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Abstract

Diptaranjan Das

A study of Collective effects and Dark state based

localization protocols in cold atoms.

We study collective effects, namely subradiance and superradiance in dilute atomic

samples. Previous experiments focused on the weak excitation regime where a single

photon is absorbed by an ensemble and most theoretical studies have been carried

out in this regime. We explore collective effects when there are multiple excitations in

the cloud and detect signatures of a fast initial decay (faster than single atom decay

rate) followed by a slow decay at longer times. We observe a clear signature of a

superradiance to subradiance transition. We use a combination of fast photodiodes

and photon counters to observe the probe pulse and fluorescence signal respectively.

We ensure fast turnoff of the probe light using tight focusing in Acousto-Optic

Modulators. The main challenges were low signal to noise ratio, long integration

times that required laboratory conditions to be stable over several hours, precise time

resolved measurements and a lack of theoretical models for collective effects beyond

the single photon excitation limit in an extended sample. In the later chapters we

discuss coherent effects in cold atoms under the conditions of Electromagnetically

induced transparency (EIT). Specifically, we discuss experimental demonstration of

subwavelength localization of atomic excitation by using Electromagnetically induced

transparency in Rubidium atoms in a dipole trap. The experiment demonstrates the

localization of excitation between hyperfine ground states of 87Rb atoms to as small
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as λ/13 wide spatial regions using ultracold atoms trapped in a dipole trap. The

localization is achieved by combining a spatially varying coupling laser (standing-

wave) with the intensity dependence of EIT. To measure the spatial extent of excitation

region we use an auto-correlation method where we perform two EIT sequences

separated by a time delay, during which we move the standing wave. A scheme

and numerical analysis of extending the localization protocol to implement quantum

gates with subwavelength resolution is discussed.
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Chapter 1

Introduction

The field of quantum technology has seen great progress over the last couple of

decades. Initially inspired by the idea of simulating quantum systems and the potential

of high performance computing that exploits the fundamental nature of the quantum

world, the field has expanded into the domains of secure communications, high

precision metrology and quantum sensing. Some of these fields have seen rapid

progress over the years and are now on the verge of being developed into commercial

quantum technologies.

Quantum technologies have their own set of challenges. Issues with scalability and

coherence times are well know and there has always been a lot of skepticism among

some scholars who believe these issues make the dream of a commercial quantum

computing device fundamentally untenable. Although a quantum computer that

replaces our home desktop computer is far from reality, a lot of progress in dealing

with the issues mentioned above have been made on both theoretical and experimental

fronts.

A system where quantum technologies can be studied and implemented is laser

cooled neutral atoms. Development of laser cooling technology in late 1980s, initially

motivated by the prospect of better spectroscopy, has opened to door to a system with

long coherence times in which fast and precise quantum gates can be implemented.

In this thesis we study coherent effects in a cloud of cold neutral atoms in the
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context of large scale quantum computing and quantum information processing. We

cool 87Rb atoms using standard techniques of laser cooling and trapping. The thesis

is divided into two parts. In the first part of the thesis we study collective effects

in a cloud of neutral atoms. These effects scale with system size and can lead to

decoherence in individual qubits with decoherence rates scaling with system size. We

study neutral atoms with collective excitations and observe decay rates and study

how they differ from single atom decay rates. It is vital to have an estimate of how

these rates vary with system size and the number of excitations as this will lead to

an understanding of how qubit dephasing rates depend on these factors. For a large

neutral atom quantum computer the scale dependent dephasing can determine how

large a quantum computer we can have with neutral atoms in free space. The key

results are summarized in Chapter 4. We observe signatures of collective effects,

superradiance and subradiance at low optical depths. In the second part of the thesis

we study Electromagnetically induced transparency (EIT) in ultracold atoms. We

discuss subwavelength localization of excitations and a scheme to implement quantum

gate with subwavelength resolution. The quantum gate and localization schemes are

based on what we call the ’Dark state’ of the system. A three level system, with

two metastable ground states and an excited state can be adiabatically driven to

a superposition of the ground states. This is known as the dark state because the

quantum state of the atom has no component in the excited state and is hence immune

to errors due to spontaneous emission. The superposition has a nonlinear dependence

on the beam intensities, a feature that is exploited in localization experiments described

in the thesis. The key experimental results in this section is the demonstration of

excitations localized in spatial extent of λ/13 using the dark state and a spatially

varying coupling laser.

The organization of the rest of the thesis is as follows:
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Part I:

Chapter 2:

We describe the MOT system in our lab, creation of cold atomic ensemble and optical

dipole traps using standard techniques. This is our experimental test-bed. A detailed

description of the laser cooling and trapping setup in our lab is discussed. We also

discuss a non-conventional MOT to implement a high N.A imaging setup for single

atom imaging.

Chapter 3:

In this chapter we describe experiments on collective effects carried out in the MOT.

We carry out our experiments in the dilute sample regime where the optical depth of

the sample is of the order of ∼ 1. To put things in perspective spatially the separation

between atoms in the spherical cloud is, on average, approximately 5λ. This is much

larger than the Dicke limit in which several atoms are placed within a wavelength It

is also much more dilute than recent experiments in the Kaiser group that had atoms

separated by λ. This is a regime that has not been explored before as previous studies

have focused on a weakly excited and relatively dense sample with optical depths of

the order of 40 and larger.

Chapter 4:

We dive a bit deeper into the theory of collective effects and how it relates to our

experiments. We discuss other effects like directional emission that are interesting

future directions for experimental studies. First, we discuss the well studied Coupled

Dipole model that has been successful in describing collective effects in the single

excitation limit. For our experiments we needed to move beyond the single excitation

limit and this leads to a very complicated and intractable many body problem. We

discuss our heuristic model briefly introduced in the previous chapter. We also briefly

discuss the interesting effect of directional emission though we do not perform any

experiments.
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In the rest of the thesis we switch gears to a different subject that we studied in our

lab prior to our work on subradiance. The details are discussed in chapter 6 which

introduces the subject.

Part II:

Chapter 5:

Introduces part II.

Chapter 6:

In this chapter we introduce the subject of EIT (Electromagnetically induced transparency)

and discuss possible applications in coherent quantum control. We discuss progress

towards implementing EIT/dark state based qubit addressing, gate implementation

and localized readout scheme. Experimental results and strategies are discussed.

Simulations and theoretical schemes are analyzed.

Chapter 7:

We discuss theoretical and numerical studies of quantum gates with nanoscale resolution

in cold atoms. The dark state of EIT and it’s nonlinear dependence on the beam

intensities can exploited to implement gates with subwavelength resolution. We

describe a phase gate protocol that applies a phase on a qubit in an array of neutral

atom qubits. The key feature of this protocol is its operation with subwavelength

spatial resolution and minimal error due to spontaneous emission. We discuss experimental

progress and strategies to implement such a gate in our system.

Chapter 8:

An experiment to localize atomic excitation with subwavelength resolution if discussed.

This experiment can, moving forward, be extended to an atomic qubit array to

implement quantum gate protocol discussed in the previous chapter.In this chapter

we describe the experimental demonstration of localization of excitation between

hyperfine ground states of 87Rb atoms to as small as λ/13 wide spatial regions. We
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use ultracold atoms trapped in a dipole trap and utilize electromagnetically induced

transparency (EIT) for the atomic excitation.
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Chapter 2

Part I: Introduction to collective

effects

2.1 Collective effects in spontaneous emission.

Collective effects on rates of spontaneous decay of radiation in an ensemble has been

studied over the past several decades both theoretically and experimentally. In 1954

Robert Dicke published his seminal work on Coherence in Spontaneous emission

in which he made an elegant application of group theory and angular momentum

algebra of quantum mechanics to treat a dense collection of N-emitters as a single

quantum system. By treating the number of atoms in the system as the total angular

momentum and the difference between the number of excited atoms and the number of

ground state atoms as the Z-component of the total angular momentum, he predicted

states of the system radiating faster than a single atom decay rate. The rate of decay

can be shown to be proportional to N2 and not N as in the case of independent decay.

Dicke coined the term ”super-radiant” to describe the enhanced rate of emission. In

the same paper he predicted states which does not radiate at all, ”subradiant” states

that are equivalent to an even number of classical dipoles radiating perfectly out of

phase with each other and hence interfering destructively resulting in zero electric
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field. The key point was the atoms being indistinguishable, clumped together in a

gas of dimensions smaller than the wavelength of light making them fundamentally

indistinguishable due to the Heisenberg Uncertainty Principle. The spacing between

atoms were much smaller than the wavelength so if a radiated photon from the sample

is detected it is impossible to determine which atom emitted the photon. This is a

key factor in the analysis of the problem as this allows to treat the ensemble as a

large atom with several levels of excitation.

Until recently the subject of subradiance did not receive much attention. It is

understandable, the state does not couple to radiation fields and does not offer the

richness in spatio-temporal emission profiles of a superradiant state and experimentally

it is also very difficult to observe as it requires maintaining positions of emitters for

long timescales.

As mentioned above, in the Dicke limit the superradiant state can be thought of

a collection of dipoles oscillating in phase and subradiance can be thought of dipoles

oscillating out of phase. Beyond the Dicke limit this simplified picture does not

hold though subradiant states can be thought of dipoles interfering destructively

leading to reduced emission. Beyond the Dicke limit collective states are formed by

complicated superpositions of atomic states with complex phases that depends on

relative position of atoms. Long lived states are therefore susceptible to dephasing

by relative changes in atomic position induced by motion. We show in chapter 5 that

collective effects depend on relative separation between atoms in an ensemble, i.e a

term in the Hamiltonian that goes as ∼
∑

ij 1/|ri−rj|, with |ri−rj| being the spacing

between atoms i and j. Though the actual eigenstates are difficult to compute it is

clear that atomic motion over long time scales will lead to dephasing. In our studies of

long lived states, we are therefore limited by motional dephasing rates. An ensemble

of cold atoms has limited atomic motion over the timescale of microseconds, thereby

maintaining coherence of collective states over a longer period of time.
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Our experiments are motivated by results in the theoretical analysis of the problem

beyond the Dicke limit, in the context of quantum computing [12]. It was believed

that collective effects are prominent only in very dense ensembles and with good

reason. The term driving collective effects, ∼
∑

ij 1/|ri − rj|, does seem to become

weaker in the dilute regime. However if we scale the system to a larger size we

increase the number of terms in the summation and this leads to prominent collective

effects even in a dilute sample. For 3-D geometries for a large enough sample this the

errors induced by dephasing can no longer be corrected by standard error correction

codes. The collective decay rates are a measure of this unwanted environment-system

coupling that scales with the system size as well as the number of excitations. We

must, therefore have an estimate of this effect to have an understanding of collective

dephasing in a neutral atom qubit array. Our experiments are an attempt to measure

these rates, how they scale with system size and number of excitations in the ensemble.

We use standard atomic physics techniques to isolate a two level system in 87Rb atomic

species in a Magneto-optical Trap (MOT). Excitations are created by a beam close

to resonance.

In important prior work: collective decay effects have been studied experimentally

in a wide range of physical systems such as cold molecules [13], a system of two

trapped ions [14], on multi-level transitions in hot Gallium atoms [15], in cold atoms

at the vicinity of a single mode nanofiber [16], and in planar metamaterial arrays

[17]. Subradiant atomic momentum states were recently observed in a Bose-Einstein

Condensate (BEC) [18]. Studies of superradiant emission have been carried out in

cold atoms in the weak excitation limit [19, 10, 20] as well as in diamond nanocrystals

[21] and hybrid solid state devices [22] where it is possible to study the system

in the Dicke limit. Recently switching between superradiant and subradiant states

was demonstrated in a 10-qubit superconducting circuit [23]. With regard to recent

theoretical work, most of these studies have focused on the weak excitation limit
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where a macroscopic two level atomic ensemble absorbs a single photon [24, 25, 27,

28, 36, 31, 32, 33, 34, 35, 37, 29, 30, 26, 38]. Even though this restricts the problem

to a small subspace of the total Hilbert space there are several interesting effects

that can be explored, for example, directional emission [24, 25], photon localization

[26], and collective Lamb shift [27, 28]. With subradiant states being analogous

to decoherence free subspaces, exploitation of subradiant states and tuning between

superradiant and subradiant states can have applications in quantum memory devices

and quantum information processing [39, 40]. This has inspired a lot of work in

studying subradiance in artificial structures like atomic arrays and with modified

environments as in a cavity [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]. Other studies

of cooperative emission include an analysis by the ’Polarium model’ [52], a study of

spatial profile of subradiance [53], emission characteristics of entangled sources [54],

and a recent analysis of many atom emission by renormalized perturbation theory [55].
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Chapter 3

Experimental setup

3.1 Laser Cooled atoms

For our experiments we cool atoms to temperatures close to absolute zero using

techniques discussed below. So why do we need cold atoms and how does it help

in our studies? A vapour of alkali metal will have a velocity distribution dictated

by the Maxwell-Boltzman distribution, which, at standard room temperatures leads

to Doppler broadening of the atomic spectra as well as fast dephasing of collective

states. Coherent quantum state preparation becomes impossible. Ultracold atoms

are slow and atomic motion is minimal over the timescales in which we conduct our

experiments. State preparation can be carried out by frequency stabilised lasers.

The slow atomic motion means atomic separation remains relatively stable over long

timescales. Stability and coherence in long lived collective states (subradiant states)

require relative separation of atoms in the cloud to remain constant over timescales

that are long compared to atomic decay rates, allowing us to measure decay rates

of subradiant states. Experiments described in Part II require trapping of atoms in

optical dipole trap. Dipole traps require atoms to be laser cooled. The slow atomic

motion enables us to carry out experiments that require precise spatial positioning of

atoms relative to a laser standing wave. For this atomic motion over the timescales
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of the experiment and measurement needs to be negligible, which is the case for laser

cooled atoms in a dipole trap.

3.2 Magneto-optical trap (MOT)

The technology of laser cooling and trapping was implemented in late 1980s.The

apparatus composed of counter-propagating Laser beams directed into a vacuum

chamber containing a gas of the material to be trapped and cooled. The key idea

behind a MOT is Doppler cooling and magnetic trapping. The apparatus has become

commonplace as a gas of atoms, or now molecules cooled to extremely low temperatures

are a valuable test-bed for studying quantum phenomena. In this chapter a very

brief pedagogical description of the experimental setup is given, details regarding the

physics of Laser cooling and trapping can be found in Metcalf’s book on the subject

[2].

3.2.1 Doppler cooling

Consider an atom having two energy levels (for now, the multilevel structure is going

to be vital in sub-Doppler cooling and magnetic trapping). The atom can absorb

radiation at a frequency E/(~), where E is the energy splitting and ~ is the Planck’s

constant divided by 2π. This is known as the resonance frequency of the system.

However, if the atom is in motion it will see a Doppler shifted frequency, i.e a frequency

lower or higher than the radiation source depending on whether the atom is moving

away from or towards the direction of the beam respectively. Therefore by tuning the

frequency of the source to a value less than the resonance frequency of the atom we

can selectively address a velocity group that is moving in the direction of the beam

as these group of atoms will see a beam closer to the resonance frequency and is

thereby more likely to absorb a photon. Conservation of momentum dictates that
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on absorption the atom will experience a recoil opposing it’s motion, thereby slowing

it down. Eventually the atom will emit the absorbed photon spontaneously over a

characteristic timescale. This emission is isotropic and is accompanied by a recoil in

a random direction. Over several cycles of absorption and emission, with absorption

being in a specific direction and emission being isotopic, the atom experiences slowing

down on average. Using this principle three pairs of counter-propagating beams, over

several cycles of absorption and emission will cool an ensemble of atoms. These

beams are red detuned from atomic resonance to ensure the atoms experience a recoil

opposing it’s motion. Laser cooling produces a compression in classical phase space

with the energy from the atoms gradually transferred to the radiation field by the

isotropic spontaneous emission. This results in the so called optical molasses and the

flourescence of the spontaneous emission can be detected to observe these molasses.

Next, we discuss spatial confinement using magnetic fields.

3.2.2 Magnetic trapping

Let us consider a real atom, with fine structure, hyperfine splitting and Zeeman

sublevels. The Laser beams can be slightly red detuned from hyperfine groung states

of an alkali atom. A magnetic field gradient can be used to generate a spatially

varying detuning. Since the velocity class addressed by the beams strongly depends

on the detuning of the beams this could create a spatial zone around the zero of the

magnetic field where the slowest moving atoms are cooled. Atoms away from this

trap center are more likely to get a kick towards the center. The atoms are therefore

trapped near the zero of the magnetic field. Laser cooling and magnetic trapping are

used to cool and trap atoms. The magnetic field is, in practice provided by a spatially

varying quadrupole field.
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3.2.3 Experimental set-up for MOT I: Conventional MOT.

The MOT apparatus is very standard but for our experiments we use a non-conventional

MOT setup for reasons to be discussed later. A lot of details is described in the thesis

of Jared Miles [81] who worked on the setup before me. Here I go through a basic

description of our MOT setup we use in experiments described in Chapter 9. This

is a conventional MOT setup. We have modified the MOT setup for greater optical

access. We describe this in a later section (section 2.4). The modified MOT is used

in experiments described in Chapter 4.

52P3/2

52S1/2

780nm

F=0

F=3

F=2

F=1

F=1

F=2

72.2 MHz

266.7 MHz

156.9 MHz

6.8 GhZ

Figure 3.1: The relevant energy levels in Rb D2 line.

We trap 87Rb alkali metal in our MOT. The atoms are Doppler cooled in a 14

port stainless steel vacuum chamber using 3 retro reflected beams. A good vacuum

is necessary for the MOT. We pump the chamber down to 10−9 Torr using an ion

pump. The rubidium vapor is obtained from a few grams of Rubidium in a valve

controlled flange attached to the chamber.The magnetic field gradient for trapping is

generated by a pair of coils in an anti-Helmholtz configuration, each have 250 turns
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Y 3cm 40mW

Z 3cm 25mW

1

Figure 3.2: The MOT schematic, the rings indicate the Anti-
Helmholtz coils. The vacuum chamber is not shown here.

each with a current of 2.16 A. The coils have their axis alone the vertical axis of the

chamber. They are wrapped around the chamber coaxially, ensuring the magnetic

field is zero at the center. We also have three pairs of shim coils to have a vanishing

magnetic field at the center. The shims drive currents 4.0 A in the z-direction and

∼ 2.0 A and 6.0 A in the horizontal axis. The large currents drawn by the shim

coils heat up the chamber mildly but does not seem to have an effect on the MOT

once it is steady. However the chamber gets magnetized slowly. Because of this we

keep the shims on all the time. The MOT cooling beams are 2 cms in diameter and

have approximately 50 mW of power in the X and Y direction (saturation parameter

s = I/Isat ∼ 4.5, with Isat being the saturation intensity and I is the intensity of the

MOT beam), which we define to be the directions perpendicular to the field generated

by the anti-Helmholtz coils. We have a B-field gradient of ∼ 20 Gauss/cm with the
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splitting being of the order of ∼ .7 ∗mF MhZ/Gauss. The counter-propagating beam

pairs are generated by retro-reflecting the beams. In the z-direction we have a beam

with slightly lower power. In the conventional setup described here we have our Z

beam orthogonal to the X-Y plane, vertical in the lab frame. This beam has a power

of 26 mW (s = 2.25), significantly less than the X and Y beams. This is because this

beam is alone the MOT gradient field axis. In the non-conventional setup described

in section 2.4, however, we do not have a beam orthogonal to the other two beams

in our set-up. The window is left free for high numerical aperture optics for imaging

and collecting fluorescence. This window is closest to the MOT and has the largest

diameter, ideal for imaging a weak signal, as emitted by a single or few atoms. Instead

we have our third dimension of cooling from a beam pair 1 cm in diameter coming

at an angle of about 30 degrees to the horizontal. This beam has a power of 3 mW

(s = 1.2). As a result we have significantly less cooling in the z-direction and our

MOT does not load a large number of atoms. Though the set-up is not ideal for

trapping a large number of atoms, this does not affect our experiments as we work

with very dilute samples.

The three pairs of MOT beams are from the output of a 2 W Eagleyard tapered

amplifier (TA) seeded by an external cavity diode laser (ECDL) operating at 780 nm.

The ECDL consists of a grating mounted on a piezo that forms an external cavity

to the diode laser. This is a part of frequency selective feedback to narrow the diode

laser linewidth and stabilize the frequency throughout the cooling cycle.

To cool the atoms we use the D2 line of 87 Rb. Fig. 3.1 is the energy diagram of

the hyperfine levels for D2 line. The ’cooling transition’ for the MOT is the F = 2

to F ′ = 3 transition of the hyperfine ground states of 87 Rb. To stabilize the laser

on correct frequency we use a saturated absorption locking technique with a feedback

circuit. We lock the laser to a cross over transition between the F = 1 and F ′ = 3

energy levels. This locks the frequency to around 212 MHz away from the F = 1 and
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F ′ = 3 cooling transition. We use an acoustic optical modulator (AOM) to shift the

laser to about 20 MHz red-detuned from the cooling transition (for stability we use a

double passed AOM that shifts the first order 96 MhZ on one pass). This frequency

was found to provide most efficient cooling. The cooling, as described in the first

section of this chapter is driven by spontaneous emission. There is a finite probability

of atoms being driven to F ′ = 2 level by the cooling lasers. Atoms here can decay to

the F = 1 ground state which is a dark state. These atoms drop out of the cooling

process. We use a separate ECDL is used as repumper and is resonant with the F = 1

to F ′ = 2 transition, optically pumping atoms in the F = 1 state back to F = 2 via

the excited state F ′ = 2 (which can decay to both ground states) so they can be

addressed by the cooling beams. We overlap the repumper beam with the Y-MOT

beam and has a power of 1.1 mW. It is a resonant beam along the same optical path

as the Y-MOT beam. The MOT atoms have a temperature of 200 µK, measured by

time-of-flight method and has around to 106 atoms.

3.2.4 Sub-Doppler cooling

When the first experiments of laser cooling were carried out they were found to

be surprisingly cooler than the expected theoretical limit that could be attained by

the Doppler cooling process, known as the Doppler limit. The process of cooling

involves a ”slowing/cooling process” (photon absorption) versus a heating process

(spontaneous emission) and the Doppler limit is calculated for a species by assuming a

naive two level structure for the atom exchanging energy with the beam and reaching

equilibrium. Sub-Doppler cooling was explained in a very elegant paper [1] by a

mechanism now known as polarization gradient cooling. The counter-propagating

beams, chosen to be circularly polarized because of selection rules in the species,

form a polarization gradient. The cooling is caused by frictional processes by the
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Figure 3.3: MOT/CMOT switching scheme: Output of the Locked
ECDL is used to seed the 2 W Eagleyard tapered amplifier (TA). The
AOMs are used in a double passed configuration with quarter wave
plates (QWP) to allow the second pass to travel through the beam
cube (BC). The beams are aligned together through a 50/50 beam
splitter before entering the TA. Figure from Jared Miles’ PhD thesis

[81].

interaction of the multilevel atom moving in the polarization gradient. The process

is complicated and too involved to be explained in details. We achieve polarization

gradient cooling by detuning the beams further from resonance by another 26 Mhz

(about 4 times the natural spontaneous decay rate) and reducing the power of the

cooling to about a third. The repumper beam is also attenuated by about a factor

of 0.4. This gives us a uniform spherical cloud with temperatures of about 40µK.

We call this the CMOT (Cool MOT/compressed MOT). We can change the detuning

with a separate AOM that is also aligned to the TA. In practice the TA can be seeded

by either laser with both beams traveling through a 50/50 beam splitter. We cannot
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use the same AOM because the frequency difference is so large that the beam becomes

misaligned to the TA. Figure 3.3 shows the double AOM set up that implements the

switching between MOT and CMOT settings. We achieve temperatures of 40 µK after

a CMOT cooling stage of 40 ms. The atomic spatial distribution if more uniform and

a smooth spherical Gaussian cloud of 1/e2 radius of 80 mm is obtained.

3.3 FORT

For our main experiments we work with a CMOT. However higher densities and

tighter trapping can be achieved by a far off resonant trap (FORT). A FORT is a way

of trapping without scattering using a spatially varying intensity of a far detuned laser.

A FORT can produce a potential well large enough to trap atoms for seconds without

the use of an external magnetic field and without scattering photons. This method of

atom trapping can be used to achieve temperatures below 1µK and densities up to

1014 atoms/cm3. The FORT uses the stark shift to create a spatially varying potential

along a focused laser beam.

A laser beam that is far off resonant to the a level transition will shift the two

energy levels depending on the laser intensity (I) and detuning (∆) due to the AC

Stark effect. We consider a two level system. A red detuned laser beam will Stark shift

the ground state to a lower energy level. The shift is proportional to the intensity of

the beam. A spatially varying intensity gives rise to a spatially varying energy profile

and the gradient of the energy profile gives rise to a conservative force in the direction

of maximum intensity.

This energy shift ∆E is defined as

∆E =
3πc2ΓI

(2ω3
0∆)

(3.1)
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Figure 3.4: A red-detuned laser causes both energy levels to shift
by an amount ∆E. A focused laser produces a spatially varying Stark
shift, with the largest energy shift at the focus of the laser (intensity

maxima). Atoms are trapped at the center of the laser.

where ω0 is the on resonance transition frequency and Γ is the spontaneous

emission rate from the upper state. The spatially varying Stark shift is obtained

by the spatial variation in intensity I(r). The dipole force is proportional to ∇I(r).

By focusing a 1064 nm, far detuned from the D1 or D2 transition, Gaussian shaped

laser, the intensity, and therefore the energy shift, can be made to vary spatially

across the laser. This creates a potential well with the lowest energy at the center of

the focused laser. Since this energy shift is small, atoms have to be first cooled by the

MOT/CMOT cycle described above before being trapped by the FORT. After the

MOT cycle the fort laser is turned on in the last 10ms of the CMOT cycle and the

FORT laser waist is overlapped with the CMOT cloud. With the FORT beam left on,

the MOT beams, repumper, and magnetic fields are turned off. This allows atoms not
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trapped in the FORT to leave the zone. When the atoms are initially trapped in the

FORT they can be in either the F = 1 or F = 2 ground state level. Optical pumping

methods can be used to transfer the atoms to either of the metastable hyperfine

ground states.

The FORT beam is generated from a 2 W tapered amplifier (TA)at 1055 nm

that is seeded by a 1064 nm diode laser. The output of the tapered amplifier is not

Gaussian and does not focus well to a small spot size. We shape it partially using

cylindrical lenses. Due to reasons not well understood, the output is ∼ 1.8 W. We

aling the output to an AOM that just acts as a fast switch. We pass the first order

output of the AOM through a single mode polarization maintaining fiber to produce

a smooth TEM00 mode. The fiber output is focused by a achromatic doublet lens of

diameter 2 inches and a focal length of 20 cm. The 1/e2 radius of the beam waist

is 11 µm. We lose a lot power through the fiber and an optical isolator protecting

the amplifier from any back reflections. The output beam profile of the TA leads to

inefficient coupling to the AOM and the fiber. We have about 150 mW in the dipole

trap beam giving a trap depth of 0.1 mK We can, however, end up with a dipole trap

with 700 atoms at a temperature of 5 µK.

We are going to discuss localization experiments in Chapter 8. The FORT used

for localization experiments was obtained using a standard MOT configuration, not

the one mentioned above. The only difference is the Z beam is orthogonal to the

X-Y plane and not at an angle. The power in the Z-beam is about 24 mW and it’s

diameter is 2 cms, same as the other beams. The FORT obtained using the MOT has

a larger number of atoms. The higher and more uniform atomic density in the FORT

gives a good signal to noise ratio while imaging and also has other advantages. For

instance, the B-fields are not necessary in trapping and can hence, be turned off.
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Figure 3.5: Pulse timings for the MOT-CMOT-FORT cycle

3.4 Imaging the atoms

In the MOT stage the scattering of MOT beams can be detected to image the atoms

in a MOT. Further calibration of the scattering rate and collection efficiency can be

used to make an estimate of the number of atoms in the cloud. The CMOT can be

imaged in a similar way by illuminating the cloud with resonant beams and collecting

the resultant fluorescence.

For continuous imaging we need several hundreds of photons to be scattered over

the illumination period. The strategy is simple, illuminate the cloud with a resonant

beam, this pumps the atom to the excited state. The atom now decays over a

characteristic timescale, the decay partly stimulated by the beam already present

as well as spontaneous emission over a characteristic timescale. The emitted photons

are detected. The atom is now in the ground state and ready to absorb photons

from the beam to be excited and repeat the process again. There is a chance the

atom may decay to the ground state that is not addressed by the beam, this is the
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dark state. A separate beam to address this state may be used to keep the atom

in a cycling transition loop emitting and photons as long as the beams are present.

For the imaging beams we can use the MOT beams with the repumper. We may

also use a separate imaging beam. We use a 780 nm resonant beam of diameter 1.4

mm, much smaller than the MOT beams. The small beam reduces the background

noise. We retroreflect the beam. This allows for longer imaging times and improves

the signal by preventing atom losses due to undirectional heating. This is important

for imaging the FORT which has a far lower number of atoms. The low signal can

only be partially captured by the imaging optics. The emission is isotropic while the

imaging lens can only capture a small fraction of the emitted light. There are mirrors

and windows and though they are coated to be highly reflecting for the light of the

emitted wavelength, we cannot avoid losses, about half the light captured by the lens

reaches the camera.

Figure 3.6: Imaging setup: Light scattered from the atoms are
collected by the imaging optics and focused on the EMCCD camera

via a 780 nm filter to block stray background light.

The Electron Multiplying CCD camera (EMCCD) is a highly sensitive camera.
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The camera can image low light with a reduced electronic noise achieved by cooling the

CCD sensors to −20celcius. The pixels are 8 µm ×8µm. At 780 nm the sensors have

a quantum efficiency of 50 percent. This means about two photons incident on a CCD

sensor produces, on an average one photoelectron. This photoelectron then undergoes

an electron multiplying process. This feature makes the camera very sensitive to low

light though the discrete nature of photoelectron counts adds some inherent shot

noise. For our experiments we use this camera to measure cloud diameter and make

an estimate of the number of atoms in the cloud, to determine the density of the

cloud. We can used a time of flight measurement to determine the temperature of the

cloud as well. The camera can be triggered by an external trigger making it ideal for

timed measurements thought this has some limitations that will be discussed later.

For experiments discussed in chapter 4 we could have used the EMCCD setup with

high NA optics. The issues with this is discussed in Appendix A

3.5 Modifying MOT to increase optical access

3.5.1 Motives

The size of the MOT chamber restricts optical access significantly. The imaging for

experiments that were carried out using an optical dipole trap did not require a large

collection angle. However, for single atom imaging we need a large solid angle. For

that we need to get as close to the atoms as possible. In order to achieve this larger

optical access we modified the MOT.

To this end we remove the MOT beams in the z-direction. The beam from this

direction entered through the window that is closest to the atoms. This window is

4 inches in diameter and is ∼ 15 cms from the atoms. We obtained a customised
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precision aspheric lens from Thorlabs. Aspheric Lens, diameter 100.0 nm, focal

length=150.0 mm, AR Coating: < 0.5% from 650− 1050 nm.

New modified MOT beam 
configuration

X-Z plane beam
Configuration.

X-Y plane beam
Configuration.

Beam Diameter Power

X 3cm 40mW

Y 3cm 40mW

Z 1.2cm 10mW
Top window is now 
free to set up 
imaging optics. 

1

Figure 3.7: The new MOT configuration

We used this lens as the main collection lens. This improves the collection

efficiency by a factor of 3, critical for single atom imaging. The Numerical aperture is

∼ 0.36 after installing the new lens. The lens is located ∼ 17 cms from the location of

the MOT atoms, treated as a point source of the signal we intend to capture. From

the top lens the collected light is slightly converging (the effective focal length of

the lens is 15 cms). The converging light is then incident on an aspheric lens triplet

(borrowed from Saffman lab). This shortens the working distance at the expense of

losses due to additional optics. The working distance reduces from > 200 cm to ∼ 36

cms. The light goes through a trigger operated mechanical shutter (Edmund optics

shutter) and is focused on an EMCCD camera via a 10 nm bandpass filter centered

at 780 nm. We managed to improve the signal by a factor of 3. This is obviously

impacted by the losses from optics and the EMCCD detector quantum efficiency being
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50% at 780 nm.The shutter and filter combination seems to reduce background noise

significantly. We managed to improve the signal by a factor of 3. At this collection

efficiency single atom imaging would need to collect about 300 photons during the

imaging and this would produce a signal above the noise level. This would require

imaging times of the order of 15 − 20 ms. The key challenge is to ensure the atom

does not escape the trap after several absorption and emission cycles. This requires

a tight and deep optical dipole trap.

3.5.2 The new MOT

A schematic of the new MOT is given in the figure below. The beam in the z-direction

has been removed. This removes cooling in the z-direction. We replace the vertical

z-beam by a smaller beam entering the chamber at an angle of 300 with the vertical.

This beam is circularly polarized and retro reflected like the X and Y MOT beams.

1

Old MOT New MOT

800μm

3000μm

Figure 3.8: The new MOT configuration suffers a significant loss in
the number of atoms cooled and atomic density
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It is a Gaussian with 1/e2 diameter of 1.2 cms. Being a smaller beam we need

much less power in it. While the X and Y beams have around 50 mW of power in each,

the third beam has a power of 3 mW. There were several challenges in getting the

new MOT working. The inefficient cooling in the z-direction meant we were getting

weaker molasses and the small size of the third beam relative to the other two caused

several issues with beam balance. A careful balancing of the beams were carried out

to obtain a stable MOT.

Imaging optics picture

Imaging Optics 
MOT Chamber

Figure 3.9: New Imaging optics can enable imaging weak fluorescence
signals

3.5.3 Dipole trap using the new MOT

A functioning dipole trap (FORT) is the first step towards implementing quantum

computing projects. The weak MOT made it difficult to obtain a large number of
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atoms in the FORT. However, for implementing quantum computing protocols we

need one atom, so the weak MOT is not an issue. The problem is the weak FORT

laser. The low power in the FORT laser severely limits the imaging time which is

a major handicap for single atom imaging where you need the same atom to absorb

and emit photons over several cycles to emit enough photons that can be detected by

the camera above noise level. The shallow trap means the atoms leave the trap after

a few cycles of absorption and emission and a single atom trap cannot be consistently

obtained.

We did, however, manage to trap and ∼ 300 atoms and imaged the atoms for

∼ 6µsec Figure 3.10 shows an image of atoms in the dipole trap taken with Andor

Axon EMCCD camera. The temperature of atoms in the dipole trap was measure to

be around 4 µK.

Picture of atoms in a dipole trap taken by 
EMCCD camera. Exposure time=600µs

1.6mm

Figure 3.10: New Imaging optics can enable imaging weak
fluorescence signals
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So what can be done to create a single atom trap and image it? The imaging

capacity at the moment seems to be good enough for reaching single atom limit. We

need deeper traps. To that end we are making progress. The plan is to replace the

existing Diode laser/Tapered Amplifier configuration by a Diode Laser/Fiber Amplifer

one. The fiber amplifier output, with similar seed powers can reach up to 10W . The

mode is a nice Gaussian mode which leads to efficient first order diffracted beam from

the AOM switch. The Gaussian profile also helps in a more efficient coupling to the

single mode fiber. We expect to obtain a power of about 2 W in the trapping beam,

enough for two or three deep dipole traps or possibly a crossed beam dipole trap.

Imaging can be improved and optimized by having multiple retro-reflecting imaging

beam pairs. A 3-D retro-reflecting beam configuration, similar to the MOT can

significantly improve imaging timescales.
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Chapter 4

Experiments: Collective effects in

atomic ensembles

4.1 Collective effects in a dilute sample

We carry out our experiments in the dilute regime where the optical depth of the

sample is of the order of ∼ 1. To put things in perspective spatially the separation

between atoms in the spherical cloud is, on average, approximately 5λ. This is much

larger than the Dicke limit in which several atoms are placed within a wavelength It

is also much more dilute than recent experiments in the Kaiser group that had atoms

separated by λ.

Prior to our experiments, studies of superradiant emission have been carried

out in cold atoms in the weak excitation limit [19, 10, 20] as well as in diamond

nanocrystals [21] and hybrid solid state devices [22] where it is possible to study

the system in the Dicke limit. The work described in [22] beautifully replicates

the expected superradiant bursts whose amplitude and escape rates depends on the

excitation fraction as predicted by Dicke’s model. Subradiance, however is difficult to

observe due to reasons mentioned in 2. The cold temperature where atomic motion

is very small helps maintain coherence over the time scales concerned. Atoms, on
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average moves 1 nm/µs. It is not a perfect but a good start on studying effects in a

dilute sample. We expect motion induced dephasing timescales to be longer than the

subradiant timescales discussed in the experiments.

The experiments we carry out are fairly simple but there are subtleties we discuss

later. We send a pulse of coherent radiation from a laser source through a cloud of

atoms. We varied the laser pulse duration with pulses ranging from 20 ns to 200

ns. The pulses were either on resonant of detuned 4Γ, with Γ being the single atom

spontaneous decay rate. We tried to make sure we achieve fast extinction of the pulse

to ensure we do not have any lingering resonant light scattering photons. The fall

time is around 9 ns, which is less than the spontaneous decay time of 27 ns. This

is critical for the experiment as the relevant data are photons emitted after pulse

extinction. The emitted fluorescence is collected by a set of high numerical aperture

optics and coupled to a multi-mode fiber that goes into a photon counting module.

The excitation signal, measured by a photodiode and the emitted fluorescence is timed

by a fast oscilloscope.

4.2 Experimental schematic

A description of atom cooling and trapping is given in 3. The experiments take place

in the atomic ensemble created by the standard methods of Magneto optical trapping

and cooling. We have a description of dipole traps as well though experiments carried

out in dipole traps were not very successful. A top view of our chamber is shown in

Fig. 4.1. We start the experiment by cooling and loading the atoms into a magneto-

optical trap (MOT). To construct the 87Rb MOT, we use three counter-propagating

beam pairs that are locked to the cycling F = 2 → F ′ = 3 transition in the D2 line

(transition wavelength of λa = 780 nm), each with a beam power of about 50 mW

and a beam size of 2 cm in the X and Y direction. The oblique angled z-beam is
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directed into the chamber at an angle. This beam is about 1.2 cm and has an optical

power of around 3 mW.

vacuum 

chamber

MOT 

excitation 

laser 

Photon

counter

Timing 
electronics

Figure 4.1: (Color online) (a) The simplified experimental schematic.
The experiment is performed inside a 14-port stainless-steel ultrahigh
vacuum chamber. The fluorescence from the cloud is detected using a

photon counter.

At the end of the MOT loading cycle, we typically trap ∼ 1.3 million atoms,

within a radius of R=0.35 mm (1/e2 radius calculated by image of the MOT using an

EMCCD camera), giving an on-resonance OD of, OD = 3N/(kaR)2 ∼ 1 (ka = 2π/λa

is the wave number at the transition wavelength). The optical depth gives a measure

of the absorption of a weak resonant beam (linear regime) by the cloud. The atomic

temperature is about 44 µK which is measured by monitoring the free-expansion of

the cloud using an electron-multiplying CCD (EMCCD) camera. During the final

10 ms of the MOT loading cycle, we turn-off the hyperfine repumper beam. As a

result, the atoms are optically pumped into the F = 2 ground level at the end of the
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cycle.

F=2

F=1

52P3/2  F’=3

The F=1 to F’=2 transition is turned on to optically pump the 

atoms from F=1 to F=2 ground state. 

52S1/2  

52P3/2  F’=2

F=2

F=1

52P3/2  F’=3

52S1/2  

52P3/2  F’=2

Figure 4.2: After the MOT is loaded and with the atoms optically
pumped into the F = 2 ground level, the atoms are excited into F ′ = 3
level using a short and intense excitation laser. The fluorescence from

the cloud is detected using a photon counter.

The relevant energy level diagrams are shown in 4.2 and 4.3. With the atoms

optically pumped into the F = 2 hyperfine ground level, we turn-off the MOT beams.

Then we turn on the excitation pulse. This is a single laser that couples the atoms in

the F = 2 hyperfine ground level to the F ′ = 3 excited hyperfine level. This laser is

the excitation laser. The pulse duration is about 120 ns. With the atoms excited into

the F ′ = 3 level, we turn-off the excitation beam. Switching of the excitation beam

is achieved using an acousto-optic modulator (AOM). The 90%-10% turn-off time of

the excitation laser is 9 ns. This, as mentioned is much smaller than the single atom

decay rate. We accomplish such fast switching by careful adjustment of the beam size

inside the AOM. The spot size focused in the AOM is about 50 µm. The first order

beam from the AOM is coupled into a single mode, polarization maintaining fiber.
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1

We use the MOT cooling line transition with blue detuning to 

excite the atomic cloud.

F=2

F=1

52P3/2  F’=3

52S1/2  

52P3/2  F’=2

Δ: Detuning

F=2

F=1

52P3/2 F’=3

52S1/2  

52P3/2  F’=2

Figure 4.3: After the MOT is loaded and with the atoms optically
pumped into the F = 2 ground level, the atoms are excited into F ′ = 3

level using a short and intense excitation laser.

The output of this fiber is linearly polarized by a beam cube and the direction selected

by a waveplate. The beam out of the fiber is a Gaussian beam with 1/e2 width out

of fiber of around 1mm. The beam propagates into the chamber, expanding to a

diameter of 1.4 mm at the center of the chamber where it hits the MOT. We assume

the MOT “encounters” a plane wave Gaussian beam and this approximation is valid,

with the MOT being of 1/e2 diamater of 35 mm. This is to ensure a proper phase

relation between atoms. In principle coherent excitation with well defined phases

between atoms can take place for “curved” wave-fronts as well and in futures such

studies maybe explored theoretically and experimentally. We however need to make

sure the beam size is larger than the atomic cloud to ensure radiation trapping effects

are not significant. We record the fluorescence from the atoms using a single-photon

counting module (SPCM) and tag the arrival times using a timed measurement in
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a high speed oscilloscope. The photons are captured by a focusing lens system, AR

coated for 780 nm. The light is focused into a multimode fiber that is coupled to

the SPCM. The excitation pulse exits the chamber and is focused on to a high-speed,

high bandwidth photodiode. The photodiode signal is also detected in real time using

the same oscilloscope. The photon counter has default dark counts even at low signal

levels. This is the fundamental noise limit for a photon counting module. We use an

iris in front of the fiber coupled to a photon counter, cover the entire imaging system

with dark material and work in a dark room to limit stray photons. Our background

count is close to the dark count level. There are other subtleties in measurement

process involving SPCM discussed in Appendix A (B).
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Figure 4.4: A sample fluorescence trace (solid black line) overlapped
with an excitation pulse intensity trace (dashed red line), both plotted
on logarithmic scale. The pulse intensity is measured on a photodiode.
The fluorescence trace is the integrated signal from the photon counter.

For each photon detected, the photon-counter produces ∼ 10-ns-long electronic

TTL pulse, which is then detected by the fast-sampling digital oscilloscope. The
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oscilloscope samples at about 1 Gs/sec. To avoid saturation of the photon-counter,

we limit the number of detected photons for each experimental cycle to about a

few photons per cycle. This is vital as the photon counter has a finite dead time,

i.e, a duration for which the counter is inactive. After detecting a photon, the

counter goes into an inert mode (inactive or “dead”) for about 22-27 ns. During

this time any incident photon will not be detected. Thus we will not be able to

reproduce an accurate decay curve if we operate in a regime of high photon flux.

The strategy, standard in biological imaging and astrophysics, is to reduce the flux

to few photons per cycle and carrying out the measurement over several cycles. As a

result, the experimental cycle (MOT loading-excitation-fluorescence detection) needs

to be repeated many times to obtain a trace with a good signal-to-noise. We typically

repeat the experimental cycle ∼ 20, 000 to 60, 000 times to obtain a fluorescence

trace. With each experimental cycle lasting for about 1 s, a fluorescence trace takes

about 6-20 hours to record in the lab. After every excitation pulse the cloud may be

disturbed as we are beyond the weak excitation limit. Therefore we need to reload

the cloud for every excitation. Typically we receive, on an average a photon per cycle.

To obtain the signal trace we integrate the photon signal on all the counts. We have

to ensure that, in the duration of data collection, the lab conditions remain the same.

Fluctuations in temperature and humidity cause lasers to drift spectrally causing the

lock to drift. We had to discard several hours of data because of this. Also keeping

the lasers locked was a challenge. Fortuitiously covering up the lasers using plexiglass

helped immensely in stabilizing the lasers and they stayed locked over several days.

We kept the MOT gradient coils powered on at all times to prevent hysteresis effects.

The field correction shim coils were kept on as well. This ensured the MOT chamber

remained magnetized at all times. The experiment can be improved by noise eaters in

each beam, with polarization noise being a dominant source of intensity noise. This

noise affected coupling to the polarization maintaining single mode fibers used for
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all the beams (MOT, repumper, excitation beam). Over several cycles however the

fluctuations were minimal, the MOT fairly stable and fluctuations in excitation beam

intensity, tracked by the photodiode was about 5% . This was not large enough to

effect any of our key results.

Achieving a fast fall time for the AOM excitation beam swith is vital. We use

Neos AOM 23210 consisting of a Tellurium Dioxide crystal with a Lithium Niobate

transducer. We drive the AOM by a RF signal source at 212 MhZ with the seed

beam being one of the ECDLs that go into the MOT beams. The rise/fall time can

be calculated by using t = 1.3d0/(2V ) with d0 being the beam waist/spot size in the

crystal and V = 4260 m/s, the beam velocity inside the material. We use a Gaussian

beam from the output of a single mode fiber and a AR coated lens of short focal

length 50 mm to focus the beam to a spot size of around 50 µm. This should, in

principle give us a very sharp fall time but we obtain a 90%-10% time of around 9 ns,

good enough to analyze superradiant timescales, we obtain superradiant timescales

of the order of 15− 18 ns. Using the AOM in double passed configuration, in a series

of a pair of AOMs or in sequence with a high speed beam block could, in principle,

be used to obtain sharper rise and fall times.

A sample fluorescence trace overlapped with an excitation pulse intensity (both

on logarithmic scale) is shown in Fig. 4.1(c).

4.3 Experimental data analysis

The short excitation pulse is detected on a fast photodiode after the chamber. The

relevant data in our experiment is the signal obtained after turn-off. This t =

0 is defined to be the point where the pulse intensity has dropped to less than

10% of its peak intensity. The pulse intensity detected on the photodiode typically

becomes indistinguishable from background within a few ns after this point. This is
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a consequence of fast switch off that we achieved after careful adjustment of beam

size in the AOM. The analysis described is a result of theoredical work presented in

work by Deniz and Ben in their paper. The results have been adapted to account for

experimental parameters to fit experimental data with a single fitting parameter.

The fluorescence signal recorded using the photon counter is proportional to the

optical power emitted from the cloud, and we denote this signal by P (t). Most

correlated-decay analysis, including Dicke’s original paper, focuses on the total amount

of excitation (i.e., the population of the excited level). This is proportional to the

total energy stored in the cloud. We denote this quantity by E(t), which is related to

the emitted power through the relation E(t) = E0−
∫ t

0
P (t′)dt′. Here, E0 is the initial

(at t = 0) energy stored in the atomic cloud. In the subsequent sections, we will be

plotting normalized versions of these quantities, redefined as P (t) ≡ P (t)/(P (t = 0),

and E(t) ≡ E(t)/E(t = 0). For independent decay, there is no difference between

the time evolution of these two quantities, as they have the identical time dynamics:

E(t) ∼ P (t) ∼ exp(−t/τa) (τa is the lifetime of the excited level τa = 1/Γa).

The photon counter emits a ∼ 10-ns-long electronic TTL pulse detected by the

oscilloscope that samples at 1 Gs/sec. The scope signal is read by a MATLAB code

that reads 2500 data points in the time axis. In the scale that we choose this is about

500 ns at a resolution of 0.2 ns. This is obviously more resolved than the 1 ns sample

rate of the scope. We, therefore, bin the data. We first replace each pulse by a single

count at a time the pulse has risen 5% of baseline. Then we bin the counts in chunks

of 5 data points. This helps with the signal to noise ratio(SNR). Binning too many

dats points will help with the SNR but it will affect the accuracy of measured decay

rates which we expect to be time-varying. We observe, however, that we can bin 10

data points and still obtain good results. Also, at later times when we have only

the slowest modes surviving binning can be very useful as the signal is very weak.

A larger binning can be used for signal long after turn-off. We, however, find that a
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Figure 4.5: The observed fluorescence P (t) (solid blue line), and
the inferred stored energy in the cloud, E(t) = E0 −

∫ t
0 P (t′)dt′ (solid

black line) as a function of time for a sample dataset. Both quantities
are appropriately normalized and their natural logarithms are plotted
(see text for details). For comparison, the case of independent decay,

exp(−t/τa), is also plotted (dashed green line).

constant bin works fine.

Although the photon counter detects P (t), working with E(t) turns out to be

more convenient for most of the data discussed later. This is because E(t) involves

integration over the photon counter signal. This has an effect of averaging and

thus reduces the noise. An example of this is shown in Fig. 4.5, where we plot

the natural logarithm of these quantities as a function of time, ln[P (t)] (solid blue

line) and ln[(E(t)] (solid black line) for a sample dataset. For comparison, the case of

independent decay exp(−t/τa) is also plotted (dashed green line). The reduced noise

in ln[(E(t)] can be clearly seen in the plots. Furthermore, the two curves do not lie

on top of each other, which clearly shows that the decay is not a simple exponential
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decay, and cannot be described by a single decay time constant. As we discuss below,

consistent with the theoretical model and the numerical results, the variation of the

decay time constant during time evolution is better pronounced for ln[P (t)].

The observed subradiance is quite remarkable considering that there are less than

10−4 atoms in a cubic wavelength of volume and the optical depth of the cloud is only

of order unity. This, as mentioned is atoms, on average, spaced at 5λ and is by far

the most dilute sample for which subradiance has been observed. This is obviously

well beyond the Dicke limit. As mentioned before this is significant on a fundamental

level as the atoms are, in principle, distinguishable. Collective effects can still persist.

This is because, though the atoms are distinguishable, they can still interact with

the same vacuum modes causing interference in spontaneously emitted modes. The

other critical result is the observed superradiance in a uniformly excited spherical

sample. Collective effects and decay rates scale with size and the number of atoms.

The results obtained in dilute samples is critical as these effects can give rise to a

scale dependent dephasing rate in neutral atom qubit arrays in free space. With

increasing scale dephasing can become stronger and possibly impossible to correct by

standard error correcting protocols. The size at which this happens is however much

larger than present qubit architectures. This is a problem for the future but one of

fundamental interest. Another interesting direction, perhaps more optimistic one is

the use of weakly coupled subradiant states for quantum information processing and

quantum storage while using superradiant states for fast readout.

4.4 Theoretical model and numerical simulations

A detailed analysis is presented in Chapter 5. We discuss, in this section, some

concepts directly relevant to the analysis here. Theoretically large sample superradiance

and subradiance is known to be quite difficult to analyze in the multiphoton excitation
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limit. Beyond the single excitation limit the problem becomes fairly intractible. In

the Dicke limit, with all the atoms starting in the excited level, the system can be

assumed to remain only in symmetric superpositions. This only leads to superradiant

emission since symmetric superpositions are the states where the radiation from the

emitters interfere constructively. However, for a large sample there are no obvious

symmetries that can be employed and it is not clear how the exponentially large

dimension of the Hilbert space can be simplified. Another complication is that for a

sample which is spatially large compared to the wavelength, the phase of the emitted

radiation varies between different emitters.

M = N

M = N −1

M = N − 2

!

M =1

M = 0

Figure 4.6: The excitation decay ladder for the formalism. Each
subspace with M atoms excited, decays to a subspace below (i.e., M−1

atoms excited).

To model correlated-decay in the large sample and strong excitation regime, we

extend the excitation ladder approach as discussed in Ref. [4]. The details of formalism

will be presented in Appendix A below, but we summarize the essential ideas here.

It is well-known that the excitation ladder approach quantitatively captures many
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aspects of Dicke superradiance [4]. The key difficulty is how to extend this model for

the large sample regime. For this purpose, we use the recently discovered eigenvalue

spectrum of the exchange Hamiltonian, which is the basic physical interaction that

causes correlated-decay.
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Figure 4.7: (Color online) The stored energy E(t) =
~ωa

∑
M MρM (t) (solid black line) and the radiated power P (t) =

−dE(t)/dt (solid red line) for a numerical simulation for the nominal
conditions of our experiment: N = 1.3 million atoms, excitation
fraction of 0.5 and a cloud radius of R = 0.26 mm. For comparison, the
case of independent decay, exp(−t/τa), is also plotted (dashed green

line).

We consider N atoms uniformly distributed in a spherical cloud with a radius of

R. We split the Hilbert space into subspaces that are indexed by M = 0, 1, ...., N ,

which is the number of atoms in the excited state (while the remaining N −M atoms

are in the ground state). We denote the probability (i.e., the population) that the

system is in M atom excited subspace as ρM(t). As shown in Fig. 4.6, each subspace

M decays to subspace M − 1. At t = 0, the system starts in M = N subspace (i.e.,

at the top of the ladder), and then as time evolves decays down the ladder. We then

have a coupled system of N + 1 differential equations that describes the evolution of
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the system:

dρM
dt

= −ΓMρM + ΓM+1ρM+1 , (4.1)

where the quantity ΓM is the decay rate of subspace M to subspace M − 1. For

independent (i.e., uncorrelated decay), ΓM = MΓa since the states in subspace

M contains M atoms in the excited state and for independent decay the system

wavefunction is a product of single-atom wavefunctions. The key idea of our formalism

is that we modify this decay rate by the eigenvalue distribution of the exchange

Hamiltonian for each subspace. Specifically, we take

ΓM = MΓa + ξ

√
π + 25/12

kaR

√
N −MMũΓa , (4.2)

where ũ is a random variable whose value is uniformly distributed between [−1, 1].

We use the dimensionless quantity ξ as a free fitting parameter in the model, which

can be viewed as the shape factor. This fitting parameter can be thought to account

for (i) the deviation of the shape of the cloud from spherical, (ii) the uncertainty in

the optical depth and, therefore, the atom number measurement of the cloud, and

(iii) the uncertainty in the excitation fraction. As we discuss below, with this fitting

parameter, this model successfully produces many aspects of our experimental results.

In all the below fits, ξ is of order unity and varies between 0.5− 2.

Because the sign of the random variable ũ can be positive or negative, each rate

ΓM can be faster or slower than the independent decay case. For each simulation, we

pick values for ΓM as given by Eq. (2). Given these values, we then numerically solve

N + 1 coupled differential equations as given by Eq. (1) using fourth order Runge-

Kutta method, with the system starting at the top of the ladder: i.e., with the initial

condition ρN(t = 0) = 1, and ρM(t = 0) = 0 for all M 6= N . For each simulation,
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we calculate the total energy stored in the cloud using E(t) = ~ωa
∑

M MρM(t). The

radiated power is calculated using P (t) = −dE(t)/dt. To get an accurate description

of the dynamics, we repeat the numerical simulation ∼ 1000 times, picking different

values for ΓM using Eq. (2). We obtain the final result by averaging over these ∼ 1000

simulations.

Figure 4.7 shows numerical results for our nominal experimental conditions: N =

1.3 million atoms, excitation fraction of 0.5 and a cloud radius of R = 0.26 mm. Here

we plot the stored energy E(t) (solid black) and radiated power P (t) (solid red), both

in logarithmic scale, as a function of time. Comparing Fig. 4.7 to the experimental

traces of Fig 4.5, the model reasonably captures the overall subradiance, as well as the

variation in the decay time scales. However, the model overestimates the variations

in the time-scales. One reason for this could be various dephasing mechanisms in the

experiment, which is not accounted for in the model.

4.5 Experimental results

We discuss several experiments and present some relevant interesting results in this

section. We use data from photon counting module. There were several other results

obtained that could not be understood or reproduced for various reasons. These

results have been pushed to Appendix A. We discuss results and possible sources of

disagreements between experiment and theory wherever applicable.

4.5.1 Excitation fraction scan

We study collective effects beyong the weak excitation regime. Here, the excitation

pulse, after extinction leaves the system with multiple excitation. The excitation beam

is still in the linear regime, i.e no inversion takes place. Some results at high excitation

fraction is discussed in Appendix A. These detasets required a lot of power in the
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excitation beam. A separate laser system for the excitation beam was constructed

that unfortunately performed poorly and the results were not replicated. In [10],

subradiance was studied in the weak excitation regime where the single-atom excited

subspace is a good approximation to the full dynamics. In this regime, the observed

subradiant time-scales are independent of the intensity of the excitation laser. In this

section, we discuss that in the regime of multiphoton excitation in the sample, this

is no longer the case and we observe that the decay rates depend on the excitation

fraction. Figure 4.8 shows ln[(E(t)] for high excitation fraction of 0.3 (solid black

curve) and 0.08 (blue curve). The amount of observed subradiance is significantly

reduced as the excitation fraction is reduced.
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Figure 4.8: ln[(E(t)] for high excitation fraction of 0.3 (solid black
curve) and 0.08 (blue curve). For comparison, the case of independent
decay, exp(−t/τa), is also plotted (dashed green line). The amount of
observed subradiance is significantly reduced as the excitation fraction

is reduced.

Figure 4.9 shows the mean decay time during 0 < t <60 ns for 12 experimental

curves similar to the ones shown in Fig. 4.8. The curves are chosen from multiple



45

experiments that are carried out in similar lab conditions. While there is large spread

in the data, there is a clear trend that as the excitation fraction is increased, the

decay time scales increase (i.e., the system becomes more subradiant). The black

curve is the result of analytical result where again the free parameter is adjusted to

get a good agreement for the high excitation fraction of 0.3. Again with this single

fitting parameter, there is good agreement between the model and the experimental

results.
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Figure 4.9: The mean decay time during 0 < t <60 ns. The error
bar in each data point is the standard variation of the decay time, and
is therefore a measure of how much the decay time changes during the

same time window.

4.5.2 Optical depth scan

We study collective effects in a very dilute sample. The on resonance OD is given

by OD = 3N/(kaR)2. Thus we can control the OD by parameters N and R. The

cloud radius is easy to control. We use the uniform free expansion of the cold atomic
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cloud for this. This keeps N , the number of atoms approximately constant. After

the CMOT stage we vary the time between excitation pulses to allow free expansion.

The largest cloud that we study is still smaller than the excitation beam thereby

ensuring plane wave excitation. Figure 6 shows ln[(E(t)] for cloud optical depth of

OD= 1, 0.83, .68, 0.52, and 0.35. In each plot, the dashed red line is the result of the

theoretical model with the free parameter adjusted to be ξ = .77. This parameter is

adjusted once to get a good overall fit for 0 < t < 9τa for the top plot (i.e. for OD=1).

There is no further adjustment for the consequent plots. With this single fitting

parameter, there is good agreement with the experimental data and the numerical

results. For comparison, the case of independent decay, exp(−t/τa), is also plotted

in dashed green line. The result clearly shows that as the optical depth is reduced,

the observed subradiance is reduced and the decay approaches to independent (i.e.,

uncorrelated) decay. This is expected. Collective effects become weaker as average

spacing between atoms is increased. Further discussion on this effect can be found in

Chapter 4 (5).

Figure 4.11 shows the mean decay time for each experimental curve shown in Fig.

4.10 during 0 < t <60 ns. The black curve is the result of analytical result where

again the free parameter is adjusted to get a good agreement for OD=1.

4.5.3 Signatures of superradiance-to-subradiance transition

A beautiful illustration of collective effects in atomic ensembles is the coexistence of

superradiant and subradiant effects. After the fast decay of superradiant states we

have a slow subradiant decay. Theoretically, in the Dicke problem this is expected.

Dicke superradiance is caused by symmetric states strongly coupled to vacuum modes

while vanishing decay is caused by antisymmetric coupling (weaker coupling). We do

not, of course, operate in the Dicke limit. However, our theoretical model does predict
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Figure 4.10: ln[(E(t)] as the optical depth is varied from OD=1 (top
left) to OD=0.35 (bottom right). In each plot, the dashed red line is the
result of the theoretical model discussed in the text. For comparison,
the case of independent decay, exp(−t/τa), is also plotted (dashed
green line). As expected, as the optical depth is reduced, the observed
subradiance is reduced and the decay approaches to independent (i.e.,

uncorrelated) decay.
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Figure 4.11: The mean decay time for each experimental curve shown
in Fig. 4.10 during 0 < t <60 ns. The error bar in each data point is
the standard variation of the decay time, and is therefore a measure of

how much the decay time changes during the same time window.

faster and slower than independent decay channels and we expect to capture both

superradiant and subradiant photons as the system decays down the excitation ladder.

To observe the effect in experimental data, we focus on the variation of the decay time

as the system evolves and look for signatures of superradiant-to-subradiant transition.

In Figure 4.12 we see a decay curve for 0 < t < 7τa at high excitation fraction

and OD=1. Faster than independent decay (superradiant) dynamics is evident for

t < τa.At longer time scales the system evolves to a slower subradiant decay.

We look at the system dynamics at early times, 0 < t < 3τa. It is critical to note at

this stage that in order to observe faster than independent decay we need extinction

faster than decay rate to ensure that there are no unwanted excitations during the

decay and that the decay is not “stimulated” by resonant radiation. Having a fast

switch off helps in this regard. With a 9 ns switch off we have extinction faster than

most superradiant modes. On top of that, assuming a collection of two level atoms,



49

Figure 4.12: The system starts off decaying at a rate faster than
independent decay rate (superradiant) and then evolves to a subradiant

decay. The zones are demarcated by different shades of colour.

it can be shown that a faster than independent decay cannot be stimulated by a

resonant beam. Therefore, faster than independent decay is a signature of collective

effects. Figure 4.13 shows the observed fluorescence in logarithmic scale, ln[P (t)],

for a cloud optical depth of OD= 1 (solid black), 0.83 (solid red), 0.68 (solid blue),

and 0.52 (solid green). For comparison, the case of independent decay, exp(−t/τa),

is also plotted (dashed green line). For all the sets, faster than independent decay

(superradiant) dynamics is evident for t < τa. As the system evolves, this superradiant

decay either evolves to subradiance (high optical depth (mainly for high OD black

and red curves), or to independent decay (low optical depth: blue and green curves).

For all the sets, faster than independent decay (superradiant) dynamics is evident

for t < τa. For each set, the ±σ statistical error bars on the data points are also

plotted (dotted blue lines) to demonstrate that the observed superradiance is well-

beyond the error-bars of the data. The error bars increase as the system evolves due
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to the reduced number of detected photons at later times of the decay. As the system

evolves, superradiance either evolves to subradiance [high optical depth; (a) and (b)],

or approaches to independent decay [low optical depth: (c) and (d)].
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Figure 4.13: The observed fluorescence (solid blue lines) in
logarithmic scale for a cloud optical depth of (a) OD= 1, (b) 0.83,
(c) 0.68, and (d) 0.52. For comparison, the case of independent decay,
exp(−t/τa), is also plotted (dashed green line). For each set, the ±σ
statistical error bars on the data points are also plotted (dotted blue
lines) to demonstrate that the observed superradiance is well-beyond
the error-bars of the data. The error bars increase as the system evolves
due to the reduced number of detected photons at later times of the

decay.

As the system evolves, this superradiance either evolves to subradiance (high

optical depth; black and red curves), or to independent decay (low optical depth:

blue and green curves). This may be because dephasing is more prominent at low

ODs.
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Figure 4.14 shows the observed fluorescence for two optical depths OD= 1 (high)

and OD= 0.52 (low) over a longer time window 0 < t < 7τa , and also overlapped

with the numerical results (dashed red curves). Here, the free parameter is adjusted

only once to be ζ = 0.9, in order to get good agreement with the experimental

results for the high optical depth (left plot). For this case, the numerical results

capture the variation of the decay time constant during time evolution, as well as

superradiance-to-subradiance transition very well. For the lower optical depth (right

plot), the agreement between the experimental data and the numerical results is worse.

Specifically, the experimental curve continues to show signatures of superradiance at

early times, while the numerical results do not. The reason for this discrepancy is

currently an open question. We speculate that one reason for the discrepancy could be

the assumption of a uniform cloud in the numerical simulations. In the experiment,

the density of the MOT is unlikely to be uniform, due to the complicated three

dimensional interference pattern produced by the six MOT laser beams. Because of

this interference, there are likely localized regions with a higher density, which may be

responsible for the persistent superradiant feature at early times, even at low optical

depths
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Figure 4.14: The observed fluorescence in logarithmic scale for a
cloud optical depth of OD= 1 (left) and 0.52 (right). For comparison,

the numerical results are also plotted (dashed red curves).
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For the lower optical depth (right plot), the agreement between the experimental

data and the numerical results is worse. Specifically, the experimental curve continues

to show signatures of superradiance at early times, while the numerical results do not.

The reason for this discrepancy is currently an open question. We speculate that one

reason for the discrepancy could be the assumption of a uniform cloud in the numerical

simulations. In the experiment, the density of the MOT is unlikely to be uniform,

due to the complicated three dimensional interference pattern produced by the six

MOT laser beams.

4.6 Radiation trapping vs subradiance

Multiple scattering of radiation in matter is known as radiation trapping. A schematic

picture is shown in the figure. A simple interpretation is a photon knocked around like

a billiard ball undergoing multiple collisions with atoms. Of course this interpretation

is naive and too simplistic. Scattering takes place at all frequencies but is prominent

near resonance. On resonant scattering can have elastic or inelastic components. The

photon can be scattered coherently in which case the scattered radiation maintain

coherence. It may also undergo multiple instances of absorption and emission making

the process highly incoherent. Going into the details is not in the scope of the thesis.

Interested readers may refer to an excellent article by Lagendijk and van Tiggelen

[56]. However it is important to discuss multiple resonant scattering, coherent or

otherwise in the context of subradiant emission.

4.6.1 On-resonance versus detuned excitation

The model we use for our analysis assumes a certain number of excitations in the

cloud. If the saturation intensity of the exciting beam is kept constant, the detuning

of the beam, whether it is on resonant or detuned may seem to be irrelevant. However,
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at resonance multiple resonant scattering, both elastic and inelastic is enhanced. This

may “trap” photons in the cloud. The trapping becomes strong at resonance. Thus a

photon may remain trapped in the cloud for a while and released at a longer timescale.

This may look like subradiance. Because of the low OD of our ultracold cloud, we

do not expect incoherent photon absorption followed by reemission (i.e., radiation

trapping) to play a role in our experiment. We devote a section at the end of the

chapter to a discussion of radiation trapping as it may cause some controversy in the

interpretation of our results especially in the subradiant regime. To experimentally

confirm that radiation trapping is not prominent, we compare fluorescence when the

excitation laser is on-resonant versus off-resonant. Figure 4.15 shows the enerly in the

cloud ln[(E(t)] as a function of time for two different optical depths, OD=1 (black line)

and OD=0.35 (blue line), contrasting on-resonance (∆ = 0) and detuned (∆ = 4.2Γa)

excitation laser. For both cases, the results are qualitatively similar with a stronger

overall subradiance for OD=1 . The variation of subradiance with optical depths is

discussed in a later sub-section. If radiation trapping was responsible for the observed

slower decay rate, there would be a large difference between on-resonance versus off-

resonance excitation. This is because, for a detuning of ∆ = 4.2Γa, the photon

absorption probability (i.e., off-resonant optical depth) is expected to decrease by a

factor of (2∆/Γa)
2 ≈ 70 compared to its on-resonant value. The data shown in the

rest of the paper is taken at this detuning of ∆ = 4.2Γa.

This is because, this has an effect of ”trapping” photons in the cloud, thereby

mimicking subradiance. So how do we know the slow emission we observe at later

time scales is due to collective effects, i.e subradiance and not multiple scattering as

in radiation trapping. The effects are subtle and the slowing of emission is not very

large, we see an increase of a factor of 1.4, which is not very large. A lot of However,

we can make a case for subradiance.
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Figure 4.15: Stored energy in the cloud (i.e., excited state
population), ln[(E(t)] for two different optical depths, OD=1 (black
line) and OD=0.35 (blue line). The left-plot is obtained for an
excitation laser which is on-resonant, while the right plot is for a
detuning of ∆ = 4.2Γa. For comparison, the case of independent decay,
exp(−t/τa), is also plotted (dashed green line). Because the results are
qualitatively similar, this shows that radiation trapping does not play

a significant role.

4.6.2 On resonance Optical Depth

It is well-known that on-resonant radiation trapping, which is critically important for

atomic clouds with a large optical depth, can mimic subradiance. The strongest case

we can make in favour of subradiance is that the on-resonant OD of the atomic cloud

in our experiments is of order unity. We measure the optical depth using two different

methods. In the first one, we measure the absorption of a very weak resonant beam

through the cloud. In the second approach, we monitor continuous fluorescence of

the MOT atoms with the EMCCD under full saturation. Using the detected photon

counts at the EMCCD and known solid angle of the collection optics, optical losses,

and quantum efficiency of detection, we can then infer the number of atoms in the

MOT. Together with the measurement of the size of the MOT cloud, this then allows

us to infer the optical depth. We have found these two different measurements of the

OD to be reasonably consistent, agree to within a factor of 2. In above we report the

OD measurements using the absorption of a weak resonant beam, since we believe
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Figure 4.16: Incoming photon gets ”bounced around” before
escaping mimicking the effect of subradiance.

this approach to be more reliable.

For atomic clouds with near-uniform illumination (i.e. the size of the beam larger

than the size of the cloud, which is the case in our experiment), radiation trapping

is predicted to be negligible at such low optical depths. For example, as discussed in

Ref. [11], exact Monte-Carlo simulations suggest that optical depths far larger than

unity is needed for multiple scattering events (which result in radiation trapping) to

become appreciable.

4.6.3 Variation of subradiant time-scales with Optical Depth

Our experimental data of Fig. 4.9 rules out radiation trapping being a dominant factor

role. In this plot, we show that the subradiant time scales increase as the excitation

fraction of the cloud (i.e., the initial number of atoms in the excited state) increases.
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If radiation trapping was a dominant factor, we would expect exactly the opposite

behavior: i.e., the subradiant time scales should have decreased as the excitation

fraction is increased. For larger excitation we have a larger fraction of atoms in the

excited state making it less likely for a photon to be reabsorbed by the cloud.

For larger excitation fractions, there are fewer atoms in the cloud initially in the

ground state, and the probability of a photon being absorbed by the cloud decreases

(i.e., the “effective” optical depth of the cloud is reduced as the excitation fraction is

increased).

4.6.4 Presence of superradiance

Collective effects manifest itself in superradiant and subradiant decay rates. The

presence of superradiance with rates fitting well with subradiant scales according to

a theoretical model discussed later is a strong evidence for subradiance.

The Dicke model predicts superradiance and subradiance as well. So the presence

of superradiance explains collective effects in the cloud.
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Chapter 5

Theory

5.1 Coupled Dipole model

The Coupled Dipole model has been the standard tool for analyzing collective effects

in the weak excitation limit. As mentioned before we can study these effects beyond

the Dicke limit but with a single photon in the cloud. In this simplified situation we

show the problem to be equivalent to the emission of a collection of phased dipoles.

Several other effects like directional emission can also be analyzed using the model.

An understanding of the coupled dipole model can be a good headway to the much

more complicated problem of multiphoton excitation, so it is worth discussing.

The derivation of the exchange interaction Hamiltonian is given in detail in the

paper Ref. [12] and in [10].

5.1.1 A. Hamiltonian

Consider N two-level atoms, each with levels |0〉 and |1〉, in a three-dimensional

geometry. We denote each individual atom with the index j and consider a continuum

of electromagnetic modes with annihilation and creation operators âκε and â†κε respectively.

These operators act on the mode of the field with wave-vector κ and polarization ε.

The total Hamiltonian for the system when only the energy conserving terms are
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retained (under the rotating wave approximation) is [12]:

Ĥtotal =
∑
j

1

2
~ωaσ̂jz +

∑
κε

~νκε
(
â†κεâκε +

1

2

)
−

∑
j

∑
κε

~gκε
[
âkε exp (i~κ · ~rj)σ̂j+ + â†κε exp (−i~κ · ~rj)σ̂j−

]
, (5.1)

where

σ̂jz = |1〉j j〈1| − |0〉j j〈0| ,

σ̂j+ = |1〉j j〈0| ,

σ̂j− = |0〉j j〈1| . (5.2)

In Eq. (5.1), the first two terms describe the atoms and the electromagnetic modes in

the absence of any interaction whereas the third term describes the coupling between

the two systems. ~rj is the position of the j’th atom and the energies of the atom

states |0〉 and |1〉 are taken to be −1
2
~ωa and 1

2
~ωa, respectively. The Dicke limit of

the above equations is obtained when the total size of the sample is assumed to be

small compared to the κ-vector of the relevant modes, i.e., ~κ · ~rj → 0.

5.1.2 Timed Dicke state

We choose an eigenstate describing the single excitation in the cloud.

|ψ〉TD =
∑
j

1√
N

[exp (−i~κ · ~rj)|000...1j...0〉] (5.3)

Here the atomic state |ψ〉TD is the phased state with a single excitation in the

cloud. This can be contrasted with the symmetric Dicke state
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|ψ〉Dicke =
∑
j

1√
N

[|000...1j...0〉] (5.4)

where the term exp(−i~κ · ~rj) = 1 in the Dicke limit. Here |000...1j...0〉 is the N-

atom state with atom j is in the excited state with all the other atoms in the ground

state.

The field state is chosen to be the vacuum state |ψfield〉 = |0〉

The combined atomic ensemble and field initial state is assumed to be in a

separable product state to begin with

|ψ(t = 0)〉 = |ψ〉TD ⊗ |ψfield〉 (5.5)

We let the system evolve under the Hamiltonian Eq. (5.1). The atomic state can

be coupled to the ground state by the third term in the Hamiltonian in Eq. (5.1). At

any time t the state of the atom field system can be written as

|ψ(t)〉 =
∑
j

αj(t)(|000...1j...00〉 ⊗ |0〉) + β(t)(
∑
κε

|000...〉 ⊗ |1κε〉) (5.6)

Here |1κε〉 is the singly occupied photon mode occupying the state with wave vector

κ with polarization state ε.

We can interpret ˙|β(t)|2 as the rate at which the ground state is populated, which,

because of the ansatz eigenstate we have chosen, can be interpreted as the rate of

photon emission from the cloud. For an understanding of the collective effects we can

look at the rates of fluctuations of excited state populations. It can be shown after



60

some straightforward calculation that

d

dt
αi(t) ∼ −

Γ

2
αi(t) + i

Γ

2

∑
j

Vijαj(t) (5.7)

The first term is just the rate of independent decay while the second term captures

the collective effects. The term Vij ∼ exp(iκ|ri−rj |)
κ|ri−rj | . This captures an effective dipole-

dipole interaction between atoms giving rise to collective effects. If we want to find

the rate of photon emission d
dt

∑
i |α2

i | we can see that it is equivalent to computing the

far field intensity of a collection of N oscillating dipoles with a phase proportional to

exp(iκ|ri − rj|). This is called the coupled dipole model. Intuitively, any phased

sum of fields can give rise to ”constructive” or ”destructive” interference terms.

The constructive interference terms lead to a faster than single atom decay, i.e

superradiance, where as the destructive interference terms give rise to subradiance.

The coupled dipole model works very well in the weak excitation limit as demonstrated

by several experiments. It gives us an intuition as to how photon emission rates

can give us information about collective effects in an ensemble. We can also get an

idea of how we expect these rates to scale with cloud size, atom separation, optical

depths etc. The dependence of collective effects on the coupling term Vij which

becomes weaker as the cloud becomes more dilute shows why collective effects become

weaker as the optical depth decreases. The coupled dipole model, however, has several

limitations and it cannot be applied to our system effectively, the obvious factor being

the assumption of a single excitation in the cloud. Multiphoton excitation needs to

be taken into account when we are dealing with the kind of experiments we are trying

in our lab. The variation of decay rates with excitation fraction cannot be captured

by the model. The problem becomes analytically intractable for higher excitation

fraction and hence we need a different approach, discussed in the subsequent sections.
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5.2 Beyond the coupled dipole model

5.2.1 The effective Hamiltonian: multiphoton excitation

In the previous section we observed the effect of coupling term Vij. The key physical

effect that describes many different aspects of collective decay, including superradiance

and subradiance is the exchange interaction. Starting with the Hamiltonian of Eq. (5.1),

this interaction has been derived using a variety of approaches by a number of authors

[60, 61, 7, 62]. The derivation uses assumptions that are similar to the traditional

Wigner-Weisskopf theory of spontaneous decay [63]. As an ansatz, we take the

initial atomic system to be an arbitrary superposition (in general entangled state)

and assume that the field is in a zero excitation in each electromagnetic mode κε. We

then study the problem in the interaction picture and integrate out the probability

amplitudes of the continuum states using the usual Born-Markov approximation. The

initial state of the combined atom-field system can be written as

|ψ(t = 0)〉 =
2N−1∑
q

cq,0|q〉 ⊗ |0〉. (5.8)

Here, the index q runs through all possible 2N combinations for the qubits and

cq,0 are the expansion coefficients. For each |q〉 we define 2Mq = #atomsinstate|1〉 −

#atomsinstate|0〉

Thus the total energy of atomic state |q〉 is Mq~ωa. The general state at any time

t can be written as

|ψ(t)〉 =
2N−1∑
q=0

cq,0(t) exp(−iMqωat)|q〉 ⊗ |0〉 +
∑
κε

2N−1∑
q′=0

cq′,0(t) exp(−i(Mq′ωa + νκε)t)|q′〉 ⊗ |1κε〉.

(5.9)
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Here |1κε〉 is the state of the radiation field in which the field mode κε has one photon

and all other modes are in the vacuum state.

The Schroedinger equation

i~
d

dt
|ψ(t)〉 = Ĥtotal|ψ(t)〉 (5.10)

Using the wave function ansatz from eq. (5.9) and plugging it in eq. (5.10), we

can arrive at the following effective interaction Hamiltonian:

Ĥeff =
∑
j

∑
k

Ĥjk . (5.11)

Here, the sum is over all pairs of qubits and operators Ĥjk act nontrivially only on

the qubits with indices j and k

Ĥjk = Fjkσ̂
j
+σ̂

k
− + Fkjσ̂

i
−σ̂

j
+ , (5.12)

with coupling constants of Fjk:

Fkj = −(i
Γa
2

+ δωa)(
3

8π
)

[
(1− cos2 θjk)

sinκarjk
κarjk

+ (1− 3 cos2 θjk)(
cosκarjk
(κarjk)2

− sinκarjk
(κarjk)3

)

]
(5.13)

Note that in the above equation we have Fjk = Fjk. This is analogous to a“spin”

exchange interaction, with the interaction mediated by photons.

Here, Γa is the single-atom decay rate and δωa is the single-atom Lamb shift of

the qubit transition. rjk is the distance between the two atoms, and θjk is the angle

between the atomic dipole moment vector and the separation vector ~rjk. The quantity
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κa is the wave vector for the electromagnetic modes energy-resonant with the qubit

transition: κa = ωa/c.

The exchange term Fjk is going to take over from the term Vij introduced earlier

in the analysis of the problem by the coupled dipole method.

5.2.2 The width of the eigenvalue distribution for M-subspace

In this section, we discuss the width of the eigenvalue spectrum of the exchange

Hamiltonian Ĥeff =
∑

jk Ĥ
jk =

∑
k Fjkσ̂

j
+σ̂

k
− + Fkjσ̂

j
−σ̂

k
+ in the N → ∞ limit, for

the M -atom excited subspace. Details of the derivation is given in [12]. In this limit,

the eigenvalues λ of Ĥeff can be viewed as having a continuous distribution with

probability density function fΛ(λ) ≡ P{Λ = λ}. The width of the probability density

function can be evaluated by explicitly calculating the second-moment (variance) of

the distribution σ(2) ≡ E[Λ2] =
∫
fΛ(λ)λ2dλ, where E[...] stands for the expected

value. By definition, this second moment is:

σ(2) = E[Λ2] =

 N

M


−1

Trace
[(
Ĥeff )

2
]

,

=

 N

M


−1∑

q

〈q|

(∑
jk

Fjkσ̂
j
+σ̂

k
− + Fkjσ̂

j
−σ̂

k
+

)2

|q〉 . (5.14)

Here, the summation q is over all the states in the M atom excited subspace. By

inspection, each term 〈q|
(∑

jk Fjkσ̂
j
+σ̂

k
− + Fkjσ̂

j
−σ̂

k
+

)2

|q〉 produces (N−M)M contributions,

each approppriately scaled with the the square of the relevant coupling constant, F 2
jk.

In the N →∞ limit, the result is therefore:

σ(2) = (N −M)ME[F 2
jk] ,

=
π + 29/12

k2
aR

2
(N −M)MΓ2

a . (5.15)
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Here, in the last step, we have used the expected value of the squares of the coupling

constants in a three-dimensional geometry, E[F 2
jk], as discussed in Ref. [12]. The

standard deviation (width) of the distribution is the square-root of the variance given

in Eq. (5.15):

σ =
√
σ(2) =

√
π + 29/12

kaR

√
N −M

√
MΓa . (5.16)

The distribution is symmetric around λ = 0, which means that there are an equal

number of superradiant and subradiant states. Numerical analysis in [12] has shown

that the results are insensitive to the precise shape of the distribution; rather, the

width of the distribution is critical. We can therefore work with a simple uniform

distribution centered around λ = 0, with a width given by Eq. (5.16).

5.2.3 Heuristic incorporation of stimulated emission

The formalism described above assumes each photon mode to be unoccupied initially,

and as a result, it does not incorporate stimulated emission in the decay process.

In the small sample regime, an M -atom subspace has “M” photons stored, and the

spontaneous rates would at most be enhanced by “M”, as the system decays through

the ladder. This is because, the stimulated emission rate for an M -photon state is

a factor of M larger than the spontaneous rate [63]. For a large sample, all emitted

photons would not interfere constructively, but instead interfere with random phases.

As a result, we hypothesize that one would expect
√
M enhancement compared to

the spontaneous rate for the large sample. We, therefore, multiply the width given

by Eq. (5.16) by a factor of
√
M to heuristically incorporate for stimulated emission.
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Incoming 
exciting photon 
pulse.

Emitted photon pulse. 

Figure 5.1: The direction of emitted photon is correlated with the
direction of exciting photon pulse.

5.2.4 Directional emission

This section is not relevant in the context of the experiments we are trying to do.

However it is a good addition to the chapter as it presents a beautiful aspect of

collective effects in the photon emission characteristics. We go back to the Timed

Dicke state.

|ψ〉TD =
∑
j

1√
N

[exp (−i~κ · ~rj)|000...1j...0〉] (5.17)

Instead of looking at the effective coupling Hamiltonian we can look at the emitted

photon modes. The Timed Dicke state has a photon symmetrically distributed in the

cloud. The expectation value of the collective dipole moment operator in the cloud

is zero, i.e there is no ”direction” associated with the collective atom photon state of

the cloud and field. The cloud is now allowed to evolve under the Hamiltonian with a

treatment similar to calculation of spontaneous emission modes. After a time t→∞,



66

is large compared to atomic evolution time-scales we find, after some straightforward

calculations.

|ψfield〉 ∼ δ(~k − ~k0)|1〉 (5.18)

The emitted photon is strongly correlated to the direction of the incoming photon

[24]. The directional emission is characteristic of collective effects in a sample in weak

excitation but is different from the ”superradiant burst” in the Dicke limit [4].

In the single photon limit we expect to find some directional nature to the superradiant

photons. The direction of the emitted photons are correlated with the direction if

exciting photon. This correlation is lost in case of multiple excitations with the

system cascading down the excitation ladder (Fig. 4.6). We do not analyze directional

dependence in our experiments, though this is an interesting avenue for exploration

in future.
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Chapter 6

Part II: Coherent quantum control

using dark states

In this section of the thesis we study quantum control using dark state in an atomic

ensemble under conditions of EIT (Electromagnetically induced transparency). Quantum

computing using dark states can provide several advantages primarily due to the

”darkness” of the system. The term originates from the fact that under conditions

of EIT, the system is decoupled from the excited state and we see no fluorescence

driven by spontaneous emission. This is achieved by choosing a Λ system in the atom

(3 energy levels, two metastable ground states and one excited state). We couple

the two ground states using two separate excitation beams with the excited state.

The dark state is formed by destructive interference of the two paths to the excited

state which results in an eigenstate with no component in the excited state. The

relative amplitudes in the two ground states depends on the relative strengths of the

coupling to the excited states, which in turn depends on the Rabi frequencies of the

two addressing beams (i.e the beam intensities). Thus the relative populations of

the two ground states can be coherently controlled by adjusting the beam intensities.

This is a feature we exploit for coherent quantum state manipulation. Another feature

is that the dependence of state transfer on beam intensities are non linear. For our
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experiments we use the cold atom setup described in chapter 3. Experiments described

here have been carried out in our lab from 2011-2017 and several grad students were

involved. Previously EIT experiments were carried out in hot atomic vapours as well.
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Chapter 7

Quantum computing and coherent

control using EIT

7.1 Introduction

The goal of this current project is to implement a C-Phase quantum gate with

subwavelength resolution using spatial properties of dark state under conditions of

Electromagnetically induced transparency (EIT). This is an extension our work on

subwavelength localization of atomic excitation described in [68] and [70]. For single

atom trapping and imaging we have implemented a non-conventional MOT to clear an

access window that was previously used for a MOT beam pair in our MOT chamber.

This window has a larger diameter and is also closer to the atoms, it could be used

to collect a large fluorescence fraction. We have set up large N.A collection optics

for single atom imaging (in-fact as large as possible for the set-up we had, N. A∼

.3). Recently we have acquired a fiber amplifier that will allow us to implement deep

optical dipole traps for single atom trapping and imaging. With improved imaging

capacity and a strong robust optical dipole trap we hope to implement single atom

quantum gate and quantum state readout and in future two qubit gates. The long-

term goal is to extend the scheme to an atomic array of qubits for a scalable neutral
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atom quantum computer.

My first project after joining our lab was to build on a project that experimentally

demonstrated subwavelength localization of atomic excitation by using Electromagnetically

induced transparency in Rubidium atoms in a dipole trap (Phys. Rev. X 3, 031014

(2013)). The team was led by my supervisor Deniz and my senior Jared Miles.

Over the next couple of years, we improved the system to demonstrate stronger and

improved localization (Physical Review A92, 033838 (2015)).

In this section of the thesis we discuss progress towards implementing EIT/dark

state based qubit addressing, gate implementation and localized readout scheme.

Experimental results and strategies are discussed. Simulations and theoretical schemes

are analyzed.

7.2 Electromagnetically induced transparency

7.2.1 Derivation of the EIT Hamiltonian

In this section we discuss the theory of EIT. We start with a generic 3-level system,

two metastable ground states |1〉 and |2〉 and one excited state |e〉. We have a pair of

plane polarized beams. We will discuss subtleties arising due to multilevel structure

of 87Rb.

Consider a 3-level system shown in the figure below. For the lambda scheme we

work in, EIT can occur if each of the lower two levels are coupled to the excited by

separate laser beams. The figure shows the energy diagram and laser used for the

lambda EIT configuration. The “probe” beam is a laser that couples the lowest state

|1〉 to the state |e〉. is and has frequency ωp. The ”coupling” laser beam couples |2〉

to the state |e〉 is and has frequency ωc. We assume that the dipole matrix element



71

for levels |1〉 and |2〉 is zero, the transition is dipole forbidden, that between |e〉 and

|1〉 is given by µ1e and |e〉 and that between |e〉 and |2〉 is µ2e.

EIT and the dark state

ΩP and Ωc are the Rabi frequencies of the Probe beam and the Coupling beam
respectively.

|1〉

|e〉

|2〉

















−−

−

−

=

2

00

00

2
H

CP

C

P
Δ

1

P C

The Atom field interaction Hamiltonian (in the interaction 
picture after applying rotating wave approximation), 

Figure 7.1: The Λ schematic and effective Hamiltonian. Transition
between |1〉 and |2〉 is dipole forbidden.

Incident radiation fields can be described classically as oscillating electric fields

with slowly varying amplitudes

Coupling beam

Ec(r, t) =
Ec(r, t)

2
[exp(i(ωct)) + exp(−i(ωct))] (7.1)

Probe beam

Ep(r, t) =
Ep(r, t)

2
[exp(i(ωpt)) + exp(−i(ωpt))] (7.2)
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We assume a fixed atomic position and set r = 0. The total Hamiltonian describing

the system can be written as a sum of atomic Hamiltonian, Hatom and the Hamiltonian

describing atom and field coupling, Hint.

Hint = µ1e.Ep(r, t)(|e〉〈1|+ |1〉〈e|) + µ2e.Ec(r, t)(|e〉〈2|+ |2〉〈e|)

Hatom = ~ω1|1〉〈1|+ ~ω2|1〉〈2|+ ~ωe|e〉〈e|

Htotal = Hatom +Hint (7.3)

We denote the interaction Hamiltonian in terms of Rabi frequencies defined by

Ωp = µ1eEp/~

Ωc = µ2eEc/~.

We use a unitary matrix to transform the original Hamiltonian in to one with no

time dependent terms. We describe the procedure here.

Htotal =


~ω1 0 1

2
Ωp(e

iωpt + e−iωpt)

0 ~ω2
1
2
Ωc(e

iωct + e−iωct)

1
2
Ωp(e

iωct + e−iωct) 1
2
Ωc(e

iωct + e−iωct) ~ωe


Next we apply a time dependent unitary transformation, U(t), to the Hamiltonian.

The transformation gives

Htr = U(t)HU(t)† + i~U(t)U̇(t) (7.4)

We choose U(t) to be a matrix of the form



73

Htotal =


~ωx 0 0

0 ~ωy 0

0 0 ~ωz



This gives

Htr =


~(ω1 − ωx) 0 1

2
Ωp(e

iωpt + e−iωpt)ei(ωz−ωx)t

0 ~(ω2 − ωy) 1
2
Ωc(e

iωct + e−iωct)ei(ωz−ωy)t

1
2
Ωp(e

iωpt + e−iωpt)ei(ωz−ωx)t 1
2
Ωc(e

iωct + e−iωct)ei(ωz−ωy)t ~(ωe − ωz)


We can simplify the Hamiltonian by choosing

ωx = ω1

ωy = ω2 − δω

ωz = ω2 −∆

where δω = (ω2 − ω1)− (ωp − ωc) and ∆ω = (ω3 − ω1)− ωp

This simplifies the Hamiltonian to

Htr = ~


0 0 1

2
Ωp(e

iωpt + e−iωpt)eiωpt

0 δω 1
2
Ωc(e

iωct + e−iωct)eiωct

1
2
Ωp(e

iωpt + e−iωpt)eiωpt 1
2
Ωc(e

iωct + e−iωct)eiωct ∆



= ~


0 0 1

2
Ωp(1 + e−i2ωpt)

0 δω 1
2
Ωc(1 + e−2iωct)

1
2
Ωp(1 + e−i2ωpt) 1

2
Ωc(1 + e−i2ωct) ∆

 (7.5)
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Finally we neglect the terms e−i2ωpt and e−i2ωct. These fast oscillating terms are

expected to average to zero in the timescales over which the dynamics of the system

is studied. This is known as the rotating wave approximation (RWA). Applying this

simplifies the Hamiltonian to the final form we call HEIT .

HEIT = ~


0 0 1

2
Ωp

0 δω 1
2
Ωc

1
2
Ωp

1
2
Ωc ∆



The Hamiltonian in its final form does not have any time dependent terms and is

considerably simpler to work with than the full time dependent Hamiltonian.

For observing EIT we need the term δω = 0. This is when the frequency difference

of the probe and coupling laser is equal to the separation of the two levels |1〉 and |2〉.

This gives us

HEIT = ~


0 0 1

2
Ωp

0 0 1
2
Ωc

1
2
Ωp

1
2
Ωc ∆



Diagonalizing the Hamiltonian is straightforward. One of the eigenstates is known

as the ”dark state” as it has an eigenvalue of zero.

|D〉 = 1
Ω̃

[Ωc|1〉 − Ωp|2〉]

with Ω̃ =
√

Ω2
p + Ω2

c The dark state |D〉 has no component in the excited state and

the ”darkness” of arises from the fact that it is decoupled from both the probe and

coupling beams. The term was coined because no fluorescence is observed when the
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system is in this state. It is straightforward to see that HEIT |D〉 = 0, i.e. the state

does not evolve with time. The other two eigenstates are the bright states |B+〉 and

|B−〉

|B+〉 = N [Ωp|1〉+ Ωc|2〉+ α|e〉]

and

|B−〉 = N [Ωp|1〉+ Ωc|2〉 − α|e〉]

where α and N are the excited state amplitude and eigenstate normalization

respectively. For ∆ >> Ωp we have

|B+〉 = 1
Ω̃

[Ωp|1〉+ Ωc|2〉] + ∆Ω̃
Ω̃2+∆2 |e〉]

and

|B−〉 = 1
Ω̃

[Ωp|1〉+ Ωc|2〉]− ∆Ω̃
Ω̃2+∆2 |e〉]

for Ω̃ =
√

Ω2
p + Ω2

c

The bight states are strongly coupled to both the beams and have a population in

the excited state.

7.2.2 Spontaneous emission

The EIT Hamiltonian described above is an ideal unitary Hamiltonian. The system

is isolated from any environment. We can account for spontaneous emission from the

upper level |e〉 to the ground state by adding an imaginary term to the Hamiltonian

accounting for an irreversible decay. We assume that the state can decay into either

ground states. The non-unitary Hamiltonian, with Γe being the decay rate from the

excited state.
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HEIT = ~


0 0 1

2
Ωp

0 0 1
2
Ωc

1
2
Ωp

1
2
Ωc ∆ + iΓe

2

 (7.6)

The term Γe for the 87Rb excited state that we work with in our experiments

is known to be 6.06 MhZ. We are going to be using this value for density matrix

simulations described later. The branching ratio, defined as the ratio of decay rates

into the ground states |1〉 and |2〉 is assumed to be equal to 1. Spontaneous emission

from the dark states populate the two ground states equally. Spontaneous emission

can drive optical pumping processes but is also a major source of dephasing in

quantum computing that we need to consider. Note that the spontaneous emission

rate is proportional to the popolation in the excited state |e〉 which is zero in the dark

state. The decay rate from the metastable ground state 2〉 to |1〉 is very small. The

states are known as clock states and the transition between these states have a very

narrow linewidth. This can be exploited for quantum computing and atomic clocks.

The clock states are often used as qubits for quantum computing.

7.2.3 Density matrix formulation

The density matrix formulation is a standard method in quantum physics for simulating

time evolution of quantum systems and calculating expectation values of operators.

All simulations and results henceforth discussed are carried out using this procedure.

An alternative method is known as the quantum jump method that tracks trajectories

of wave functions instead of density matrices. The method is computationally less

intensive. However, the density matrix formulation works very well for our as we have

a fairly small system of 3 or 4 dimensions.
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The density matrix is defined as

ρ =
∑
ρab|ψa〉〈ψb|

Here ρab = 〈ψa|ρ|ψb〉, if we have a = b, ρaa gives us population of state |ψa〉 and

for a 6= b, the terms ρab gives us the coherence term between states |ψa〉 and |ψb〉. The

diagonal terms of the density matrix are the populations and the off diagonal terms

are the coherences.

For our system, described by the EIT Hamiltonian, HEIT the time evolution of

the density matrix is give by ρ̇ = −i
~ [HEIT , ρ]− 1

2
{Γe, ρ}.

Here [HEIT , ρ] = HEITρ−ρHEIT , the commutator of the Hamiltonian and the density

matrix operators. The term {Γe, ρ} = Γeρ+ ρΓe.

In the following chapters we discuss subwavelength localization experiments using

a spatially varying coupling beam and a probe beam. Then we discuss theoretical

studies of a subwavelength phase qubit gate and experimental progress towards the

same.

7.3 Initializing the system to the dark state

For our experiments it is vital that we initialize the system in the dark state. State

preparation is vital in quantum computing experiments as well. In this section we go

through a few important factors that are vital in ensuring a high fidelity preparation

of the dark state.

Typically the probe and coupling pulses are not monochromatic beams, they are

pulses with finite turn-on and turn-off times. They are represented as slow variations

of the electric field amplitudes, the variations being slow compared to the beam

frequencies. We can, in our simulations treat Ωp and Ωc as time varying quantities

Ωp(t) and Ωc(t) as the amplitudes vary slowly compared to the atomic dynamics. The
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time evolution of the density matrix is give by ρ̇ = −i
~ [HEIT (t), ρ]− 1

2
{Γe, ρ}.

The discrete family of Hamiltonians is described by HEIT (t). For each instance of

time t we have the Hamiltonian described by HEIT (t). The Hamiltonian spectrum is

discrete. If the terms Ωp(t) and Ωc(t) vary slowly compared to the energy splitting

between the levels, we satisfy the adiabaticity condition (Kato and Messiah). This

is ensured by the adiabatic theorem of Quantum Mechanics which states that ”A

physical system remains in its instantaneous eigenstate if a given perturbation is acting

on it slowly enough and if there is a gap between the eigenvalue and the rest of the

Hamiltonian’s spectrum”. Therefore, in order to ensure that our system remains in

the same eigenstate throughout the evolution we need to ensure that the frequency

of variations in pulse intensity is small compared to the |B〉 − |D〉 splitting.

We need to satisfy the conditions.

|Ω̇c| << 1

|
√

∆2+Ω2
p+Ω2

c |

|Ω̇p| << 1

|
√

∆2+Ω2
p+Ω2

c |

These are the adiabaticity conditions in quantum mechanics. This in general

means adjusting the rise and fall times of the pulses to be slow compared to the

splittings. Typically the splittings are of the order of∼ 40 MhZ. To ensure adiabaticity

condition the turn-on and off rates are kept to around 3 MhZ. This is done by adjusting

the spot sizes in the AOMs that act as on/off switches for the beams.

The second issue is a bit more subtle. We need to ensure adiabatic continuity into

the dark state of the Hamiltonian. The dark state is the state with zero eigenvalue

given by

|D〉 = 1
Ω̃

[Ωc|1〉 − Ωp|2〉], for Ω̃ =
√

Ω2
p + Ω2

c

To make sure we adiabatically continue into the dark state we need to make sure

the system initializes into the dark state and adiabatically follow the state during the
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entire duration of the pulses. Typically we initialize the system in the state|1〉. This

is the dark state when the coupling beam is on. It is straightforward to verify that if

we turn on the probe beam first we initialize the system in the bright state and with

adiabatic pulses the system stays in the bright state. We, therefore, need to turn-on

the coupling beam first. This ”counter-intuitive” pulse sequence initializes the system

in the dark state and throughout the evolution the atom, at-least in principle stays

in the dark state.

Population can be transfered between the two ground states using this method

as well. The slow transfer of population known as STIRAP (Stimulated Raman

Adiabatic Passage) can be implemented by adiabatic pulses as well. If we turn on the

coupling beam before the probe, we initialize the state in the dark state |1〉. Turning

on the probe and increasing it’s power (again, adiabatically) rotates the dark state

in the |1〉, |2〉 axis, shifting towards |2〉 as the probe beam power is increased. This

method can be used to transfer population between ground states. Finally if the

probe beam is turned-off after the coupling beam we have a population transfer from

|1〉 to |2〉. The transfer is coherent without any dissipative process involved as in

optical pumping. The atom stays in the dark state at all times.
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Chapter 8

Subwavelength localization of

excitation using EIT

This chapter is a summary of the work presented in [70]. Several technical details

are omitted and only the key results and methods are highlighted. The details can

be found in the thesis of Jared Miles [81], the lead author in the work mentioned

above. This is a follow up of the fantastic work done by the team in [68] where a

localized excitation in a spatial extent of λ/8 was demonstrated using the nonlinear

spatial dependence of the dark state under the conditions of EIT. We made several

improvements to the experiment and report the results in this work. The improvements

included moving to a different laser transition for EIT and a new dipole trap setup.

In this work we experimentally demonstrate the localization of excitation between

hyperfine ground states of 87Rb atoms to as small as λ/13 wide spatial regions.

We use ultracold atoms trapped in a dipole trap and utilize electromagnetically

induced transparency (EIT) for the atomic excitation. The localization is achieved

by combining a spatially varying coupling laser (standing-wave) with the intensity

dependence of EIT. Because the width of the localized regions is much smaller than

the wavelength of the driving light, traditional optical imaging techniques cannot

resolve the localized features. Therefore, to measure the excitation profile, we use
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an auto-correlation-like method where we perform two EIT sequences separated by a

time delay, during which we move the standing wave.

8.1 Motivation

Neutral atom quantum computing requires addressing qubits with electromagnetic

radiation. Addressability resolution is limited by the Abbe diffraction limit, i.e atoms

need to be spaced at a separation of atleast λ/2 (the diffraction limit) to be addressed

individually without affecting neighbouring atoms. If we use 87Rb as qubit atoms this

typically limits the atomic spacing to the order of 1 µm, the addressing wavelength

being 780−795 nm depending on the working transitions. Beating the diffraction limit

can help in building large scalable devices as well as implementing two qubit quantum

gate operations in which the driving interaction strength (and hence gate speeds)

can be increased by reducing spatial separation. The dark state can be prepared

with little population transfer to a radiative excited state, which reduces heating and

decoherence from spontaneous emission. As the excitation is coherent, dark-state

based localization can be achieved using short laser pulses, enabling fast gate speeds.

The ideas discussed can, in principle, be extended to high resolution optical imaging

which suffers from the diffraction limit and optical lithography techniques. The ideas

can be implemented in solid state qubits in quantum dots and NV centers.

8.2 Dark state and localization

Ideas behind dark state based localization stem from the non-linear dependence of

the dark state in a Lambda scheme on the intensity of the coupling beam. We start
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with the standard EIT Hamiltonian (details in 6)

HEIT = ~


0 0 1

2
Ωp

0 0 1
2
Ωc(x)

1
2
Ωp

1
2
Ωc(x) ∆

 (8.1)

where we have chosen a spatially varying coupling beam intensity giving rise to

a spatially varying coupling beam Rabi frequency Ωc(x). We have the dark state

solution of the Hamiltonian

|D〉 = 1
Ω̃

[Ωc(x)|1〉 − Ωp|2〉]

with Ω̃ =
√

Ω2
p + Ωc(x)2.

The population in the excited state |2〉 is given by

|〈2|D〉|2 =
Ω2
p

Ω2
p + Ωc(x)2

=
Ip

Ip + Ic
(8.2)

with Ip and Ic being the probe and coupling beam intensities respectively.

We can plot the spatial dependence of the population of the state |2〉 as a function

of distance giving the characteristic non-linear dependence.

This non-linear dependence on beam intensities, can be exploited as shown in

figure 8.2 to localize excitations.

8.3 Localization of atomic excitation

In this section we discuss strategy to create spatially varying coupling beam intensity

profile. We bulid on proposals by Agarwal and colleagues [71], Lukin [65] and previous

work in this group (theory[72] and experiment [68]). The first experiment that
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Figure 8.1: The Λ scheme of the atom. Transition from |1〉 to |2〉 is
forbidden. The corresponding Hamiltonian is given by 8.1.

observed dark-state-based localization was performed in a vapor cell by Scully and

collegaues [73] and a proof of concept experiment reported in this group using ultra-

cold atoms trapped inside a magneto-optical trap (MOT) [74].

A simplified energy level diagram is shown in Fig 8.1. Two laser pulses are the

coupling beam (with Rabi frequency Ωc) and the probe beam (Ωc) They interact

with a three level atomic system. The two lower states, states |1〉 and |2〉, are the

metastable ground states with long lifetimes, and they are coupled to each other

through the radiative excited state |e〉. The atoms are initialized into state |1〉 before

applying a counter intuitive pulse sequence where the coupling beam is turned on

before the probe beam. The conditions for adiabatic following into the dark state of

EIT is discussed in Chapter 7. The dark state has no population in the excited state

|e〉. From Eq. 8.2 and Fig. 8.3 we can see that the populations of states |1〉 and |2〉

are determined by the Rabi frequencies, and therefore the intensities of the two lasers.

The population in state |2〉 increases as the ratio Ic/Ip decreases. The population of
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Figure 8.2: Variation of population in |2〉 with the ratio of probe and
coupling beam intensities.

state |2〉 can then be tightly localized if the coupling laser goes through an intensity

minimum. A straightforward approach for achieving producing a spatially varying

coupling laser is to use a standing-wave [71, 65]. This scheme is demonstrated in

Figures 8.3 and 8.4 where a strong transfer to state |2〉 occurs near the nodes of the

coupling standing wave and away from the nodes atoms mostly remain in state |1〉.

The probe beam intensity (Ip or Ωp) is held constant.

8.4 Experimental procedure

The description of MOT/dipole trapping procedure is given in 3. A schematic of the

experimental set up in our lab is given in Fig. 8.5.

The experiment is performed in our 14-port stainless-steel ultra-high vacuum
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Figure 8.3: Variation of population in |2〉 with the ratio of probe and
coupling beam intensities.

chamber. The MOT is generated from three retro-reflected beams each having 50 mW

of power in two directions and 26 mW in the beam alone the axis of the anti-

Helmholtz colis. The beams have a diameter of 3 cm. The beams originate from

a semiconductor tapered amplifier seeded by a home-built external-cavity diode laser

(ECDL). The ECDL is locked to the D1 line of 87Rb near a wavelength of 795 nm

using saturated absorption locking. The far-off resonance trap (FORT)/optical dipole

trap for the atoms is formed using a 1064 nm diode seeding a 1055 nm semiconductor

tapered amplifier . The FORT beam is focused to a 1/e2 beam radius of 25 µm

and is overlapped with the MOT. Once the atoms are trapped in the FORT, they are

evaporatively cooled for about 200 ms down to a temperature below 1 µK by reducing

the FORT potential depth to ∼ 10 µK. At the end of evaporative cooling we have a

few thousand atoms in the dipole trap.

The coupling and probe lasers are both generated from the same ECDL [74, 68].

In order to have a perfect EIT the phase and frequency fluctuations in the probe and

coupling beams should match. Semi-conductor tapered amplifiers and high-frequency



86

Coupling beam Coupling beam

Counterpropagating 
coupling beams form a 
standing wave.

Atoms in a dipole trap

Excitations localized in nodes of 
coupling beam standing wave

Probe beam

Coupling beam Coupling beam

Counterpropagating coupling 
beams form a standing wave.

Excitation width < λ/2
Atoms in a dipole trap

Figure 8.4: Spatial Variation of population transfer to |2〉.The red
solid lines indicate the spatial variation of the coupling beam intensity.

The excitations are localized near the nodes of the standing wave.
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MOT Beams

ΩC

ΩP

ΩBlow-AwayDipole Trap Laser
MOT Atoms

Figure 8.5: An electron-multiplying CCD camera (EMCCD) images
the remaining atoms left in the FORT after an EIT experiment. The
laser Ωblow−away is used for the measurement protocol, and heats and
removes any atoms that are in the F = 2 level after the experimental

pulse sequence.

acousto-optic modulators are then used to produce the required frequency spacing of

6.834 GHz and sufficient optical power in each beam. As shown in Figure 8.6, the

two lasers form an EIT Λ with the levels 5S1/2, F = 1 to 5P1/2, F
′ = 2 being coupled

by the probe beam and levels 5S1/2, F = 2 to 5P1/2, F
′ = 2 transition addressed by

the coupling beam. These are the transitions in the D1 line of 87Rb.

The decay rate of the excited 5P1/2 level is Γ = 2π × 5.75 MHz. The polarization

of the two beams are linear and orthogonal to one another. The quantization axis

chosen along the propagation direction of the probe laser beam. This allows atoms

to transfer between identical ground state m levels via the m′ = m+ 1 excited state.

Note that this is true because a linearly polarized light in a direction perpendicular
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Figure 8.6: The Λ scheme in 87Rb

to the quantization axis can be written as a sum of left and right circularly polarized

light and the right circularly polarized light couples m′ = m + 1 while left circularly

polarized component couples m′ = m − 1. The atoms are initialized in the F = 1

level and then transferred to F = 2 through three parallel m-level channels (forming

three Λ systems).

8.5 Experimental results

8.5.1 Dark state preparation

We did experiments to measure population transfer to the F = 2 level under conditions

of EIT. For this we use only one coupling beam. The off-resonance experiments were
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carried out with a single photon detuning of ∆ω = 5.2Γ ∼ 30 Mhz.The experiments

were performed using coupling and probe beams with pulse widths of 150 ns and

100 ns, respectively, keeping the counterintuitive pulse sequence in mind.
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Figure 8.7: The population remaining in the F = 1 level after a
single EIT pulse as a function of coupling laser power is varied. This
experiment is performed using a single coupling laser. The solid black
line is the result of numerical simulations of the density matrix without
any adjustable parameters, i.e., all the beam parameters that are used
are experimentally measured. The solid green line shows the F = 1
level population using the ideal dark state solution. The dotted line
is the fidelity of dark state preparation, calculated in the simulations

and the ideal dark-state density matrix.

The lasers are turned off simultaneously. The detuning ensures less spontaneous

emission due to probe beam. The calculated probe laser Rabi frequencies for the three

channels are Ωp = 1.95Γ (mF = −1 → mF ′ = 0), Ωp = 3.33Γ (mF = 0 → mF ′ = 1)
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and Ωp = 4.7Γ (mF = 1 → mF ′ = 2). We experimentally measure transfer to F = 2

level. After a EIT pulse we blow away atoms at F = 2 level using a resonant blow

away beam (Ωblow−away). Results are shown in Fig. 8.7 ([70]).

For a coupling beam power of 40 mW calculated coupling laser Rabi frequencies

for the three channels are Ωc = 18.2Γ (mF = −1 → mF ′ = 0), Ωc = 18.2Γ (mF =

0 → mF ′ = 1) and Ωc = 14.1Γ (mF = 1 → mF ′ = 2). We experimentally measure

transfer to F = 2 level. In the figure the fidelity is calculated using a trace distance

measure tr
√√

σρ
√
σ [76].

At low coupling intensities, the EIT pulse is so short that the system does not

have sufficient time to reach the dark state, resulting is low atomic transfer to the

F = 2 level. As the coupling laser intensity is increased, the transfer peaks and then

drops again. The oscillations are an indication of non-adiabatic transitions before

reaching the dark state. On the whole, we estimate a steady state dark state fidelity

of ∼ .95 after the oscillations die down.

8.6 Auto-Correlation Measurement Protocol

In this section we discuss our measurement protocol for localization experiments. A

similar protocol is used to ’image’ subwavelength excitation structures in [68].

In the protocol two EIT transfer sequences separated by time τ are used. A

pair of counter propagating lasers produce the coupling beam standing wave and the

frequencies of these two beams differ by an amount δf .

The first EIT pulse transfers atoms to the F = 2 level. The transfer depends on

coupling beam intensity which varies with position as ∼ sin2(2πx/λ). Thus we end

up having a transfer as a function of position according to the dark state equation 8.2.

After the first EIT pulse, the blow-away laser is turned on. The beam ’blows-away’

atoms in the F = 2 level, being resonant with the F = 2 → F ′ = 3 transition. The
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Probe (ΩP)
τ
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EMCCD + fluorescence 30 ms

1.5 μs

Figure 8.8: Timing of the auto correlation experiment protocol. The
first EIT pulse sequence transfers some atoms to the F = 2 level. The
blow-away beam heats the atoms that have been transferred, ejecting
them from the trap. The procedure is repeated with the second EIT
pulse, after which the remaining (F = 1) atoms in the trap are imaged

with a fluorescence measurement.

atoms in F = 2 after the first EIT pulse are ejected out of the trap. Before the second

EIT pulse the standing wave moves by an amount δx = (λ/2)δfτ . The number of

atoms transferred by the second EIT pulse at a position depends on the new intensity

of the shifted standing wave pattern as well as the number of atoms remaining after

the application of the blow away beam. After the second EIT pulse, the blow-away

beam is turned on again, blowing away atoms transferred by the second EIT pulse

to F = 2 level. The total number of atoms that remain in the F = 1 level are

then measured with the EMCCD camera by a fluorescence measurement using the

F = 2 to F ′ = 3 cycling transition. The procedure is repeated by varying δf , giving

a correlation between the excitation profiles generated by the two EIT pulses. This

correlation measurement enables us to infer the spatial profile of the excitation that

results from a single EIT pulse. We neglect atomic motion during the duration τ

between the two EIT pulses. This is a valid assumption for atoms cooled to around

1µK. Figure 8.8 shows the pulse sequence.

Figure 8.9 shows the results of the autocorrelation experiment. The coupling

beam power in the standing wave varies from 0 mW to 10 mW in 8.9(a) and 0 mW to
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Figure 8.9: Results of the autocorrelation experiment. The coupling
beam power in the standing wave varies from 0 mW to 10 mW in 8.9(a)

and 0 mW to 20 mW in 8.9(b).

20 mW in 8.9(b). This data is recorded over a scanning distance of approximately two

periods of the standing-wave. The horizontal axis is δx = (λ/2)δfτ , translations δx

being generated by a varying the frequency difference δf . To infer the actual transfer

curves from the autocorrelation profile, we simulate the experimental correlation

traces by keeping the maximum power of the coupling laser standing wave as an

adjustable parameter; there are no other fit parameters in these simulations. These

simulation results are displayed in figures 8.9 (c) and (d). The correlation traces show

subwavelength transfer with FWHM ± ∼ 70 nm. The two experimental traces are

best captured with the coupling laser power ranging from 0 mW to 3 mW [Figs.8.9

(c)] and 0 mW to 7.5 mW [Figs. 8.9 (d)], respectively.

Figure 8.10 shows a numerical solution of the density matrix equations for the
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EIT pulse sequence at each point along the standing-wave spatial profile, generating

the population transferred to the F = 2 level as a function of position. This spatial

transfer pattern is convoluted with a itself at different spatial shifts of the standing

wave. A velocity spread is incorporated by using the Maxwell Boltzmann velocity

distribution at 1µK.
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Figure 8.10: The density matrix simulation of the inferred population
transfer to the F = 2 level as a function of the position in the standing-
wave for a coupling power range of (a) 0 mW to 3 mW and (b) 0 mW
to 7.5 mW. Position = 0” in the horizontal axis coincides with the
intensity minimum of the standing-wave and the results are displayed
over one period. The simulated correlation traces agree well with the
experimental results as shown in Fig. 8.9. In (b), the middle feature
has a width of 60nm or λ/13.3, a factor of 6.6 better than the diffraction
limit. The top plots show the simulated fidelity of the system to be in

the dark state.
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There is good agreement between the experimental results and the simulations of

Fig. 8.9 and Fig. 8.10. For the 0 mW to 3 mW power range, the middle feature of

Fig. 8.10(a) has a width of 97 nm or ∼ λ/8. The 0 mW to 7.5 mW range transfer

profile [Fig. 8.10(b)] has a width of 60 nm or ∼ λ/13.3, 6.6 times sharper than the

diffraction limit. The top plots in Fig. 8.10 show the estimated dark state fidelity

using density matrix simulations. The dark state fidelity is poor at the nodes where

the coupling beam intensity is low leading to a significant leakage to the bright states

leading to coupling with the excited state and hence unwanted spontaneous emission.

The next set of experiments were carried out with on resonance probe and coupling

beams, i.e the single photon detuning δω = 0. Being on resonance reduces the non-

adiabatic corrections to the dark state. The pulse widths for both the coupling and

probe beams were kept the same, but the rise times of the pulses were increased by a

factor of two (from about 20 ns to 40 ns), reducing non- adiabatic corrections to the

dark state by a significant amount. A pumping scheme to reduce the three parallel

EIT channels (Figure 8.5) to one was also carried out. we pump the atoms into the

F = 1;m = 0 state using an optical pumping beam. For this purpose, we apply a

DC magnetic field of magnitude 3G along the propagation direction of the EIT laser

beams. The magnetic field direction is the quantization axis and lifts the degeneracy

of the m-levels through the Zeeman shift (Fig. 8.11) . A laser, linearly polarized along

the direction of the magnetic field is then applied. This laser pumps the atoms from

the F = 1,m = ±1 states into the F = 1,m = 0 state via the F ′ = 2 excited level.

The propagation direction of the optical pumping laser is roughly perpendicular to

the dipole trap laser beam direction.

The results of transfer to excited state and dark state overlap using a single

coupling beam is shown in Fig. 8.12. We find a lot of oscillations seen before in

Fig. 8.7 have died down indicating less non-adiabatic effects. Due to the pumping

scheme mentioned above we measure population in F = 1,m = 0 level, i.e a single



95

F=2

F=1

52S1/2  

52P3/2    F’=1

F=2

F=1

52S1/2  

52P3/2    F’=1

Spontaneous emissionLinearly polarized 
Pump laser

Figure 8.11: m-level pumping by linearly polarized light. The F =
1mF = 0 to F ′ = 1mF = 0 transition is a forbidden. After pumping
the excited atoms can decay to either of the F = 2 or F = 1 ground
state levels. Atoms in F = 2 level is pumped out using the coupling
beam on resonant with the F = 2 to F ′ = 2 transition. After this

sequence atoms enf up in F = 1,m = 0level

EIT channel is involved in the experiment.

The results of the two pulse EIT experiments are shown in figure 8.13 and the

inferred transfer profiles are shown in figure 8.14. For these experiments the coupling

beam standing wave minima was kept to 1mW to ensure better dark state fidelity

at all positions. Figure 8.13 shows the experimentally measured correlation traces

for four different ranges of the standing wave: (a) 1 mW to 10 mW, (b) 1 mW to

20 mW, (c) 1 mW to 40 mW, and (d) 1 mW to 80 mW , with coupling beam Rabi

frequency (a) 2.89Γ to 9.11Γ (b) 2.89Γto 12.9Γ (c)2.89Γ to 18.2Γ and (d) 2.89Γto

25.8Γ respectively. The solid black lines are the numerical simulations of the density

matrix without any adjustable parameters.

Figure 8.14 shows the inferred population transfer along the standing wave after a

single EIT pulse for the four experimental conditions of Fig. 8.13. These population
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Figure 8.12: The population remaining in the F = 1 level after a
single EIT pulse as the coupling laser power is varied. This experiment
the EIT lasers having single photon detuning δω = 0. The solid black
line is the result of numerical simulations of the density matrix without
any adjustable parameters. The solid green line shows the F = 1 level
population using the ideal dark state solution. The dotted line is the
fidelity of dark state preparation, which approaches unity for coupling
laser power values above 2 mW. This experiment is performed with the
atoms initially optically pumped into the F = 1;m = 0 state, there
is a single EIT channel. The probe beam Rabi frequency Ωp = 5.78Γ
and for coupling beam power of 40 mW, the calculated coupling Rabi

frequency is Ωp = 18.2Γ
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Figure 8.13: Experimentally measured correlation traces for four
different ranges of the standing wave: (a) 1 mW to 10 mW, (b) 1 mW
to 20 mW, (c) 1 mW to 40 mW, and (d) 1 mW to 80 mW , with
coupling beam Rabi frequency (a) 2.89Γ to 9.11Γ (b) 2.89Γto 12.9Γ
(c)2.89Γ to 18.2Γ and (d) 2.89Γto 25.8Γ respectively. The solid black
lines are the numerical simulations of the density matrix without any

adjustable parameters.

transfer results are used to generate the simulations of the correlation traces as shown

in Fig. 8.13. For coupling power range of 1 mW to 80 mW, Fig. 8.14(d) shows that

the transfer is localized to a region with a width of 70 nm, which is a factor of 11.3

times smaller than the wavelength of the coupling and probe lasers.

In conclusion, we experimentally transferred atoms between hyperfine levels of cold

87Rb atoms within a spatial width of 70 nm, a factor of 11.3 times smaller than the

wavelength of the lasers used to perform the transfer, thereby overcoming the standard

diffraction limit. This was achieved using 150 − ns EIT pulses and with an inferred
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Figure 8.14: The inferred population transfer to the F = 2 level
as a function of the position in the standing-wave for coupling power
ranges same as those displayed in Fig. 8.13. Zero in the horizontal
axis coincides with the intensity minimum of the standing-wave and
the results are displayed over one period. These simulated features
produce the correlation traces that match the experimental results as
shown in Fig. 8.13. In (d) [coupling laser power range of 1 to 80 mW],
the transfer is localized to a region with a width of 70 nm, ∼ 11.3
times smaller than the wavelength of the coupling and probe beams.
The top plots show the calculated fidelity of the system to be in the
dark state. The fidelity is above 94% at all points along the standing

wave.
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dark-state preparation fidelity exceeding 94% across the spatial extent of the atoms

in the region of interest. As discussed in Chapter 7, dark-state based approach has

several advantages that may be especially useful for quantum computing experiments

in which nanoscale-level addressing with low decoherence and spontaneous emission

losses are required. Experiments discussed here (published in [68, 70]) as well as

works such as [82] that implements a similar protocol in a solid state system, provide

a stepping stone towards such realizations of dark state based quantum information

processing.
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Chapter 9

Coherent control and quantum

gates using EIT

We discuss methods to use the dark state of EIT to generate coherent control of

quantum state of neutral atoms. The non linear dependency of the dark state on the

intensities of the coupling beam is going to be the key factor. The inspiration behind

the scheme is the work presented in [65]. Dark state based protocols are presented

in [66] and [67]. Experimental progress is discussed in [68] and [70] and in the next

chapter

9.1 The phase qubit

Here we describe a phase gate protocol that applies a phase on a qubit in an array.

The key feature of this protocol is its operation with subwavelength spatial resolution

and minimal error due to spontaneous emission. A schematic of the level structure is

given in figure 9.3. There are two qubit levels |0〉 and |1〉 with states |1〉, |r〉 and |e〉

forming the Λ system of the EIT Hamiltonian. The Hamiltonian, in the co-rotating

frame after making the RWA in the basis |0〉, |1〉, |r〉 and |e〉 is given by (see Chapter

7 for details). In our Hamiltonian we assume the coupling beam is in the form of a

spatially varying standing wave giving a spatially varying Ωc. Both the probe and
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coupling beams are pulses of finite duration and the corresponding Rabi frequencies

are therefore functions of time.

H(x, t) = ~



0 0 0 0

0 0 0 1
2
Ωp(t)

0 0 δ 1
2
Ωc(x, t)

0 1
2
Ωp(t)

1
2
Ωc(x, t) ∆ + iΓe

2


(9.1)

For perfect EIT we need two photon detuning δ = 0

If we start in the initial state

|ψ(t = 0)〉 = 1√
2
[|0〉+ |1〉]

The time evolution over a pulse duration τ is given by

|ψ(t)final〉 = e−
∫
τ iH(x,t)dt|ψ(t = 0)〉

At the node of the standing wave (assume Ωc = 0 for simplicity) we can apply a

phase φ by Stark shift on atom 1, the atom located at the node. For τ ∼ φ ∆
Ω2
p

we

have |ψ(t)final〉 = e−
∫
τ iH(x,t)dt|ψ(t = 0)〉 = 1√

2
[|0〉+ eiφ|1〉].

For the atom located away from the node adiabatic pulses ensure that the atom

always remain in the dark state and is thus transparent to both beams. The atom

sees no phase shift.

For atom 2 we have

|ψ(t)final〉 = e−
∫
τ iH(x,t)dt|ψ(t = 0)〉 = 1√

N
[|0〉 + |D(x, t)〉] where the dark state of the

system |D(x, t)〉 ∼ [Ωc(x, t)|1〉 − Ωp(t)|r〉]

The system remains in the dark state at all times provided the adiabaticity conditions

(described in 7) is satisfied. We can calculate a region of excitation, the spatial extent
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Figure 9.1: The qubit level schematic. Qubit state |1〉 is one of the
states of the Λ system addressed by the probe beam detuned by ∆

from the excited state |e〉.

around the node where we expect active phase gate operation. This is given by

Rexc =
Ωp

Ωc,maxk
(9.2)

where k = 2π
λ

with λ being the wavelength of the coupling beam. Ωc,max correspponds

to Rabi frequency at the position of peak coupling beam intensity. We can see that

the region of excitation can be made arbitrarily small by increasing the peak coupling

beam intensity.

9.2 Phase qubit in a Rb array

In this section we discuss implementation of the phase qubit with subwavelength

resolution in an array of Rb single atoms. We carry out density matrix simulations
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The coupling beam standing wave gives rise to a spatially varying standing wave. 
Consider two atoms , atom 1 located at the node of  the standing wave, atom 2 at 

distance d <<      from atom 1.
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

A zoomed in figure indicating the 
spatial variation of coupling and probe 
beam Rabi frequencies near the atoms. 

Figure 9.2: Spatial variation of probe and coupling beam intensities
around the atoms. (Phys. Rev. Lett. 100, 093005 (2008))

with real experimental parameters. The time evolution of the density matrix is give

by ρ̇ = −i
~ [HEIT (t), ρ]− 1

2
{Γe, ρ}.

Here Γe is a matrix that takes into account decay from the excited state |e〉]. We

assume equal branching ratios. We analyze the phase gate using realistic experimental

parameters. The scheme can be useful for an array of qubits in an optical lattice where

the qubit separation of λlattice/2 makes it difficult to address qubits by focused laser

beams. λlattice is the wavelength of beam forming the optical lattice. For qubit levels

we choose

For the qubit level |0〉 we choose 87Rb ground state 52S1/2, F = 1,mF = −1 and

for level |1〉 we work with 52S1/2, F = 1,mF = 1. Level |r〉 is 52S1/2, F = 2,mF = −1

and |e〉 is 52P1/2, F = 1,mF = 0.

We choose a detuning ∆ = 15γ where γ is the decay rate from the excited state
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Figure 9.3: The qubit levels in a 87Rb atom. A bias field is used to
split the m-levels.

|e〉. The probe pulse duration is assumed to be τ = 0.5 µs, giving a gate speed

∼ 2 Mhz. For this we assume a probe power of 5 nW, 1/e2 radius of 0.8 mm, giving

a probe Rabi frequency of Ωp = 2.6γ. For now we assume ideal case of Ωc = 0 at the

node. We’ll discuss errors due to a non zero node in the next section. The Coupling

beam power: Standing wave power varied from 0 mW at node to 70 mW maximum

standing wave with 1/e2 radius of 0.8 mm giving Ωc = 23γ. The 87Rb decay rates,

C-G coefficients and dipole matrix elements obtained from D.Steck’s Rubidium 87 d

line data available online.

Figure 9.4 shows a measure of the phase φ applied to as a function of spatial

position of the atom relative to the coupling beam standing wave. The region of

excitation is clearly subwavelength.

Figure 9.5 shows a measure of the region of phase excitation applied to the second
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1

Excitation width ~λ/13

λ=795nm

Figure 9.4: Applied phase as a function of distance . The red line is
an indication of coupling beam standing wave. A phase is applied at
the node of the standing wave and it drops to zero as we move away

form the node.

qubit over the pulse duration as a function intensity maxima of the coupling beam

standing wave. The region of excitation is clearly subwavelength and we see that the

width decreases as we increase coupling beam power, as expected from Eq.9.2.

9.3 Error budget

To analyze the errors we need to calculate the possibility of leakage to the bright state

for atoms that we need to be in the dark state. We analyze the errors separately for
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Figure 9.5: Region of excitation as a function of maximum coupling
beam intensity.

the two atoms.

9.3.1 Error on atom at the node

Spontaneous emission from the excited level

For detuning ∆ >> Ω we expect probability of excitation to the upper state |e〉 to

be very small. When the Stark-shift beams are turned on there is a small probability

of excitation to state |e〉. The corresponding rate of spontaneous emission is given by

peγτ , where pe is the probability of excitation to state |e〉 and τ ∼ ∆/Ω2
p is the gate

time. For detuning ∆ >> Ω we get pe = γ/∆ giving an error of γ/∆. For detuning

∆ = 15γ we have an error of 6.67%. This is fairly high but can be improved by

increasing power in the probe pulse or by increasing the gate time. This will however

affect the region of localization and the coupling beam power needs to be increased
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according to eq 9.2. For instance for a gate time of τ ∼ 12.5µs we can increase ∆ by

a factor of 10 and Ωp by a factor of 2 to reduce the gate error by a factor of 10. This

of course requires Ωc to be increased by a factor of 2 as well.

Non-adiabatic transitions

The pulses have a finite turn-on and off time that needs to be slow compared to the

Dark-Bright energy splitting. The non-adiabatic coupling to the bright state is of the

order of (Ω̇p/∆), with Ω̇p being a characteristic rise time of the pulse, giving to a

probability of leakage to the bright state of (Ω̇p/∆)τ and an error of (Ω̇p/∆)τγ. This

is negligible for our experimental parameters.

Non-zero value of coupling beam power at the node

Experimentally we expect the coupling beam intensity at the node to be finite as it is

not easy to balance the standing wave intensity exactly. We can realistically achieve

Ic = 1mW , where Ic is the coupling beam intensity. The error will be due occupation

of dark state. Note that this analysis will be important to account for finite atomic

velocities even if Ωc = 0 at the node. If Ωc(0) 6= 0 the atom may end up in the dark

state where no phase is applied. The probability of the atom being in the dark state

is ∼ (Ωc(0)
Ωp

)2 which gives an error of ∼ 0.02%.

Intensity fluctuations and timing jitters in the Stark shift beam

We expect fluctuations in beam power to be less than 2%. In that case get an error

on the phase (δφ)/φ ∼ 0.1%. This is fairly large and can be managed by keeping gate

time low or by intensity stabilization techniques like noise eaters etc. Assuming pulse

timing fluctuations of about ∼ 1ns we get an error in phase of ∼ 0.04%.
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9.3.2 Error on atom 2

Non-adiabatic transitions

The pulses have a finite turn-on and off time that needs to be slow compared to

the Dark-Bright energy splitting. The non-adiabatic coupling to the bright state is

of the order of (Ωp/TriseΩc), with Trise being a characteristic rise time, giving to a

probability of leakage to the bright state of (Ωp/Ωc)
6.

Spontaneous emission from the excited level |r〉

The spontaneous emission rate from 52S1/2, F = 2 to F = 1 level is very small. The

error ∼ (Ωp
Ωc

)2γrτ , with γr the spontaneous emission rate from the excited state |r〉.

9.4 Conclusion

There are several advantages of the scheme for implementing quantum gates. The

coherent nature of the operations ensure high fidelity gate operations with high spatial

resolution. The scheme works with very little probability of spontaneous emission as

the excited state population is zero in the ideal case.

Two qubit gates may benefit from the possibility of qubits being placed closer to

each other.
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Chapter 10

Future work

10.1 Part I

Here we discuss future works. We have demonstrated a measure of collective effects

in very dilute ultracold atom samples in a regime that has not been explored before.

The excited cloud showed signatures of superradiance and subradiance. There is a lot

of scope for improvement though. First, directional effects mentioned in Chapter 5

can be studied by placing the photon counter at varying angles possibly mapping

a 360◦ radiation profile. Collective effects can be studied in 2-D or 3-D optical

lattices. An immediate aim could be a sharper control of pulse intensities to achieve a

higher excitation fraction and possibly an inverted sample along with a better control

of optical depths, atom number and cloud size. The experimental aspects can be

improved by using a Multi-channel scalar counting module that can speed up the

data acquisition process.

On a fundamental level we can study collective effects in few atom samples.

Extension of our results to mesoscopic ultracold clouds, with atom numbers in the

range of 100-1000 would be very interesting. Such a mesoscopic system can be studied

by loading the atoms to a far-off-resonant dipole trap, which is formed by focusing

a detuned laser overlapping with the MOT. By moving one of the mirrors of the
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focusing optics, the beam size at the focus, and therefore the size of the trap, can be

precisely controlled. This would allow independent control of the number (N) and

density (n) of atoms in the trap. Such highly controlled mesoscopic systems will likely

allow for better probing of many of the physics that we have explored in this paper,

including the superradiance-to-subradiance transition.

Subradiant states have gained renewed attention over the last decade since they

are less susceptible to decoherence and can provide a robust framework for quantum

information processing. Our work experimentally shows that such states can, in

principle, be prepared even in the large-sample, very dilute limit.

Collective effects could be studied more systematically in optical lattices where

exact spacing between atoms can be controlled in a precise manner [83]. Making an

estimate of the prepared state with exact phases has been a problem for our simple set-

up. With precise control of positions in a lattice a better estimate of the initial state

can be obtained enabling a better understanding of the physical processes involved.

10.2 Part II: Nanoscale Quantum gates

As of now we are working towards implementing a localization protocol for single

atoms in a dipole trap. As mentioned in Chapter 7 we were limited by beam power

in the dipole trap beam. We are looking to use a fiber amplifier to achieve beam

powers of ∼ 1 W, a significant improvement on the 150 mW that we have at the

moment. The localization protocol can be implemented in a pair of single atom

dipole traps or in a 1-D optical lattice. Once we have demonstrated localization we

can implement the phase qubit protocol. A long term goal will be a neutral atom qubit

array that uses Dark state of the EIT to carry out fast and efficient gate operations.

Coherent operations of quantum gates with low dephasing rates are going to be vital
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components of quantum computers and quantum devices. Further progress requites

two qubit operations that can also be implemented using dark state protocols [65].

Apart from quantum computing dark state based localization protocols can have

applications in subwavelength imaging in biology and high resolution lithography and

as mentioned before the dark state based protocol can be adapted to other quantum

systems like solid state spin qubits or NV centers in diamond.

Quantum computers with neutral atoms may or may not become a reality as there

are other candidates with their own advantages and disadvantages. However, precise

control of quantum states and measurements can help us have a better understanding

and appreciation of the beauty in the quantum world.
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Appendix A

Experiments using EMCCD

camera

In this section we look at some early experiments conducted in our lab. These

experiments were carried our using high N.A optics and EMCCD camera. A discussion

of EMCCD camera is carried out in Appendix D. EMCCD cameras are fascinating

tools with highly sensitive CCDs cooled down to −200C to reduce electronic dark

noise. Though it is an excellent device for low signal imaging, using it for time

resolved measurements is a fairly inefficient. Here we report a protocol for observing

superradiance and subradiance using EMCCD and some results that showed both

superradicance and subradiance.

The problems in using EMCCD camera is fairly obvious. Though it is a fairly

sensitive device it needs to be triggered for every point on the time axis for the decay

curve. This, is to be done several hundreds of times for averaging and obtaining

a satisfactory signal to noise ratio. We have, however, observed superradiance and

subradiance in the data we obtained.

The data is fit to a time varying decay rate. We observe (A.2) an early time

constant of ∼ 9ns, which is clearly superradiant. The system becomes subradiant at

later times showing decay timescales of around ∼ 35ns. Apart from the inefficient
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Figure A.1: A schematic for experiment using EMCCD

data acquisition process, the EMCCD has other issues.

The EMCCD readout seems to have ”remnants” of signal the sensor possibly

received before it was triggered to take data. Thus the sensor data seems to have an

offset that cannot be determined.

We found that the offset signal is present only when the sensor was exposed to a

source of significant brightness,like fluorescence from the MOT, inevitable during the

MOT loading cycle, but we could not be sure whether some offset noise is present

during exposure to weaker signals or not. If the offset remains constant over time, it

can just be subtracted from the final data. We could not ensure that the offset was

a constant and not time varying.Protecting the sensor from exposure using shutters

and beam blocks significantly reduced the offset. For our analysis we assumed the

offset to be constant as our analysis is over a period of just a microsecond. We did

not expect the offset to vary a lot over that period.
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Figure A.2: The data is fit to a time varying decay rate, showing
The data is fit to a time varying decay rate, showing an early time
constant of ∼ 9ns, which is clearly superradiant. The system becomes

subradiant at later times.

Figure A.3: EMCCD raw data taken for long time.
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Appendix B

Photon counting module

B.1 Functioning

We use an Excelitas SPCM-AQRH-11 photon counting module. The following must

be kept in mind to ensure smooth operation of the module and also keep it safe.

The digital OUTPUT pulse (BNC connector, TTL levels, ¿1.5V) should be terminated

into a 50Ω load to avoid distortion and ringing. A 1.0V triggering level is recommended

on counters and oscilloscopes to avoid triggering on noise. For observing the signal

in an oscilloscope we use a 50Ω termination resistor.

The GATE input (BNC connector) impedance is 50Ω and is internally connected

to the +5 volt supply through a 50Ω pull-up resistor (standard module versions).

It can be driven by standard TTL level signals. The gate drive must be capable of

sinking 100 mA to gate the module “off” (5V/ 50Ω). The Quantum Control QC95

Pulse Generator TTL pulses are not able to drive the required current. A Buffer

circuit needs to be used. Counting is enabled at TTL high and disabled at TTL-low.

Saturation: The photon count decreases at higher incoming light levels. The

saturation counts may appear on the scope as a train of pulses spaced by ∼ 22ns.

The count at which the output rate starts to decrease is called the saturation point.

If the module is exposed to intense light the count rate will fall to zero. While the
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module is protected against light overload, precautions should be taken to avoid any

excessive light level. After an over exposure, the dark count of the module could

increase temporarily for up to an hour. We carry out our experiments in a dark room

and cover up the path between the chamber and fiber as much as possible.

B.2 Calibrating pulse delay

We have a finite delay between the time a photon event is initiated in the counter

and it’s detection in the DAQ. The delay is due to several factors like building up

of photon pulse current in the detector, time taken for the pulse to travel the length

of fiber, etc. The delay was found to be around 36ns with an error of ±2ns. The

correction needs to be made in the data by a simple shift in the time axis.

Timing 
electronics

excitation 

laser Photon

counter

Photons scattered 

from the surface of 

the lens

Figure B.1: A schematic for calibrating photon counter delay.
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To measure the delay we have set-up similar to Fig. B.1. We send a laser pulse to

a Photodiode. A converging lens focuses the beam into the diode. Photons scattered

off the surface of the lens is detected by the photon counter. Over several hundreds of

cycles of pulses we replicate a pulse shape upon integrating the photon counter signal.

The lag between the pulse measured in the photodiode and that of the integrated

photon counter signal is a good measure of the delay. The delay was found to be

around 36ns with an error of ±2ns. The correction needs to be made in the data by

a simple shift in the time axis.
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Appendix C

MOT/dipole trap parameters

In this section we discuss measurement of number of atoms in a MOT or dipole trap

using fluorescence techniques and measuring cloud temperature using Time of flight

technique.

C.1 Atom number calculation

We use standard fluorescence imaging techniques to estimate the number of atoms

in dipole trap or MOT/CMOT. The protocol is to shine resonant light of intensity

greater than saturation intensity on the atoms for a certain duration. We theoretically

estimate the photon scattering rate. Radiation is emitted independently by atoms

isotropically at a fixed rate. We collect a fraction of the emitted photons as the

collectiopn optics not not cover the entire 4πsteradians. We estimate the number

of scattered photons in the duration of the pulse and take into account losses due

to optics in between as well as quantum efficiency of the EMCCD camera at that

wavelength.

We use a retroreflected imaging beam of power 180 and 1/e2 diameter of 0.9mm

Γsc = s
1+s2+4( ∆

γ
)2

We have a lens of diameter 4 inches at a distance of 17cms from the cloud. Only

about 90% of the lens can be used for collecting light. This gives a solid angle of
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.036 steradians, about 2% of the total solid angle (we call it the collectionfraction).

The exposure time τexp is the time duration for which photons are collected. We also

assume losses of 50% (lossfraction). So a straightforward counting calculation can

be carried out as follows

Number of photons emitted by the cloud in the duration of excitation that reach the

EMCCD sensor

Nphotons =Natoms ∗ Γsc ∗ τexp ∗ collectionfraction ∗ lossfraction

At 780nm, the quantum efficiency of the detector is 50%, i.e one photoelectron is

emitted for two photons. Number of photo-electrons emitted per atom in the given

exposure time

Npe =Nphotons ∗ quantumefficiency

At EMCCD gain zero 1.6 photo-electrons give 1 count. We read the total EMCCD

counts (Ncounts) from the camera software. Ncounts = Npe/1.6

Therefore we can estimate the number of atoms from the number of counts

Natoms = (Ncounts∗1.6)/(Γsc∗τexp∗collectionfraction∗lossfraction∗quantumefficiency)

Of course, Ncounts is the background subtracted number of counts.

C.2 Measuring temperature of atoms in a MOT/dipole

trap

The temperature of the cloud is estimated by the time-of-flight technique. The cloud is

released from all trapping beams and fields and is allowed to expand freely The radius

of the cloud is measured by the EMCCD camera at each time interval. Usually this

measurement interval is 1ms. The cloud radius is measured by fitting the EMCCD

fluorescence image with a Gaussian. The current imaging set-up has a magnification

of 0.9 that has to be taken into account.
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We measure cloud radius as a function of time. The data can be fit the function

R(t)2 = R(t = 0)2 + kBT
m
t2

where R is the radius, kB the Boltzmann constant and m is the mass of the atom.

The slope of R(t)2 vs t2 is then used to estimate the temperature. The method can

be used for both the CMOT and dipole trap.
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