance. However, the Raman linewidth of silica is several THz, so the frequency difference is
not enough to suppress this term when the Stokes mode energy is large. Although the simulations
we present here only include one Stokes mode, we have performed similar simulations with
enough higher-order Stokes modes to model the entire cascade out to SP = 10W, and there is
no significant difference in the behavior of the modulator. The combined effect of all of the
cascaded Stokes modes together is similar to the single large un-cascaded Stokes mode. This
effect is why there is no significant difference in modulation efficiency between simulations run
with and without cascaded Stokes modes.

Remarkably, this off-resonant SRS actually supports the mixing mode, causing the plateau.
We ran a set of simulations with the Raman linewidth reduced by a factor of 103 (i.e., it is a
few GHz instead of a few THz) while keeping everything else constant. This suppresses the
off-resonant SRS between the mixing mode and pump or Stokes modes. The mode energies and
mixing mode amplitude composition for these simulations are shown in the left and right panels
of Fig. 6 respectively. With no SRS from the mixing mode to the pump or Stokes modes, the
mixing and target mode energies begin to decrease immediately after threshold with no plateau.
Now the only important terms in the mixing mode amplitude are the external beam and the
molecular modulation term, as originally expected.
Now that the off-resonant SRS has been suppressed, all four modes have nearly-constant

complex amplitude at steady state. If we approximate them as constant, we can solve for the
amplitudes of the target and mixing modes in terms of the pump and Stokes mode amplitudes.
Using the graphical algorithm for determining relevant terms described above, we can solve for
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Fig. 6. Mode energies (left) and mixing mode amplitude composition (right) when the
Raman linewidth has been artificially reduced by a factor of 103. The mixing and target
mode energies now drop off without a plateau. There are only two important contributions
to the mixing mode amplitude: the launched mixing beam and the molecular modulation
term TPS→ M (which is now purely real). These two terms together entirely compose the
mixing mode amplitude at steady-state (the two green curves overlap). The reduction of the
Raman linewidth has removed the off-resonant SRS between the mixing mode and other
modes that was present in Fig. 5.

the target mode amplitude:

ÛET = 0 = − DT ET + iGMSPT EM E
∗
S EP (10)

ET = i
GMSPT

DT
EM E

∗
S EP . (11)

We can use Eq. (11) to solve for EM , arriving at a form that only depends on EP and ES:

ÛEM = 0 = − DM EM + PM
√

SM + iGTPSM ET E
∗
P ES (12)

0 = − DM EM + PM
√

SM + i2 GTPSM
GMSPT

DT
EM E

∗
S EP E

∗
P ES (13)

EM =
PM
√

SM

DM + GTPSM GMSPT |EP |
2 |ES |

2/DT
. (14)

When |ES |
2, which is proportional to the Stokes mode energy, becomes large, the second term

in the denominator dominates the first and EM begins to decrease. This is the root cause of the
decrease in modulation efficiency: the mixing mode amplitude decreases like |ES |

2, which causes
the target mode amplitude to go like ET ∼ EM E

∗
S ∼ E

∗
S/|ES |

2 ∼ 1/ES (from Eq. (11)).
This behavior is similar to pump mode clamping in cascaded SRS, where the behavior of a

mode that is not being externally pumped causes a change in the form of the evolution equation
for another mode that changes its qualitative dynamics. The off-resonant SRS terms, despite
their apparently-detrimental behavior in Fig. 5, provide extra paths for energy flow that limit the
effect of the clamping-like behavior described by Eq. (14) until the Stokes mode reaches much
higher energy. This causes the plateau that we observe in the modulation efficiency in Fig. 3. An
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observer in the lab would see the launched mixing beam have higher transmission through the
fiber as the launched pump power increases, much like the launched pump beam itself begins to
have higher transmission due to traditional SRS clamping.
Although this clamping-like effect prevents the modulation efficiency from scaling like the

Stokes amplitude as we initially expected, the modulation efficiencies in the plateau region are
still very high. Even the simple single-fiber coupling setup gives an efficiency of approximately
0.1% at λM = 800 nm, several orders of magnitude higher than our previous modulator. Critical
coupling could boost the efficiency to nearly 10%. The existence of the plateau means that the
modulation efficiency should be quite stable to fluctuations in the launched pump power. The
MMM will also never need much more launched pump power than the threshold power.

3.2. Dependence on four-mode detuning

Bringing the four-mode detuning ∆MSPT down to less than a mode linewidth Γq = ωq/Qq (a few
MHz for optical frequencies if Qq ≈ 108) is necessary for high-efficiency operation. Figure 7
shows what happens when ∆MSPT (which is equal to the target mode detuning δT in that figure)
becomes larger than the target mode linewidth ΓT . As ∆MSPT grows, the exponential phase in the
relevant terms in Eq. (7) becomes too fast to effectively drive the target mode, and the target
mode energy (and therefore output power) begins to decrease like 1/(∆MSPT/ΓT )

2. Equivalently,
when this process fails to conserve energy (i.e., when ~∆MSPT is non-zero), the steady-state
efficiency decreases. However, as long as ∆MSPT<ΓT , there is no significant change in ε from
perfect four-mode resonance.

Fig. 7. The modulation efficiency as the target mode frequency ωT is detuned from perfect
four-mode resonance. Since the other mode frequencies are constant, δT = ∆MSPT , which
appears in the molecular modulation terms in Eq. (7). As the detuning becomes larger than
the target mode linewidth ΓT (a few MHz for each λM), the modulation efficiency begins to
decrease.

Because the mode structure in a microresonator is generally quite irregular, it is important to
consider how we could achieve low four-mode detuning in an actual device. One possible method
is that the resonator’s mode frequencies could be tuned via the material’s thermo-optic response
(the change in index of refraction n(ω,T) with temperature T). The first-order thermo-optic
coefficient in silica is αn = 1.09× 10−5 K−1 [51]. For small changes in the index of refraction,
the resonator’s mode frequencies will change by the same fraction that the index of refraction at
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that frequency changes [36]:

∂ω

∂T
≈

ω

n(ω,T)
∂n(ω,T)
∂T

=
ω

n(ω,T)
αn . (15)

Thus we have

∂∆MSPT

∂T
≈ αn

(
ωM

n(ωM ,T)
−

ωS

n(ωS,T)
+

ωP

n(ωP,T)
−

ωT

n(ωT ,T)

)
. (16)

If we use λP = 1064 nm and λM = 800 nm, assume that ωT ≈ ωM + 2π × 12 THz and
ωS ≈ ωP − 2π × 12 THz, and use the Sellmeier coefficients for silica at 20 °C [52], we find that
∂∆MSPT
∂T ≈ 2.0MHzK−1. With λM = 532 nm, ∂∆MSPT

∂T = 9.1MHzK−1.
This calculation indicates that the four-mode detuning could be adjusted by at least a few tens

of MHz by a standard thermoelectric controller for any mixing wavelength in the optical region
of the spectrum. Although the free spectral range in microresonators is generally at least a few
GHz, the actual mode spacing (i.e., the distance to the mode with the closest frequency, not the
next mode in the same family) in a non-ideal device can be much denser. For example, by giving
a spherical microresonator a small eccentricity to lift the degeneracy of the whispering gallery
modes, the actual spacing between adjacent modes could be reduced to a few tens of MHz [53],
meaning the four-mode detuning should never be off by more than a few tens of MHz to begin
with. However, one may still need to try many different four-mode sets to find a set with high
modulation efficiency (due to the mode-dependent coupling factors).

3.3. Dependence on mixing wavelength

One of the key advantages of the MMM is that, depending on the size, geometry, and material
of the microresonator, modes could be available over a wide range of wavelengths. Figure 8
shows how the modulation efficiency varies with the wavelength of the mixing mode. From the
left panel we see that in the pump-critical case the modulation efficiency decreases dramatically

Fig. 8. The modulation efficiency ε = PT/SM as a function of the launched pump power
SP and the mixing mode wavelength λM , with the pump mode critically coupled (left) or
all modes critically coupled (right). The dominant factor in the decreasing modulation
efficiency on the left is the increasingly-non-critical coupling between the fiber and the
mixing mode as λM is moved further from the pump wavelength λP = 1064 nm. On the
right, where all modes are critically coupled, ε is essentially independent of λM .
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as the separation between the pump and mixing wavelengths increases because the mixing and
target modes become poorly coupled to the fiber (i.e., QI

M is not close to QC
M). However, if we can

critically couple all of the modes, ε becomes largely independent of λM throughout the optical
spectrum, as illustrated in the right panel.
In reality, we would still expect some variation with λM because the mixing and target mode

volumes and four-mode overlaps will vary, as discussed earlier. Nevertheless, as long as the
MMM is built with the capability to adjust the coupling scheme and resonator temperature
appropriately, the same device should be able to modulate efficiently over a large, continuous
range of mixing beam wavelengths.

3.4. Dependence on intrinsic quality factor

Another factor that we could control is the intrinsic quality factor of the microsphere. So far, we
have assumed that it is fixed at QI = 108. However, microspheres could be produced with either
smaller or larger intrinsic quality factors than that. The results of simulations where we vary the
intrinsic quality factor are shown in Fig. 9.

Fig. 9. The modulation efficiency ε = PT/SM as a function of the launched pump power
SP and the intrinsic quality factor QI , with the pump mode critically coupled (left) or all
modes critically coupled (right). The pump and mixing wavelengths are λP = 1064 nm
and λM = 800 nm. When the intrinsic quality factor increases, threshold is decreased, but
modulation efficiency also decreases, and vice-versa.

When the intrinsic quality factor is increased at fixed launched pump power the modulation
efficiency decreases. Increasing the intrinsic quality factor is essentially the same as shifting the
curves in Fig. 3 to lower pump power: threshold decreases, but since we are at fixed launched
pump power, we are now further out on the curve, where we already know the modulation
efficiency begins to decrease.

3.5. Dependence on fiber separation

So far, we have been working with two coupling schemes: either there is a single fiber critically
coupled to the pump mode, or all of the modes are critically coupled. In this section, we will use
a single fiber as in the first case, but we will change its distance from the microsphere (the fiber
separation s). As s decreases, the coupling quality factorQC decreases at all wavelengths, meaning
that light can more easily move between the fiber and the microsphere. This scheme is the easiest
to achieve experimentally, requiring no special modifications of the fiber or microsphere.
The results, shown in Fig. 10, show that the modulation efficiency tends to increase as QC

decreases, with no special behavior near the critical separations. This is a result of the target
mode not being directly pumped: we do not need to balance input and output power to get critical
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coupling, we just need to maximize the output power. Decreasing QC lets more light leave the
target mode and go to the fiber. Simultaneously, the threshold pump power is increasing, but
this is not necessarily detrimental, because we know from Sec. 3.1 that there is no reason to
go far beyond threshold. So we have an indirect route to increasing the modulation efficiency
by increasing the launched pump power (which eluded us in Sec. 3.1): if we have spare pump
power, we can move the fiber closer to the microsphere to get higher efficiency.

Fig. 10. The modulation efficiency ε = PT/SM as a function of the launched pump power
SP and the fiber separation s. Horizontal dashed lines are the fiber separations where each
mode is critically coupled (but note that there is no special behavior at these separations).
The pump and mixing wavelengths are λP = 1064 nm and λM = 800 nm, and the fiber taper
radius is 1 µm. The coupling quality factors QC

q decrease for all modes as the fiber separation
decreases.

These results also indicate that the all-critical coupling scheme is not the coupling scheme that
maximizes the modulation efficiency. Determining the ideal scheme will depend on a variety of
other design parameters and will involve a detailed search through the coupling and intrinsic
quality factor parameter space for each mode (in addition to determining how to achieve those
quality factors in practice). We plan to explore this in future work.

4. Conclusions

Optical modulators with a modulation frequency of ∼ 10 THz and an efficiency exceeding 1%
will have important applications in a number of research areas. For example, an MMM could be
used to produce coherent light at currently-inaccessible parts of the spectrum, such as in the THz
regime. An infrared mixing beam could be frequency-downshifted to efficiently produce THz
radiation [54]. Another application is to optical waveform synthesis. Because the modulation
efficiency is very large, higher-order Stokes and anti-Stokes sidebands could be produced by
sending a mixing beam through several MMMs in series. These sidebands would form a broad
spectrum, which could then be used to synthesize optical waveforms at femtosecond time scales.

Microsphere-based molecular modulators could represent a major step toward realizing these
applications because they can potentially achieve extremely high modulation efficiency over a
wide range of mixing beam wavelengths. Compared to our previous modulator, they also require
less pump power, are more stable, are easier to operate, and are readily interoperable with other
fiber-coupled devices.
There are still many challenges to overcome to build a functioning MMM: determining

the optimal geometry and material for the microresonator, finding the best coupling scheme,
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characterizing the time-dependent behavior during device startup, and understanding how the
presence of additional excited modes and even intermode coupling will impact the modulation
efficiency [38], to name just a few. Nevertheless, MMMs are a significantly better platform to
work with than our previous modulator design, with a much higher ceiling for performance and a
much lower floor for technical problems.
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