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Abstract

This thesis consists of two separate parts. In the first part, we investigate a system

for refractive index enhancement. Such a system is useful for example in imaging sci-

ence, where a large refractive index reduces the wavelength of light hence improving

the achievable resolution. Systems exhibiting electromagnetically induced transparency

(EIT) are known to produce such an enhancement. However, the effect is not signifi-

cant and it changes only the slope of the refractive index as a function of frequency. A

system developed in Yavuz lab demonstrated an increase in the refractive index while

maintaining zero absorption, controlling the refraction index directly. In this thesis,

we make further quantum investigations on this system using numerical simulations,

and find that under certain conditions of the system parameters, it exhibits quadrature

squeezing or photon-number squeezing. This is remarkable, since traditionally squeezed

states are generated by an explicit nonlinearity in the system, while here it is the result

of a quantum interference of linear laser-atom interactions in the system.

In the second part of the thesis, we propose a scheme for the detection of axions.

The axion is a hypothetical particle originally postulated to solve the strong CP prob-

lem in particle physics. It is also a promising candidate to be dark matter, which had

been a long-standing problem in physics and cosmology: the evidence for its existence

is abundant, yet no direct measurement has confirmed it as of yet, and its nature is

unknown. The speculated role of the axion in both these puzzles had motivated exper-

imental searches for it. We propose an experimental scheme for the detection of axions

using four-wave mixing in optical fibers. An advantage of this scheme is our control of

the operating lasers, which allows for the scanning of a range of axion masses.
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Chapter 1

Introduction

Four-wave mixing, the nonlinear process in which two light beams at different frequen-

cies interact through a χ(3) nonlinearity to produce two new frequencies, has applica-

tions in multiple fields, for example: phase conjugation, real-time holographic imaging

and photon-pair generation in quantum communication. In Yavuz lab it was used in

former projects of the group, including molecular modulation [1] and refractive index

enhancement [2]. This thesis consists of two parts connected by the common theme of

implementing four-wave mixing at the core of the systems. Another common theme is the

use of squeezed light. The first part of the thesis investigates the quantum properties of

a system for increasing the index of refraction. This has applications in imaging science:

The imaging resolution is limited by the wavelength of light, as we are able to resolve

objects which are no smaller than about the wavelength of light. This is known as the

diffraction limit, and a way to improve this is to increase the index of refraction of the

medium. Such an increase would decrease the wavelength λ to ∼ λ/n hence improving

the resolution. Motivated by this, systems for “engineering” the index of refraction had

been investigated for a while. It is known that near an atomic resonance, the index of re-

fraction can be high. However, the accompanied absorption is high as well and the effect

is not useful. Setups implementing “Electromagnetically Induced Transparency” (EIT)

are capable of achieving increased refractive index with vanishing absorption. EIT is a

technique that can render a medium transparent to near-resonant light. The technique
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relies on quantum interference associated with an established dark-state of an atomic

system, which is achieved by dressing the atoms using an intense control laser (also

frequently referred as the coupling laser). Over the last two decades it had been used

in a wide range of nonlinear and quantum optics effects, including slow-light, stopped

light, and enhanced optical nonlinearities that can be effective even at the single photon

level. This is another area of active research. Here we focus on the index enhance-

ment property. In order to improve and complement the EIT method, Yavuz lab had

developed a system [2][3] for increasing the index of refraction while experiencing zero

absorption. Unlike EIT which changes the slope of the index of refraction as a function

of frequency, the developed system controls the value of the refraction index directly.

Such a system is interesting and the goal of this part of the thesis is to make further

quantum investigations and determine the conditions under which squeezed states arise.

In my investigations, I used numerical simulations written in Python using the QuTiP

package, and found that the system exhibits quadrature squeezing or photon-number

squeezing under certain conditions of the system parameters. This is interesting, since

quadrature squeezing typically requires explicitly nonlinear Hamiltonian terms. Here,

this is the result of a quantum interference between two linear parts of the system, and

could have future applications. The simulations were run with the help of the Center for

High-Throughput Computing (CHTC) at UW-Madison.

The structure of this part of the thesis is as follows: Chapter 2 develops a theoreti-

cal description of squeezed light and the squeezing operator, and reviews experimental

progress in the field. Chapter 3 reviews refractive index enhancement setups, including

the one which is the basis for our investigations. It reviews the susceptibility behavior

near atomic resonance, the refractive index enhancement achieved using EIT setups,

and finally the system developed by our lab for refractive index enhancement with zero

absorption. Chapter 4 then describes our photon statistics investigation of the index

enhancement setup. We provide two analytical analyses: One solving exactly for the

quadrature squeezing in terms of the system parameters, but under a specific initial

condition and a slow variation assumption, and a second one solving the corresponding
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Schrodinger equations, allowing for the calculation of probability amplitudes and pho-

ton statistics, iteratively. We then show the results of numerical simulations and their

dependence on the system parameters, and find the conditions under which quadrature

squeezing or photon-number squeezing arises.

In the second part of the thesis I describe a system for the generation and detection of

axions. The axion is a hypothetical particle, motivated to exist in order to solve a known

problem in particle physics: the strong CP-problem. Looking at the strong-interaction

sector of the Standard Model Lagrangian, there is a term which is not invariant under

CP (charge conjugation + parity) transformations. However, experiments indicate such

an invariance exists to a high degree. Experiments measuring the contribution of this

term to the electric dipole moment, which should be nonzero in the case of CP-violation,

found it to be smaller than one part in 1015. A proposed solution was to assume the

existence of a field which experiences spontaneous symmetry breaking under some energy

scale, acquiring a nonzero quantum expectation value. This nonzero value cancels out

that term in the Lagrangian and explains why the symmetry holds. The Goldstone

boson associated with the excitations of this field is the axion. The existence of the

axion also provides a good candidate for solving another big problem: the nature of

dark matter. As a particle interacting very weakly with electromagnetic radiation, it is a

natural candidate to be dark matter. This had motivated experimental searches for the

axion, which have so far came short of finding it. We propose a system for generating

and detecting axions using lasers in optical fibers. This type of a system which both

generates and detects axions (as opposed to detecting existing axions from astrophysical

sources) belong in a category of experiments known as “light shining through a wall”

where photons are converted into axions under the influence of a strong magnetic field,

pass through an optical barrier, and reconvert back into photons, which are measured.

A great advantage of our scheme is the very large interaction length for the generation

and the detection of axions, using kilometers of optical fibers (see the length parameter

of phases 1-4 of our setup) which increases the achievable sensitivity. Another important

advantage is the control of the laser frequencies producing the axion, allowing for the
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scanning of different axion masses, as well as flexibility in the central frequencies of the

chosen lasers.

The structure of this part of the thesis is as follows: In chapter 5 we describe evidence

for the existence of dark matter, and potential particle candidates. The axion makes a

good candidate which motivates its existence. In chapter 6 we describe current and

planned axion detection experiments, and their corresponding measured and projected

sensitivity limits. Then in chapter 7 we describe our axion generation and detection

setup: The experimental scheme, examples of possible axion solutions, and a calculation

of the coupling constant sensitivity that this experiment would produce, for 4 phases of

experimental parameters, taking into account potential noise sources.
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Part I

Squeezed light in a refractive index

enhancement setup
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Chapter 2

Quantization of light and squeezed

light

2.1 Quantization of light

In this chapter we review the quantization of light (also typically referred to as second

quantization of Maxwell’s equations) and also discuss various statistical properties of

quantum states of light. In particular, we review coherent states, which have equal

amounts of quantum fluctuations in both quadratures, quadrature-squeezed states, and

photon-number squeezed states, showing sub-Poissonian statistics. To a large extent we

will follow the description by [4]. In order to describe quantized light we consider for

simplicity a cavity with conducting walls on both sides. Assuming no electric charges or

currents inside, the electromagnetic field in the cavity is described by Maxwell’s equations

without sources:

∇× E = −∂B
∂t

(2.1)

∇×B = µ0ε0
∂E

∂t
(2.2)

∇ · E = 0 (2.3)

∇ ·B = 0 (2.4)
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We consider a sinusoidal standing wave in the cavity. Because of the boundary

conditions, the electric field vanishes at both ends of the cavity and would be described

by a standing wave that has a sinusoidal dependence on position. Letting the cavity axis

to be in the z-direction (the wave propagation direction), and the transverse electric and

magnetic fields be in the x- and y-directions, we have

Ex = G(t) sin(kz) (2.5)

where G(t) is some function of time and sin(kz) satisfies the boundary conditions.

The quantity k is the magnitude of the optical k-vector, k = |⃗k|. Given the above

expression for the electric field, Maxwell’s equations constrain the form of the magnetic

field. Using Eq. (2.2) we have

− ∂By

∂z
= µ0ε0 Ġ(t) sin(kz)

∵ By(z, t) =
µoε0
k

Ġ(t) cos(kz)

(2.6)

The total stored energy of the electromagnetic field, integrated over the whole volume

of the cavity, is then

H =
1

2

∫
dV

(
ε0E

2(r, t) +
1

µ0

B2(r, t)

)
=

1

2

∫
dV

(
ε0E

2
x +

1

µ0

B2
y

)
=

1

2

∫
dV

[
ε0G

2(t) sin2(kz) +
µ0ε

2
0

k2
Ġ2(t) cos2(kz)

] (2.7)

We now let the cavity length be L. Noticing that
∫ L

0
sin2(kz)dz =

∫ L

0
cos2(kz)dz =

L/2 where k = nπ/L gives

H =
V

4
ε0

(
G2(t) +

Ġ2(t)

ω2

)
(2.8)



8

where we have used ω2/k2 = c2 = 1/(ε0µ0). We can write this as

H =
V ε0
4ω2

(
Ġ2 + ω2G2

)
(2.9)

which has the form of the Hamiltonian of a harmonic oscillator

H =
1

2
(p2 + ω2q2) (2.10)

if we identify the canonical coordinates

q ≡
√
V ε0
2ω2

G (2.11)

p ≡ Ġ (2.12)

Now, to quantize this field, we will replace these classical canonical coordinates with

corresponding operators. For this purpose, we set the commutator between the position

and momentum operators to a non-vanishing value:

[q̂, p̂] = iℏ (2.13)

which quantizes phase-space. We next define the following creation and annihilation

operators, which are linear superpositions of the canonical coordinates:

â =

√
ω

2ℏ

(
q̂ +

ip̂

ω

)
(2.14)

â† =

√
ω

2ℏ

(
q̂ − ip̂

ω

)
(2.15)

Using the commutation relation between the position and momentum operators, the

commutation relation between the creation and annihilation operators can immediately

be shown to be:
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[â, â†] = 1 (2.16)

As is the case for any harmonic oscillator, the Hamiltonian for the system can now be

expressed as:

Ĥ = ℏω
(
â†â+

1

2

)
(2.17)

which leads to quantized energy levels. If we define the number operator, n̂ = â†â,

we have

Ĥ |n⟩ = ℏω
(
n̂+

1

2

)
|n⟩ = ℏω

(
n+

1

2

)
≡ En |n⟩ (2.18)

which is the energy of an n-photon Fock state. Now, to find the full spectrum of

energy eigenvalues, we apply:

n̂(â† |n⟩) = â†ââ† |n⟩ = â†(â†â+ 1) |n⟩ = (â†n̂+ â†) |n⟩ = (n+ 1)â† |n⟩ (2.19)

which then gives

Ĥ(â† |n⟩) = ℏω
(
n̂+

1

2

)
(â† |n⟩) = ℏω

[
(n+ 1) +

1

2

]
(â† |n⟩)

=

[
ℏω
(
n+

1

2

)
+ ℏω

]
(â† |n⟩) = (En + ℏω)(â† |n⟩)

(2.20)

and so we see that â† |n⟩ is a state with energy En + ℏω, consisting of n+1 photons.

Therefore we can write

â† |n⟩ = Bn |n+ 1⟩ (2.21)

where Bn is a constant to be determined using the normalization condition of eigenstates.

Similarly we can show that â |n⟩ is a state with energy En−ℏω consisting of n−1 photons.
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We can therefore write

â |n⟩ = Cn |n− 1⟩ (2.22)

To find the constants, Bn and Cn, we note that

⟨n| â†â |n⟩ = ⟨n| n̂ |n⟩ = n

= ⟨n− 1|C∗
nCn |n− 1⟩ = |Cn|2

(2.23)

therefore we can choose Cn =
√
n and

â |n⟩ =
√
n |n− 1⟩ (2.24)

similarly

⟨n| ââ† |n⟩ = ⟨n| (â†â+ 1) |n⟩ = ⟨n| n̂+ 1 |n⟩ = n+ 1

= ⟨n+ 1|B∗
nBn |n+ 1⟩ = |Bn|2

(2.25)

and we can choose Bn =
√
n+ 1 = Cn+1. Since the energy of the harmonic oscillator

must be positive the ladder at the bottom has to stop at a finite state, call it |0⟩. So we

must have â |0⟩ = 0. This ground state has zero photons n = 0 and has the well-known

energy of vacuum which equals half quanta, i.e., E0 = ℏω/2.

2.2 Quadrature operators

Using the expressions for the creation and annihilation operators of eqs. (2.14), (2.15)

we can write

q̂(t) =

√
ℏ
2ω

(
â(t) + â†(t)

)
(2.26)
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then from Eqs. (2.5), (2.11) , (2.26) we get

Ê(z, t) = E0

(
â(t) + â†(t)

)
sin(kz) (2.27)

where the quantity E0 =
√

ℏω
V ε0

is the electric field amplitude corresponding to a

single photon in the cavity mode. We note that using the Hamiltonian of the system,

we can write the Heisenberg equation of motion to calculate the time evolution of any

operator. Specifically, to calculate the time evolution of the annihilation operator â(t),

we use:

dâ(t)

dt
=
i

ℏ
[Ĥ, â] =

i

ℏ

[
ℏω
(
â†â+

1

2

)
, â

]
= iω[â†â, â]

= iω(â†ââ− ââ†â)

= −iω(ââ† − â†â)â

= −iω[â, â†]â

= −iωâ(t)

(2.28)

where we used Eq. (2.16) in the last line. The differential equation for the time

evolution of the annihilation operator of above then implies:

â(t) = â exp(−iωt) (2.29)

and therefore

â†(t) = â† exp(iωt) (2.30)

where â ≡ â(0) and â† ≡ â†(0). We can then write the electric field as

Êx(z, t) = E0

(
â exp(−iωt) + â† exp(iωt)

)
sin(kz) (2.31)
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Note that in the above equation, we express the electric field as a superposition of

creation and annihilation operators, each multiplying a complex exponential, exp(−iωt)

and exp(iωt), respectively. The main idea behind the quadrature operators is that the

above superposition for the electric field can instead be written as a sum of two time-

domain functions, a sine and a cosine. For this purpose, we define the following two

operators (the quadratures):

X̂1 = (â† + â)

X̂2 = i(â† − â)

(2.32)

Using the above definitions, we can express the electric field as the following super-

position:

Êx(t) = E0 sin(kz)
[
X̂1 cos(ωt) + X̂2 sin(ωt)

]
(2.33)

The quantities X̂1 and X̂2 represent two field components oscillating in time at a

phase difference of π/2 and are hence called the field quadratures. They play the same

role of position and momentum in phase space, but are dimensionless. Using [â, â†] = 1,

we have the following commutation relation between the quadrature operators:

[X̂1, X̂2] = 2i (2.34)

then using the uncertainty relation

∆Â∆B̂ ≥ 1

2

∣∣∣⟨[Â, B̂]⟩
∣∣∣ (2.35)

we can derive the following inequality for the product of the variances (the fluctua-

tions) of the uncertainty operators.

∆X̂1∆X̂2 ≥ 1 (2.36)
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Let us now calculate the variances ∆X̂1, ∆X̂2 for the photon-number eigenstates.

We have

⟨n|X̂1|n⟩ = ⟨n|(â+ â†)|n⟩ = 0

⟨n|X̂2|n⟩ = i ⟨n|(â† − â)|n⟩ = 0

(2.37)

and

⟨n|X̂2
1 |n⟩ = ⟨n|(â2 + â†2 + â†â+ ââ†)|n⟩

= (0 + 0 + n+ (n+ 1))

= 2n+ 1

(2.38)

and similarly ⟨n|X̂2
2 |n⟩ = 2n+ 1. Therefore

⟨(∆X̂1)
2⟩ = ⟨X̂2

1 ⟩ − ⟨X̂1⟩
2
= 2n+ 1

⟨(∆X̂2)
2⟩ = ⟨X̂2

2 ⟩ − ⟨X̂2⟩
2
= 2n+ 1

(2.39)

specifically for the vacuum state n = 0 we get

⟨(∆X̂1)
2⟩vac = ⟨(∆X̂2)

2⟩vac = 1 (2.40)

This is the case where both quadratures have the same uncertainty and their uncer-

tainty relation has the minimum value:

⟨∆X̂1⟩vac = ⟨∆X̂2⟩vac = 1 (2.41)

so X̂1 and X̂2 describe a circle in phase space for the vacuum state.
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2.3 Coherent states

We can define a coherent state of parameter α (a complex number) as being an eigenstate

of the annihilation operator:

â |α⟩ = α |α⟩ (2.42)

Coherent states have a close analogy with classical field states of definite amplitude

since from the expression above, interactions with another system that cause absorption

of photons (â operator) leave the field in a coherent state. For this reason it is called

the “most classical” state. Let’s calculate the uncertainty of the quadratures associated

with a coherent state.

⟨α|X̂1|α⟩ = ⟨α|(â+ â†)|α⟩

= ⟨α|â|α⟩+ ⟨α|â†|α⟩

= α + α∗

(2.43)

and

⟨α|X̂2
1 |α⟩ = ⟨α|(â2 + â†2 + â†â+ ââ†)|α⟩

= ⟨α|(â2 + â†2 + 2â†â+ 1)|α⟩

= α2 + α∗2 + 2|α|2 + 1

= (α + α∗)2 + 1

(2.44)

then the uncertainty is:
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Figure 2.1: Phase space of a coherent state with parameter α = 0, or a vacuum state.

⟨(∆X̂1)
2⟩coherent = ⟨α|X̂2

1 |α⟩ − ⟨α|X̂1|α⟩
2

= (α + α∗)2 + 1− (α + α∗)2

= 1

(2.45)

We can similarly show that ⟨(∆X̂2)
2⟩coherent = 1. Therefore it is evident that coherent

states are minimum uncertainty states with equal uncertainty in both quadratures, which

describes a circle in phase space (just like the vacuum state), see Figure 2.1.

For many calculations, it is useful to express the coherent state in the basis of photon-

number eigenstates. Since photon-number eigenstates form a complete basis set, we can

write any coherent state |α⟩ as the following superposition:

|α⟩ =
∞∑
n=0

Cn |n⟩ (2.46)

Using the above superposition, the eigenvalue equation for the annihilation operator

can be expressed as:
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â |α⟩ = α |α⟩

â

∞∑
n=0

Cn |n⟩ = α
∞∑
n=0

Cn |n⟩

∞∑
n=1

Cn

√
n |n− 1⟩ =

∞∑
n=1

αCn−1 |n− 1⟩

(2.47)

We can then equate the coefficients of |n− 1⟩ in the above two summations, which

gives:

Cn

√
n = αCn−1 (2.48)

or

Cn =
α√
n
Cn−1 =

α2√
n(n− 1)

Cn−2 = . . . =
αn

√
n!
C0 (2.49)

so we have

|α⟩ = C0

∞∑
n=0

αn

√
n!

|n⟩ (2.50)

C0 can be found from normalization:

⟨α|α⟩ = |C0|2
∞∑
n=0

∞∑
n′=0

α∗nαn′

√
n!n′!

⟨n|n′⟩

= |C0|2
∞∑
n=0

|α|2n

n!

= |C0|2 exp(|α|2) ≡ 1

(2.51)

from this

C0 = exp

(
−1

2
|α|2
)

(2.52)

and therefore the normalized coherent state is
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|α⟩ = exp

(
−1

2
|α|2
) ∞∑

n=0

αn

√
n!

|n⟩ (2.53)

2.4 The displacement operator

The fact that both the vacuum state and the coherent state are described by a circle of

minimum uncertainty in phase space suggests that there is a displacement operator that

can map the vacuum state into a coherent state of a given parameter α by “displacing”

the circle in phase space (see Figure 2.2). We derive the expression for such an operator

below. Writing the number state as photon excitations of the vacuum:

|n⟩ = (â†)n√
n!

|0⟩ (2.54)

we can write the coherent state |α⟩ as

|α⟩ = exp

(
−1

2
|α|2
) ∞∑

n=0

αn

√
n!

(â†)n√
n!

|0⟩

= exp

(
−1

2
|α|2
) ∞∑

n=0

(αâ†)n

n!
|0⟩

= exp

(
−1

2
|α|2
)
exp

(
αâ†
)
|0⟩

(2.55)

We note that since exp(−α∗â) |0⟩ = |0⟩ we can write the coherent state as

|α⟩ = exp

(
−1

2
|α|2
)
exp

(
αâ†
)
exp(−α∗â) |0⟩ (2.56)

then applying the Campbell-Baker-Hausdorff formula

exp(Â+ B̂) = exp(Â) exp(B̂) exp

(
−1

2
[Â, B̂]

)
(2.57)

with Â = αâ† and B̂ = −α∗â we get
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𝑋!
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α

Figure 2.2: Coherent state of parameter α is described as a circle in phase space which
is displaced by α from the origin.

|α⟩ = exp(αâ† − α∗â) |0⟩ ≡ D̂(α) |0⟩ (2.58)

the operator D̂(α) = exp(αâ† − α∗â) |0⟩ is the displacement operator.

2.5 Quadrature squeezing

Quadrature squeezing is described as a state where a quadrature (can also have a general

phase angle θ, not necessarily parallel to our X̂1 or X̂2 directions) has a smaller uncer-

tainty ⟨(∆X̂)2⟩ than that of a coherent state (of course, by the uncertainty relation, the

other quadrature would have a bigger uncertainty than the coherent state). As we shall

see below, a squeezing operator which can achieve such quadrature squeezing is defined

by

Ŝ(ξ) = exp

[
1

2
(ξ∗â2 − ξâ†2)

]
(2.59)

where ξ = reiθ is a complex parameter, r represents the amount of squeezing, and θ

is the angle of the squeezed quadrature relative to X̂1. Consider the state resulting from

the action of the squeezing operator:
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|ψs⟩ = Ŝ(ξ) |ψ⟩ (2.60)

We want to evaluate the variance of the quadratures for this state. To do so, we shall

first evaluate the expectation values of â and â† operators. We have

⟨ψs|â|ψs⟩ = ⟨ψ|Ŝ†(ξ)âŜ(ξ)|ψ⟩ (2.61)

Let us consider the transformation Ŝ†(ξ)âŜ(ξ). Using the identity

exp(λÂ) · B̂ · exp(−λÂ) = B̂ +
λ

1!
[Â, B̂] +

λ2

2!
[Â, [Â, B̂]] + . . . (2.62)

with Â ≡ −(ξ∗â2 − ξâ†2)/2, B̂ ≡ â and λ ≡ 1 we have

Ŝ†(ξ)âŜ(ξ) = exp(Â) · â · exp(−Â) = â+ [Â, â] +
1

2!
[Â, [Â, â]] + . . . (2.63)

using the relations

[â, (â†)n] = n(â†)n−1

[ân, â†] = nân−1

(2.64)

we get

[Â, â] = [−1

2
ξ∗â2 +

1

2
ξâ†2, â] = −ξâ†

[Â, â†] = [−1

2
ξ∗â2 +

1

2
ξâ†2, â] = −ξ∗â

(2.65)

and therefore
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Ŝ†(ξ)âŜ(ξ) = â− ξâ† +
1

2!
|ξ|2â− 1

3!
ξ|ξ|2â† + 1

4!
|ξ|4â− 1

5!
ξ|ξ|4â† + . . .

= â

(
1 +

1

2!
|ξ|2 + 1

4!
|ξ|4 + . . .

)
− â†

(
ξ +

1

3!
ξ|ξ|2 + 1

5!
ξ|ξ|4 + . . .

)
= â

(
1 +

1

2!
r2 +

1

4!
r4 + . . .

)
− â†eiθ

(
r +

1

3!
r3 +

1

5!
r5 + . . .

)
= â cosh(r)− â†eiθ sinh(r)

(2.66)

in a similar manner

Ŝ†(ξ)â†Ŝ(ξ) = â† cosh(r)− âe−iθ sinh(r) (2.67)

Now let’s calculate the variance of the quadratures under the vacuum squeezed state

|ψs⟩ ≡ Ŝ(ξ) |0⟩. To do so, we first evaluate

⟨ψs|â|ψs⟩ = ⟨0|Ŝ†(ξ)âŜ(ξ)|0⟩ = ⟨0|
(
â cosh(r)− â†eiθ sinh(r)

)
|0⟩ = 0

⟨ψs|â†|ψs⟩ = ⟨0|Ŝ†(ξ)â†Ŝ(ξ)|0⟩ = ⟨0|
(
â† cosh(r)− âe−iθ sinh(r)

)
|0⟩ = 0

(2.68)

and

⟨ψs|â2|ψs⟩ = ⟨0|Ŝ†(ξ)â2Ŝ(ξ)|0⟩

= ⟨0|Ŝ†(ξ)âŜ(ξ)Ŝ†(ξ)âŜ(ξ)|0⟩

⟨0|
(
â cosh(r)− â†eiθ sinh(r)

)2 |0⟩
= ⟨0|â2 cosh2(r) + â†2e2iθ sinh2(r)− (ââ† + â†â)eiθ sinh(r) cosh(r)|0⟩

= −eiθ sinh(r) cosh(r)

(2.69)

where I used the fact that the squeezing operator is unitary, i.e.,

Ŝ(ξ)Ŝ†(ξ) = Ŝ(ξ)Ŝ−1(ξ) = I. Similarly,
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⟨ψs|â†2|ψs⟩ = ⟨0|Ŝ†(ξ)â†Ŝ(ξ)Ŝ†(ξ)â†Ŝ(ξ)|0⟩

= ⟨0|
(
â† cosh(r)− âe−iθ sinh(r)

)2 |0⟩
= ⟨0|â†2 cosh2(r) + â2e−2iθ sinh2(r)− (ââ† + â†â)e−iθ sinh(r) cosh(r)|0⟩

= −e−iθ sinh(r) cosh(r)

(2.70)

also

⟨ψs|â†â|ψs⟩ = ⟨0|Ŝ†(ξ)â†Ŝ(ξ)Ŝ†(ξ)âŜ(ξ)|0⟩

= ⟨0|
(
â† cosh(r)− âe−iθ sinh(r)

) (
â cosh(r)− â†eiθ sinh(r)

)
|0⟩

= ⟨0| â†â cosh2(r)− â†2eiθ sinh(r) cosh(r)

− â2e−iθ sinh(r) cosh(r) + ââ† sinh2(r) |0⟩

= sinh2(r)

(2.71)

and

⟨ψs|ââ†|ψs⟩ = ⟨0|Ŝ†(ξ)âŜ(ξ)Ŝ†(ξ)â†Ŝ(ξ)|0⟩

= ⟨0|
(
â cosh(r)− â†eiθ sinh(r)

) (
â† cosh(r)− âe−iθ sinh(r)

)
|0⟩

= ⟨0| ââ† cosh2(r)− â2e−iθ cosh(r) sinh(r)

− â†2eiθ sinh(r) cosh(r) + â†â sinh2(r) |0⟩

= cosh2(r)

(2.72)

Using the expression we have derived above, we get
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⟨X̂1⟩ = ⟨ψs|X̂1|ψs⟩ = ⟨ψs|(â+ â†)|ψs⟩ = 0

⟨X̂2⟩ = ⟨ψs|X̂2|ψs⟩ = i ⟨ψs|(â† − â)|ψs⟩ = 0

(2.73)

and

⟨X̂2
1 ⟩ = ⟨ψs|X̂2

1 |ψs⟩

= ⟨ψs|
(
â†2 + â†â+ ââ† + â2

)
|ψs⟩

= cosh2(r) + sinh2(r)− 2 sinh(r) cosh(r) cos(θ)

(2.74)

and

⟨X̂2
2 ⟩ = ⟨ψs|X̂2

2 |ψs⟩

= −⟨ψs|
(
â†2 − â†â− ââ† + â2

)
|ψs⟩

= cosh2(r) + sinh2(r) + 2 sinh(r) cosh(r) cos(θ)

(2.75)

therefore, using the definitions

⟨(∆X̂1)
2⟩ = ⟨X̂2

1 ⟩ − ⟨X̂1⟩
2

⟨(∆X̂2)
2⟩ = ⟨X̂2

2 ⟩ − ⟨X̂2⟩
2

(2.76)

we get

⟨(∆X̂1)
2⟩ = cosh2(r) + sinh2(r)− 2 sinh(r) cosh(r) cos(θ)

⟨(∆X̂2)
2⟩ = cosh2(r) + sinh2(r) + 2 sinh(r) cosh(r) cos(θ)

(2.77)

The above expressions correspond to quadrature squeezing when the squeezed quadra-

ture is at an angle θ relative to the X̂1 axis in phase space. For the special case where
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θ = 0, these expressions simplify considerably and we get:

⟨(∆X̂1)
2⟩ = e−2r

⟨(∆X̂2)
2⟩ = e2r

(2.78)

The amount of squeezing is controlled by the parameter r. θ controls the angle of

the squeezed quadrature. Setting θ = π, we would get

⟨(∆X̂1)
2⟩ = e2r

⟨(∆X̂2)
2⟩ = e−2r

(2.79)

For an arbitrary angle θ, it is convenient to make a coordinate transformation such

that one quadrature is along the squeezed direction and the other is perpendicular to it.

Using the following transformation:

Ŷ1 + iŶ2 = (X̂1 + iX̂2)e
−iθ/2 (2.80)

the squeezed quadrature will be Ŷ1 (see Figure 2.3) and we would have

⟨(∆Ŷ1)2⟩ = e−2r

⟨(∆Ŷ2)2⟩ = e2r
(2.81)

Finally, note that we considered the squeezed vacuum state (i.e., the state obtained

by applying the squeezing operator to the vacuum state). As we have seen in Eq. (2.58),

the displacement operator creates a coherent state from a vacuum state by shifting the

uncertainty circle from the origin to a distance α in phase space, where α is the coherent

state parameter. In the same manner, acting on a squeezed state by the displacement

operator, or alternatively acting on the vacuum state by the displacement operator and

then acting with the squeezing operator, creates the squeezed coherent state |α, ξ⟩ =
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θ

Figure 2.3: Phase space of a quadrature squeezed vacuum state along an axis Y1. This
axis creates an angle θ relative to the X1 axis.

D̂(α)Ŝ(ξ) |0⟩, squeezed by the parameter ξ = reiθ and shifted by α from the origin, with

the same squeezing expressions as in Eq. (2.81) along the squeezing axis Ŷ1 and the

axis perpendicular to it Ŷ2 (see Figure 2.4). Finally note that this description using the

squeezing operator holds for any squeezed state of minimum uncertainty, as can be seen

from the fact that

⟨(∆Ŷ1)2⟩ ⟨(∆Ŷ2)2⟩ = 1 (2.82)

which is the minimum value of the uncertainty product. In general, if the quadrature

Ŷ1 is squeezed, the variance in Ŷ2 will be large, with the uncertainity product larger

than the minimum uncertainty value. We also note that all squeezed states achieved by

the application of the squeezing operator are Gaussian. Non-Gaussian states are also

possible to achieve by the superpositions of number states [5]. For example, a non-

Gaussian state which is the superposition of a vacuum state and a single photon state:

|Φ⟩ = a |0⟩ + b |1⟩. In this thesis I will often quote experimental results or simulations

results of quadrature squeezing in dB. In quoting simulation results, the two quadratures

are named Q̂ and P̂ . The definition used for squeezing of a quadrature e.g. Q̂ is
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Figure 2.4: Phase space of a quadrature squeezed coherent state where the squeezing
happens along the Y1 axis. The ellipse is displaced by α from the origin.

∆Q̂2
dB = 10 log10

(
∆Q̂2

∆Q̂2
vac

)
(2.83)

where in our conventions ∆Q̂2
vac = 1.

2.6 Photon-number squeezing

Let us consider the coherent state, as defined by Eq. (2.42), and look at the photon

statistics of it. Using n̄ ≡ â†â we have

n̄ = ⟨α|n̂|α⟩ = ⟨α|â†â|α⟩ = α∗α = |α|2 (2.84)

so |α|2 is the average photon number. The fluctuations in the photon number are



26

⟨α|n̂2|α⟩ = ⟨α|â†ââ†â|α⟩

= ⟨α|â†(â†â+ 1)â|α⟩

= ⟨α|â†â†ââ|α⟩+ ⟨α|â†â|α⟩

= |α|4 + |α|2 = n̄2 + n̄

(2.85)

therefore

∆n =

√
⟨n̂2⟩ − ⟨n̂⟩2 =

√
(n̄2 + n̄)− n̄2 =

√
n̄ (2.86)

we see that the standard deviation is the square root of the mean, which is a feature

of Poissonian statistics. To see the Poissonian distribution we use Eq. (2.53) to get

Pn = | ⟨n|α⟩ |2

= exp
(
−|α|2

) ∣∣∣∣∣
∞∑
k=0

αk

√
k!

⟨n|k⟩

∣∣∣∣∣
2

= exp
(
−|α|2

) ∣∣∣∣∣
∞∑
k=0

αk

√
k!
δnk

∣∣∣∣∣
2

= exp
(
−|α|2

) ∣∣∣∣ αn

√
n!

∣∣∣∣2
= exp

(
−|α|2

) |α|2n
n!

= exp(−n̄) n̄
n

n!

(2.87)

statistical distributions having ∆n >
√
n̄ are called super-Poissonian. Examples are

thermal light and light from a discharge lamp. Distributions having ∆n <
√
n̄ are called

sub-Poissonian and are a clear signature of non-classical light. A well-known parameter

describing this is the Mandel-Q parameter, defined as

QM =
⟨(∆n)2⟩ − ⟨n⟩

⟨n⟩
(2.88)
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It is clear that QM = 0 corresponds to Poissonian statistics, QM > 0 corresponds to

super-Poissonian statistics, and QM < 0 corresponds to sub-Poissonian statistics.

2.7 Experimental progress and applications of

squeezed light

Quadrature squeezing of light, the variance of one quadrature being smaller than that

of a coherent state (at the expense of the other quadrature being bigger, in accordance

with the uncertainty principle) had been experimentally demonstrated during the last

30 years. This section is partly based on the excellent review [5]. Here we describe a

couple of different methods that had been implemented experimentally in order to create

squeezed light, based on inherent nonlinearities of the corresponding systems.

2.7.1 Parametric down conversion

A common method for generation of squeezed states of light is based on parametric down

conversion. It uses a χ(2) nonlinear susceptibility inherent to certain crystals. In this

setup, a pump beam is down-converted into signal and idler beams, with ωp = ωs + ωi.

Since the χ(2) nonlinearity is small, high power pulsed lasers are typically required for

the pump beam (the opposite process, sum-frequency generation, can also be used to

produce squeezed light). The first experiment implementing this method was performed

by Wu et al in 1986 [6]. It used a sub-threshold optical parametric oscillator. A laser

beam at 532 nm which was frequency doubled was used as the pump, and created a

squeezed light in the down-converted beam at 1064 nm. The squeezed vacuum state was

analyzed by a homodyne detector. This experiment achieved squeezing of 3.5 dB which

was high relative to other methods at the time. With some technical advances, later

experiments were able to improve this to ∼ 6 dB. The situation then remained stale for

several years. This was eventually surpassed only in 2006, when technological advances

were able to overcome the main limitations caused by intra-cavity losses, detector noise

and phase noise. Since then, experiments reached higher degrees of squeezing, the highest
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to date of which was achieved by Vahlbruch et al in 2016 [7] and was able to reach 15

dB.

2.7.2 Atomic vapor

Atomic vapor systems can be used to create squeezed states by exploiting the intrinsic

nonlinearity in light-atom interactions of certain systems. The squeezing setup is based

on atomic levels arranged in a Λ-configuration where two lower states are coupled to a

single excited state (see Figure 3.2). The two transitions from one lower state through

the excited state and to the other lower state are known as the Stokes and the anti-

Stokes modes. The earliest experiment of this type, and in fact the first experiment to

demonstrate squeezed light, was made by Slusher et al in 1985 [8]. In that experiment, a

four-wave-mixing (FWM) process occured in an atomic vapor of sodium atoms. Cavities

resonating the Stokes and anti-Stokes frequencies increased the interaction, and a local

oscillator (LO) at a mid-frequency between the modes was used to detect the squeezing.

In that experiment, squeezing of 0.3 dB was measured. This relatively small amount

was caused by undesired nonlinear processes such as Raman scattering and fluorescence

occuring in addition to the FWM. Later experiments used double-Λ setups which were

able to cancel most of the undesired effects, and achieved much higher squeezing of about

9 dB [9].

2.7.3 Optical fibers

Another way to generate squeezed light relies on third-order nonlinearities. Third order

processes are much weaker than second order, therefore a practical solution had been

the use of optical fibers, where the interaction happens over a long distance. Squeezing

in optical fibers relies on four-wave mixing and the third-order Kerr effect. This third-

order nonlinearity leads to a change in the index of refraction as a function of the

light intensity as [5]: n = n0 + n2 · I. This creates a situation where higher intensity

phase space regions acquire larger phase shifts than lower intensity phase space regions,

which transforms a circular coherent state into an elliptical squeezed state in phase
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space. The first experiment of this type was performed by Shelby et al in 1986 [10] and

used a continuous-wave pump to generate the squeezing. Since third-order effects are

weak, high powered lasers are required, which also results in some undesired nonlinear

effects acting to weaken the amount of squeezing, the most important of which is the

Brillouin scattering due to the coupling between photons and phonons in the fiber.

To stay below the Brillouin threshold, a phase modulation scheme generating several

different wavelengths was used in some experiments, and short pulses which reduce the

average power to a level less sensitive to this effect were used in others. Photonic crystal

fibers are also able to generate squeezed states [11]. These fibers are attractive because

of their higher nonlinearities and flexibility in dispersion management. However, they

require careful balancing and so far they had not surpassed the squeezing performance

of standard fibers.

2.7.4 Semiconductor devices

A simple method to produce squeezed light is the use of semiconductor devices. Light

emitting laser diodes are able to directly emit photons with better than shot-noise statis-

tics. This was first demonstrated in 1987 by Machida et al [12] and the sensitivity was

later improved by setting the detector face to face with the laser.

2.7.5 Applications

Squeezed light had been used in multiple fields. Most famously it had been employed in

the gravitational waves detectors GEO600 and LIGO [13]. The LIGO detector consists

of two 4 km wide arms, forming a Michelson interferometer with the two beams set on

a dark fringe. The tiny spacetime fluctuations that gravitational waves create, change

the arm length and create a phase shift between the beams as a periodic signal, which

can be detected. The current improvements to the system include squeezed light for the

detector beam, enabling it to reach sub shot-noise sensitivity. The vacuum squeezed state

is created by second harmonic generation. Other applications of squeezed light include

quantum error correction [14], sensing and tracking [15], and quantum enhanced imaging
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resolution of biological samples [16]. Recently, squeezed states had also been successfully

implemented in miniaturized systems. Using the intrinsic nonlinear interactions between

light and two-level systems, single emitters such as a single semiconductor dot or a

single ion in a high finesse cavity had been used. Kerr nonlinearity in CMOS-compatible

materials had also been employed [5]. This may hint at the future implementation of

squeezed light where such micro components would be put inside bigger systems.
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Chapter 3

Refractive index enhancement

In this chapter we look at the behavior of laser light near atomic resonance, and the

absorption and refractive index as a function of frequency for different systems. This will

be relevant for the next chapter, where we take an index enhancing system and further

examine its quantum properties, i.e. the squeezed states and photon statistics it forms

under certain conditions. We first consider a two-level atom, and look at the behavior of

the susceptibility (classical and quantum mechanical) near resonance. We then turn to

a 3-level system implementing electromagnetically induced transparency (EIT). While

this system achieves transparency (zero absorption), the refractive index stays close

to 1. Motivated by EIT and related approaches, we look at a system that our group

theoretically proposed and experimentally demonstrated to achieve enhanced index of

refraction while maintaining zero absorption. The original contribution of this thesis part

is the quantum optics investigation of squeezed light states in such a refractive index

enhancement setup with vanishing absorption, through numerical simulations, discussed

in the next chapter.
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3.1 Susceptibility of a two-level atom, classical

derivation

Here we derive the classical result for the frequency-dependence of the susceptibility,

and check how the absorption and index of refraction behave near resonance. A good

review of this appears in [17]. To start, we model the electrons in a transparent media as

being bounded to the atom by a spring-like potential. The electron’s classical equation

of motion is

m
d2x

dt2
+mγ

dx

dt
+mω2

0x = eE0e
−iωt (3.1)

Here the second term represents decay, the third term represents a spring-like binding

force, where ω0 is a natural frequency of the atom, and the term on the RHS represents

an applied electric field of a laser with frequency ω. Looking for steady state solutions

x(t) = x0e
−iωt we get

x0 =
e/m

ω2
0 − ω2 − iγω

E0 (3.2)

the dipole moment is

P (t) = ex(t) =
e2/m

ω2
0 − ω2 − iγω

E0e
−iωt (3.3)

therefore, assuming N atoms per unit volume,

P =

(
Ne2/m

ω2
0 − ω2 − iγω

)
E (3.4)

comparing this with the expression (for a linear polarization) P = ϵ0χE we get an

expression for the complex electric susceptibility:

χ =
Ne2

ϵ0m

(
1

ω2
0 − ω2 − iγω

)
(3.5)

the real and imaginary parts of the susceptibility are:



33

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
/ 0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0
Su

sc
ep

tib
ilit

y 
(n

or
m

al
ize

d)
Re( )
Im( )

Figure 3.1: The behavior of the classical susceptibility near an atomic resonance. At the
resonance ω = ω0, Im(χ) spikes which indicates absorption, while Re(χ) vanishes, which
leads to a unity refractive index.

χ′ =
Ne2

ϵ0m

ω2
0 − ω2

(ω2
0 − ω2)2 + γ2ω2

(3.6)

χ′′ =
Ne2

ϵ0m

γω

(ω2
0 − ω2)2 + γ2ω2

(3.7)

where χ′ ≡ Re(χ) and χ′′ ≡ Im(χ). These are sketched in Figure 3.1. Let us look at

the meaning of χ′ and χ′′. We can write the light wave as

E = E0e
i(k̃z−ωt) (3.8)

where k̃ is the complex wave number. Now, the refractive index is

ñ =
c

v
=

c

ω/k̃
=
ck̃

ω
(3.9)

where ñ is the complex refractive index. Therefore
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k̃ =
ωñ

c
=
ω

c

√
1 + χ (3.10)

and since for the rubidium gas in the index enhancement system we will consider

later χ≪ 1, we can write

k̃ ≈ ω

c

(
1 +

1

2
χ

)
=
ω

c

(
1 +

1

2
χ′ +

i

2
χ′′
)

(3.11)

we therefore have

E = E0e
−αzei(kz−ωt) (3.12)

with α and k real, defined by

α =
ωχ′′

2c
(3.13)

k =
ωn

c
=
ω

c

(
1 +

1

2
χ′
)

(3.14)

and n the real refractive index. We see that χ′′ is related to the absorption and χ′

is related to the real index of refraction. This means that in Figure 3.1 there is a big

absorption at resonance while, since χ′ ≈ 0, the index of refraction is n ≈ (1+χ′/2) ≈ 1.

3.2 Susceptibility of a two-level atom, quantum-

mechanical derivation

Here we derive the behavior of the susceptibility near atomic resonance treating the

atomic levels quantum mechanically, while still treating the light classically. Consider a

two-level system consisting of energy levels |1⟩ and |2⟩. Denote the electric field by E⃗.

The Hamiltonian of an electron inside the electric field is

Ĥint = eEx̂ = −µ̂E (3.15)
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where the dipole moment operator is µ̂ = −ex̂. Therefore for a two-level atom

Ĥ = H0 +Hint = ℏω1 |1⟩ ⟨1|+ ℏω2 |2⟩ ⟨2| − µ̂E (3.16)

the wave function of the electron in the atom can be written:

|ψ⟩ = c1(t)e
−iω1t |1⟩+ c2(t)e

−iω2t |2⟩ (3.17)

where c1 and c2 are the probability amplitudes to be in states |1⟩ and |2⟩, respectively.

putting this in the Schrodinger equation:

iℏ
d |ψ⟩
dt

= Ĥ |ψ⟩ (3.18)

and defining ω0 ≡ ω2 − ω1 as the atomic resonance frequency and µ12 = ⟨2|µ̂|1⟩ we

get

dc1
dt

=
i

ℏ
E(t)e−iω0tµ12c2 (3.19)

dc2
dt

=
γ

2
c2 +

i

ℏ
E(t)eiω0tµ∗

12c1 (3.20)

where we added the loss term (γ/2)c2 by hand. Now, let us define ρ12 ≡ c1c
∗
2 as the

coherence of the transition. From the above equations we get

dρ12
dt

=
d

dt
(c1c

∗
2)

=
dc1
dt
c∗2 + c1

dc∗2
dt

=
i

ℏ
E(t)e−iω0tµ12c2c

∗
2 −

i

ℏ
E(t)e−iω0tµ12c1c

∗
1 − (γ/2)c1c

∗
2

= −γ
2
ρ12 +

i

ℏ
E(t)e−iω0tµ12(|c2|2 − |c1|2)

(3.21)

where |c1|2 and |c2|2 are the probabilities that the atom is in state |1⟩ or |2⟩, respec-
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tively. Let us take the electric field as

E(t) = ℜ(E0e
iωt) =

1

2
E0e

iωt +
1

2
E∗

0e
−iωt (3.22)

the coherence equation becomes

dρ12
dt

+
γ

2
ρ12 =

i

2ℏ
E0e

i(ω−ω0)tµ12(|c2|2 − |c1|2)

+
i

2ℏ
E∗

0e
−i(ω+ω0)tµ12(|c2|2 − |c1|2)

(3.23)

consider the system close to a resonance. Then the second term contributes∫
e−i(ω+ω0) ∼ 1/(ω + ω0) which is much smaller than first term

∫
ei(ω−ω0) ∼ 1/(ω − ω0).

Neglecting the second term, we get

dρ12
dt

+
γ

2
ρ12 =

i

2ℏ
E0e

i(ω−ω0)tµ12(|c2|2 − |c1|2) (3.24)

and near a steady state where c1 and c2 are time independent, we get the solution

ρ12 =
E0 µ12 e

i(ω−ω0)

ℏ[2(ω − ω0)− iγ]
(|c2|2 − |c1|2) (3.25)

The average dipole is

⟨µ̂⟩ = ⟨ψ|µ̂|ψ⟩

= (c∗1e
iω1t ⟨1|+ c∗2e

iω2t ⟨2|)µ̂(c1e−iω1t |1⟩+ c2e
−iω2t |2⟩)

= c∗1c2e
−iω0tµ12 + c1c

∗
2e

iω0tµ∗
12

= ρ∗12e
−iω0tµ12 + ρ12e

iω0tµ12

(3.26)

and substituting the ρ12 solution from Eq. (3.25), we get

⟨µ̂⟩ = E0|µ12|2

ℏ[2(ω − ω0)− iγ]
(|c2|2 − |c1|2)eiωt + c.c (3.27)
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Suppose that the total number of atoms is N . The polarization is defined as P =

N ⟨µ̂⟩. Let the number of atoms in states |1⟩ and |2⟩ be N1 = N |c1|2 and N2 = N |c2|2.

Then, defining P = ℜ(P0e
iωt), we have

P =
2|µ12|2

ℏ[2(ω − ω0)− iγ]
(N2 −N1)E (3.28)

Now, from the relation of the linear polarization being proportional to the electric

field

P = ϵ0χE (3.29)

we read off the susceptibility:

χquantum =
2|µ12|2

ℏϵ0
(N1 −N2)

1

2(ω0 − ω)− iγ
(3.30)

This has the same lineshape (up to a constant) as the classical result in Eq. (3.5).

To see this, we can take the Lorentzian of the classical lineshape:

χclassical =
Ne2

ϵ0m

(
1

ω2
0 − ω2 − iγω

)
(3.31)

and using the fact that close to the resonance, ω ≈ ω0, we get

χclassical =
Ne2

ϵ0m

(
1

(ω0 + ω)(ω0 − ω)− iγω

)
≈ Ne2

ϵ0m

(
1

2ω0(ω0 − ω)− iγω0

)
=

Ne2

ϵ0mω0

1

2(ω0 − ω)− iγ

(3.32)

in the classical limit, the quantum result becomes (N1−N2) → N and the results are

similar (up to different constants, since they are expressed using different quantities).
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Figure 3.2: The Λ-configuration of EIT setup. The energy differences (in frequency
units) between levels |1⟩ and |3⟩ and between levels |2⟩ and |3⟩ are indicated as ω31 and
ω32. A probe beam excites atoms from level |1⟩ to level |3⟩ with detuning ∆p while the
control beam excites the transition from |2⟩ to |3⟩ with detuning ∆c. The |2⟩ to |1⟩
transition is dipole forbidden. If the control beam is much more intense than the probe,
the resonances interfere destructively and create vanishing absorption.

3.3 Electromagnetically Induced Transparency (EIT)

Electromagnetically Induced Transparency (EIT) is an optical process in which probe

laser photons that correspond to a resonance of the atom are made transparent at that

frequency, through quantum interference with another transition. The quantum inter-

ference is achieved by driving the atoms to a dark state, which is a properly phased

superposition of two lower metastable levels. EIT is typically implemented in a Λ con-

figuration: a three level atomic system interacting with two lasers, a probe and a control

laser. To be concrete, let us consider the following Λ-configuration, which is shown in

Figure 3.2. This configuration has a ground state |1⟩, a metastable state |2⟩, and an

excited radiating state |3⟩.

In this configuration a probe beam at frequency ωp is near-resonant with the |1⟩ → |3⟩

transition, with detuning ∆p. Let ω31 = ω3 − ω1 be the frequency difference between

levels |1⟩ and |3⟩. Then ∆p = |ωp − ω31|. A second, control laser with frequency ωc is

near-resonant with the |2⟩ → |3⟩ transition with detuning ∆c. Let ω32 = ω3 − ω2 be the

frequency difference of these levels. Then ∆c = |ωc − ω32|. The transition |1⟩ ↔ |2⟩ is
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dipole forbidden. In this system, because the |2⟩ ↔ |1⟩ transition is dipole forbidden,

|3⟩ is the only state capable of incoherent absorption. There are two pathways for |3⟩

to absorb photons, |1⟩ → |3⟩ and |1⟩ → |3⟩ → |2⟩ → |3⟩ (or higher order transitions).

Since the control laser is much more intense than the probe, these two pathways have

effectively equal probability amplitudes while interfering with opposite relative signs,

which results in zero total amplitude.

Calculating the susceptibility, which is the response of the atoms to the applied elec-

tric fields of the lasers, will allow us to calculate the refractive index and the absorption,

and see the behavior near a resonance. The susceptibility can be derived using the den-

sity matrix formalism. A detailed analysis appears in [18]. Relying on this and quoting

the analysis results, we assume for simplicity that ∆c = 0 (the control laser is exactly

at resonance) and also Γ21 = 0 (the decay between levels |2⟩ → |1⟩, which is dipole

forbidden, is negligible) the susceptibility is

χ =
Nµ2

3,1

ϵ0ℏ
2∆p

4∆2
p + 2iΓ∆p − Ω2

c

(3.33)

where Γ ≡ Γ31+Γ32 is the total decay rate from level |3⟩ into levels |2⟩ and |1⟩. This

gives

χ′ =
Nµ2

3,1

ϵ0ℏ
8∆3

p − 2∆pΩ
2
c

(4∆2
p − Ω2

c)
2 + 4Γ2∆2

p

(3.34)

χ′′ =
Nµ2

3,1

ϵ0ℏ
−4Γ∆2

p

(4∆2
p − Ω2

c)
2 + 4Γ2∆2

p

(3.35)

These susceptibilities are plotted in Figure 3.3 for Ωc = 1Γ and for Ωc = 4Γ. We see

that for ∆p = 0 there is zero absorption. For Ωc = 4Γ the “window of transparency” is

larger than for Ωc = 1Γ and there is some index of enhancement, but it is not significant.

In the scheme that we describe in the next section, the index enhancement is significant

in the region of zero absorption. Other applications of EIT include, for example, reduced

group velocity:
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(a) Electric susceptibility as a function of the detuning of the probe beam from resonance, for
Ωc = 1Γ
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(b) Electric susceptibility as a function of the detuning of the probe beam from resonance, for
Ωc = 4Γ

Figure 3.3: Real and imaginary parts of the susceptibility in the Λ configuration of EIT.
The imaginary part vanishes between the resonances, while in the same region the real
part is mildly enhanced. In part (a) taking the control laser Rabi frequency Ωc = 1Γ. In
part (b) the frequency is increased to Ωc = 4Γ, this extends the zero absorption region
while allowing the refraction index to slightly increase, but the effect is not significant.
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vg =
c

n(ω) + ω dn
dω

(3.36)

since the slope dn/dω can be engineered to change fast near a resonance, as in Figure

3.3a (in general this depends on the parameters), the group velocity of light through the

atoms can be made very slow. EIT has a wide variety of applications. A detailed review

of EIT, including applications such as dark states, stopped and slow light and EIT with

few photons is provided by Fleischhauer [19].

3.4 Index enhancement setup

In the previous section we discussed how two pathways interfere destructively to create

zero absorption in an EIT setup. However, the index of refraction was low as well,

making this property not very useful. Here we review a setup that was developed by

our group in the recent years, which allows for enhancement of the refractive index

while maintaining zero absorption. The theoretical analysis is described in [20] and

we discuss the result here. Figure 3.4 describes the energy level situation. It consists

of two resonance transitions, one between the ground level and level 1, and the other

between the ground level and level 2. Each of these implements a combination of a

probe laser beam and a control laser beam, by first exciting a photon into a virtual

state. We let δω1 be the detuning of the laser transition from the ground level to level

|1⟩, that is, δω1 = (ω1 − ωg) − (ωc1 − ωp), and δω2 be the detuning of the transition to

level |2⟩, δω2 = (ω2 − ωg) − (ωp − ωc2). The excited state |e⟩ is far detuned from the

transitions. We also let Γe, γ1 and γ2 be the decay rates of levels |e⟩, |2⟩ and |1⟩, and

assume for simplicity that the decays are all out of the system, which allows the use

of Schrodinger approach for solving the equations rather than using the density matrix

formalism. The probe beam is much weaker than the two control lasers. Treating the

equations perturbatively and assuming that most of the atomic population remains in

the ground state, the resulting susceptibility is
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Refractive Index Enhancement in a Far-Off Resonant Atomic System
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We demonstrate a scheme where a laser beam which is very far detuned from an atomic resonance
experiences a large index of refraction with vanishing absorption. The essential idea is to excite two
Raman resonances with appropriately chosen strong control lasers.

DOI: 10.1103/PhysRevLett.95.223601 PACS numbers: 42.50.Gy, 42.65.An, 42.65.Dr, 78.20.Ci

It is well known that a laser beam tuned close to an
atomic resonance can experience a large index of refrac-
tion. However, such a large index is usually accompanied
by large absorption. This is because, at frequencies near an
optical resonance, the real and imaginary parts of the linear
susceptibility are of the same order. Over the last decade,
Scully and colleagues have predicted [1–3] and demon-
strated [4] that, by using quantum interference, it is pos-
sible to obtain a large index of refraction with vanishing
absorption. The essential idea is to establish a Raman
coherence such that there is complete destructive interfer-
ence in the imaginary part of the linear susceptibility. This
interference is obtained very close to an atomic resonance
with substantial excited state fraction [1–4]. In this Letter,
we extend this idea to a far-off resonant atomic or molecu-
lar system. We show that the refractive index of a weak
probe beam which is very far detuned from an optical
resonance can be enhanced by many orders of magnitude
while maintaining vanishing absorption.

Noting Fig. 1, we consider a model atomic or molecular
system with a ground Raman state jgi, two excited Raman
states j1i, and j2i, and an excited upper state jei. The probe
beam, Ep, is weak and is largely detuned from any one-
photon resonance. Together with the probe beam, two
strong control fields, Ec1 and Ec2, two-photon couple the
ground state jgi to excited Raman states j1i and j2i,
respectively. In the absence of the control fields, the probe
beam experiences the usual largely detuned linear suscep-
tibility. As will be demonstrated later, the presence of the
control fields strongly modify the susceptibility of the
probe beam. In particular, one can obtain a great enhance-
ment in the real part of the susceptibility while maintaining
perfect destructive interference in the imaginary part.

Before proceeding further, we would like to cite perti-
nent earlier work: over the recent years, there has been
substantial work utilizing unusual dispersive and absorp-
tive properties of systems exhibiting quantum interference.
Of particular importance is lasers without inversion and
electromagnetically induced transparency (EIT) [5]. Harris
et. al. have shown how to reduce the refractive index of a
probe beam to unity in a far-off resonant system in an EIT-
like manner [6]. Several papers have discussed the possi-
bility of refractive index control for a comb of Raman

sidebands [7,8]. Walker and colleagues have demonstrated
refractive index enhancement and reduction with maxi-
mally coherent molecules [9]. The simultaneous excitation
of two Raman resonances and its utility in producing single
cycle pulses has been recently suggested [10].

We proceed with the analysis of the schematic of Fig. 1.
We follow the formalism of Harris and colleagues [6–8].
The two-photon detunings from the Raman resonances are
defined as !!1 ! "!1 #!g$ # "!c1 #!p$ and !!2 !
"!2 #!g$ # "!p #!c2$. The quantities !e, "1, and "2

denote the (amplitude) decay rates of states jei, j1i, and j2i,
respectively. To avoid the need for a density matrix formal-
ism, we take all of the decay rates to be decay outside the
system. Since we are considering a far-off resonant system,
we can adiabatically eliminate the derivative of the proba-
bility amplitude of the upper state jeiwhen compared with
the detunings from this state. With these assumptions, the
equations for the probability amplitudes of the three
Raman states are [6–8]:

g

1

Ec2

δω1

2 δω2

Ec1

e

Ep

Ep

2Γe

FIG. 1. The schematic of the proposed scheme. A weak far-off
resonant probe beam Ep, and two strong control lasers, Ec1 and
Ec2, two-photon couple the ground state jgi to excited Raman
states j1i and j2i.
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Figure 3.4: The refractive index enhancement setup, involving two resonant Raman
transitions, each with a probe laser and a control laser. One of them is absorptive in the
probe beam and the other is amplifying. The quantum interference of these transitions
results in zero absorption and an enhanced refractive index. Adapted from [20]

χ =
2ℏN
ϵ0

(
ap +

|b1|2

2δω1 − i[γ1 + ℑ(D1)/2]
|Ec1|2 +

|b2|2

2δω2 + i[γ1 + ℑ(D2)]/2
|Ec2|2

)
Ep

(3.37)

whereN is the atom density, ap, b1 and b2 are Lorentzian-shaped expressions involving

the dipole matrix element, frequencies and the decay rate. D1 and D2 are related to the

field intensities and terms similar to ap. For the choice δω1 = δω2 = ∆/2 where ∆ is

the frequency separation between the resonances, this expression predicts an increased

value of the real part of the susceptibility, corresponding to enhancement of the refractive

index, while resulting in a zero value of the imaginary part of the susceptibility, resulting

in vanishing absorption. Choosing the control lasers frequencies determines the frequency

separation of the resonances. When the frequency separation is too large (compared with

the linewidth) the resonances are separate and barely affect each other, resulting in low

susceptibility. When the separation is too small, the resonances cancel each other out.

The maximum index enhancement therefore occurs for a finite frequency separation,
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depending on the linewidth and the transition detunings. From simulations based on

this calculation, it turns out that the maximum index enhancement occurs for ∆ = 2γ1,

where γ1 is the decay rate from level |1⟩. Following this, Yavuz group had implemented

this setup experimentally. In the initial experiment [2] two separate isotopes of Rb had

been used, 85Rb and 87Rb. The situation is show in Figure 3.5. The combination of a

probe laser beam exciting photons to a virtual level, and a control laser beam (starting

from a pumped F = 2 hyperfine level of 87Rb) corresponded to an amplifying resonance of

the probe beam, from the F = 1 to the F = 2 hyperfine levels of 87Rb. At the same time,

the combination of the probe beam, in an absorption resonance this time, with another

control beam, corresponded to another Raman resonance transition, from the F = 2 to

the F = 3 hyperfine levels in 85Rb. Scanning the probe laser frequency (and setting the

the control laser frequencies accordingly to match atomic resonance), it is possible to plot

graphs of the real and imaginary parts of the susceptibility, or equivalently the index of

refraction and the absorption, as a function of the probe laser frequency. The theoretical

prediction line along with the experimental results for resonance separation of 0.2MHz

corresponding to the maximum index enhancement, are shown in Figure 3.6 [2]. In the

experiment, the amount of absorption was determined by measuring the probe beam

intensity, and the index of refraction was determined by measuring the transmission of

the beam through a pinhole and the amount of spreading of the beam. This experiment

had achieved an index of refraction enhancement of ∆n ≈ 2×10−7. The main limitation

in this experiment had been the cross-coupling of the two optical pumping processes for

the two isotopes of Rubidium. In a later experiment [3] a single isotope of 85Rb had been

used. The Raman transitions had been between the F=2 and F=3 hyperfine levels, as

shown in Figure 3.7. The results for the intensity as a function of the probe frequency

(for different powers of one of the control laser frequencies) are shown in Figure 3.8

and indicate the increased intensity. Figure 3.9 shows the real and imaginary parts of

the index of refraction. It is apparent that while the absorption (dashed line) is zero,

the real part of the refractive index is enhanced. This experiment was able to achieve

|∆n| = |n− 1| ≈ 0.4× 10−4.
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Figure 3.5: The energy diagram for the refractive index enhancement experiment. Two res-
onant Raman transitions are interfering to create zero absorption and an enhanced refractive
index, just like in the theoretical calculation in Figure 3.4. The experimental system used
hyperfine transitions in two different Rubidium isotopes. Adapted from [2].

Figure 3.6: The index enhancement experimental results, along with the theoretical prediction
(solid line) assuming a Lorentzian line shape, for a resonance separation of 0.2MHz correspond-
ing to maximum index enhancement. The intensity pattern (top image) shows zero absorption
between the resonances, while the pinhole transition (bottom image) measures the refractive
index and shows an enhancement of the refractive index at that point. Adapted from [2].
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Figure 3.7: The energy diagram of the later experiment for achieving index of refraction
enhancement, involving single 85Rb species. A pump to hyperfine level F = 3 is required. This
setup eliminates the cross coupling problem. Adapted from [3].

Figure 3.8: The normalized transmitted intensity Iout/Iin, as a function of the probe
laser frequency, for different input control laser 1 powers. This demontrates the nonzero
intensity between the resonance frequencies. Adapted from [3].
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Figure 3.9: The real and imaginary parts of the susceptibility for the index enhance-
ment setup involving single 85Rb species. The imaginary part (dashed line) represents
absorption, which is approximately zero between the resonances, while the real part rep-
resents the index of refraction. In the top two plots the gain resonance occurs before
the absorption, while in the bottom one the situation in reversed. This setup achieved
|∆n| ≈ 0.4× 10−4. Adapted from [3].
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Chapter 4

Squeezed states in a refractive index

enhancement setup

4.1 Introduction

The system discussed in the previous section allows for index of refraction enhancement

while maintaining zero absorption. This is achieved by using the interference of two

Raman transitions: one absorptive and one amplifying in the probe beam. The enhance-

ment is due to the constructive interference of the real parts of the susceptibility, while

destructive interference of the imaginary parts leads to vanishing absorption. We con-

sider this type of system, and for simplicity assume that both transitions occur between

the same atomic levels, as shown in Figure 4.1. As we will discuss below, it turns out

that this type of system also exhibits quadrature squeezing or photon-number squeezing

(sub-Poissonian light) of the probe laser photons, for appropriate choice of the system

parameters. This is remarkable, since it happens without an explicit nonlinearity in the

system. The squeezing obtained here is also a result of the interference between the two

resonances in the system. Recently, a linear system of two qubits coupled to a cavity

was shown to create squeezed light with hyperradiance [21], giving another example of

linear system components resulting in squeezed states. In this chapter we investigate

these squeezed light properties. Since the control lasers are much more intense than the
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Figure 4.1: Energy level diagram of our setup. Two resonance transitions, each with a probe
beam and a control laser beam, one absorptive and one amplifying in the probe beam. This is
similar to the index enhancement setup discussed the previous section, but for simplicity the
two transitions occur between the same two levels.

probe, they will be treated classically, while the probe beam will be treated quantum

mechanically using creation and annihilation operators.

4.2 Formalism and notation

We describe the system by a Hamiltonian of the form, Ĥ = Ĥ0 + ĤI , where the non-

interacting part of the Hamiltonian, due to the probe laser and the two-level atom,

is

Ĥ0 = ℏωpâ
†â+ ℏωaσ̂

†σ̂ (4.1)

and the interaction Hamiltonian is

ĤI = iℏg1 exp [−i (ωc2 +∆2) t] â
†σ̂− + iℏg2 exp [i (ωc1 +∆1) t] âσ̂

− + c.c (4.2)

Here, the quantities ωp, ωc1 and ωc2 are the angular frequencies of the the probe

and the two control lasers, g1 and g2 are the strengths of the two Raman resonances,

which depend on the electric dipole matrix element of the transition, the atomic energy

level and the probe beam frequency [22]. For a specific atomic or molecular system, the

interaction strengths can be calculated by using couplings to the excited upper levels
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(not shown in Figure 4.1), and the frequency (energy) detunings of the interacting lasers

from these levels. â and â† are the photon annihilation and creation operators for the

probe laser. σ̂− = |g⟩⟨e| and σ̂+ = |e⟩⟨g| are the lowering and raising operators for the

atomic system. ∆1 and ∆2 are the two-photon detunings from the Raman transition,

and are defined as ∆1 = (ωc1 − ωp) − (ωe − ωg) and ∆2 = (ωp − ωc2) − (ωe − ωg),

respectively. In Eq. (4.2), we have considered the interaction of the lasers only with a

single atom, for simplicity. This can be straightforwardly extended to multiple atoms

by using summation over the different atoms in the Hamiltonian. We will consider this

case in some of the numerical simulations later in this chapter.

4.3 Analytical analysis

Although it is not possible to fully solve this Hamiltonian analytically, it is possible

to obtain analytical solutions for some specific conditions. In this section we examine

the solutions in two cases: In a vacuum while the operators â and â† vary slowly, and

a perturbative solution to Schrodinger’s equation. Numerical results for more general

cases are discussed in the later sections of this chapter.

4.3.1 Exact calculation with a vacuum state

Here we illustrate the main steps and the results of the calculation. The full calculation

is included in Appendix A.1. Based on Eqs. (4.1), (4.2) the full Hamiltonian of the

system is:

Ĥ = ℏωpâ
†â+ ℏωaσ̂

+σ̂− + iℏg1 exp [−i (ωc2 +∆2) t] â
†σ̂− + iℏg2 exp [i (ωc1 +∆1) t] âσ̂

−

− iℏg∗1 exp [i (ωc2 +∆2) t] âσ̂
+ − iℏg∗2 exp [−i (ωc1 +∆1) t] â

†σ̂+

(4.3)

we work in the Heisenberg picture here. The Heisenberg equations for â and σ̂ are:

dâ

dt
=

1

iℏ

[
â, Ĥ

]
,

dσ̂

dt
=

1

iℏ

[
σ̂, Ĥ

]
(4.4)
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these yield the equations of motion:

dâ

dt
= −iωpâ+ g1 exp [−i (ωc2 +∆2) t] σ̂

− − g∗2 exp [−i (ωc1 +∆1) t] σ̂
+

dσ̂

dt
= −iωaσ̂zσ̂

− + g∗1 exp [i (ωc2 +∆2) t] âσ̂z + g∗2 exp [−i (ωc1 +∆1) t] â
†σ̂z

(4.5)

now, to get rid of the first term on the RHS of these equations, we define

â ≡ ˜̂a exp (−iωpt)

σ̂ ≡ σ̂z ˜̂σ exp (−iωat)

(4.6)

substitution into the equations and also using the definitions

ωc1 +∆1 − ωp − ωa ≡ δω1

ωc2 +∆2 − ωp + ωa ≡ δω2

(4.7)

we get the equations for ˜̂a and ˜̂σ:

d˜̂a

dt
= g1 exp (−iδω2t) ˜̂σ

− − g∗2 exp (−iδω1t) ˜̂σ
+

d˜̂σ

dt
= g∗1 exp (iδω2t) ˜̂a+ g∗2 exp (−iδω1t) ˜̂a

†
(4.8)

to proceed, we make the simplifying assumption that ˜̂a, ˜̂a+ vary much slower than

exp(iδω1t) and exp(iδω2t). Then from the second equation:

˜̂σ (t) =
g∗1
iδω2

exp (iδω2t) ˜̂a−
g∗2
iδω1

exp (−iδω1t) ˜̂a
† (4.9)

substituting this in the first equation, we get
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d˜̂a

dt
= −i

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a+ ig1g

∗
2

(
1

δω1

− 1

δω2

)
exp [−i (δω1 + δω2) t] ˜̂a

† (4.10)

Now we calculate the quadratures. Defining Q̂ = â+ â†, we have

dQ̂

dt
=
dâ

dt
+
dâ†

dt
(4.11)

expressing this using ˜̂a and ˜̂a† and using Eq. (4.10) we can write this in terms of ˜̂a

and ˜̂a† (see Appendix A.1 for full details):

dQ̂

dt
=

{
−i

(
|g1|2

δω2

− |g2|2

δω1

+ ωp

)
exp (−iωpt)

−ig∗1g2
(

1

δω1

− 1

δω2

)
exp [i (δω1 + δω2) t] exp (iωpt)

}
˜̂a

+

{
i

(
|g1|2

δω2

− |g2|2

δω1

+ ωp

)
exp (iωpt)

+ig1g
∗
2

(
1

δω1

− 1

δω2

)
exp [−i (δω1 + δω2) t] exp (−iωpt)

}
˜̂a†

(4.12)

Then, using Q̂2 =
(
â+ â†

)2
= â2+ ââ†+ â†â+ â†

2
, we can similarly express d(Q̂2)/dt

in terms of ˜̂a and ˜̂a†. The result is (see Appendix A.1):
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d
(
Q̂2
)

dt
=

{
−2i

(
|g1|2

δω2

− |g2|2

δω1

)
exp (−2iωpt)

−2i g∗1g2

(
1

δω1

− 1

δω2

)
exp [i (δω1 + δω2) t]

}
˜̂a2

+

{
2ig1g

∗
2

(
1

δω1

− 1

δω2

)
exp [−i (δω1 + δω2) t]

+2i

(
|g1|2

δω2

− |g2|2

δω1

)
exp (2iωpt)

}
˜̂a†2

+

{
ig1g

∗
2

(
1

δω1

− 1

δω2

)
exp (−2iωpt) exp [−i (δω1 + δω2) t]

−ig∗1g2
(

1

δω1

− 1

δω2

)
exp (2iωpt) exp [i (δω1 + δω2) t]

}
˜̂a†˜̂a

+

{
ig1g

∗
2

(
1

δω1

− 1

δω2

)
exp (−2iωpt) exp [−i (δω1 + δω2) t]

−ig∗1g2
(

1

δω1

− 1

δω2

)
exp (2iωpt) exp [i (δω1 + δω2) t]

}
˜̂a˜̂a†

(4.13)

These calculations are useful because they will enable us to calculate (the time deriva-

tive of) the variance. Consider the variance in the quadrature we are looking for:

d

dt
⟨∆Q̂2⟩ = d

dt

(
⟨Q̂2⟩ − ⟨Q̂⟩

2
)

=
d

dt
⟨Q̂2⟩ − d

dt

(
⟨Q̂⟩

2
)

=
d

dt
⟨Q̂2⟩ − 2 ⟨Q̂⟩ d ⟨Q̂⟩

dt

=

〈
d
(
Q̂2
)

dt

〉
− 2 ⟨Q̂⟩

〈
dQ̂

dt

〉
(4.14)

We now consider a vacuum state. In such a state,

⟨Q̂⟩ = ⟨0|Q̂|0⟩ = ⟨0|
(
â+ â†

)
|0⟩ = 0 (4.15)

therefore the second term in the d ⟨∆Q̂2⟩ /dt expression above vanishes, and we have
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d

dt
⟨∆Q̂2⟩ =

〈
d
(
Q̂2
)

dt

〉
(4.16)

Using our expression in Eq. (4.13) and considering that, since this is a vacuum

expectation value, only the term proportional to ˜̂a ˜̂a† will contribute, we get

d

dt
⟨∆Q̂2⟩ = ig1g

∗
2

(
1

δω1

− 1

δω2

)
exp [−i (ωc1 + ωc2 +∆1 +∆2) t]

− ig∗1g2

(
1

δω1

− 1

δω2

)
exp [i (ωc1 + ωc2 +∆1 +∆2) t]

(4.17)

this is easily integrated to give

⟨∆Q̂2⟩ = − 1

(ωc1 + ωc2 +∆1 +∆2)

(
1

δω1

− 1

δω2

)
(g∗1g2 exp [i (ωc1 + ωc2 +∆1 +∆2) t]

+g1g
∗
2 exp [−i (ωc1 + ωc2 +∆1 +∆2) t])

(4.18)

and this is our final result for the quadrature squeezing in the Q̂ coordinate. This

was done under the assumption of slowly varying â and â†. Note that for real g1 and g2,

this looks like a cosine. A similar calculation can be done for the P̂ quadrature.

4.3.2 Perturbative approach

Here we present a perturbative approach from which we can solve for the wave functions

of the system (which are the tensor product of photon number states and atomic states).

We first derive the Schrodinger eqautions for this case. The Hamiltonian is given by Eq.

(4.3) where σ̂− = |g⟩ ⟨e|. To solve for the wave functions, choose the “bare-state” basis:

|ψ⟩ =
∞∑
n=0

(cg,n |g, n⟩+ ce,n |e, n⟩) (4.19)

the Schrodinger equation is:
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∂t |ψ⟩ = − i

ℏ
H |ψ⟩ (4.20)

yielding:

∞∑
n=0

(∂tcg,n |g, n⟩+ ∂tce,n |e, n⟩) = − i

ℏ

∞∑
n=0

ℏωpn (cg,n |g, n⟩+ ce,n |e, n⟩)

− i

ℏ
ℏωa

∞∑
n=0

ce,n |e, n⟩

+ g1 exp [−i (ωc2 +∆2) t] â
†σ̂−

∞∑
n=0

ce,n |e, n⟩

+ g2 exp [i (ωc1 +∆1) t] âσ̂
−

∞∑
n=0

ce,n |e, n⟩

− g∗1 exp [i (ωc2 +∆2) t] âσ̂
+

∞∑
n=0

cg,n |g, n⟩

− g∗2 exp [−i (ωc1 +∆1) t] â
†σ̂+

∞∑
n=0

cg,n |g, n⟩

(4.21)

now, notice that:

â†σ̂−

(
∞∑
n=0

ce,n |e, n⟩

)
=

∞∑
n=0

ce,n
√
n+ 1 |g, n+ 1⟩

=
∞∑
k=1

ce,k−1

√
k |g, k⟩

=
∞∑
n=1

ce,n−1

√
n |g, n⟩

=
∞∑
n=0

ce,n−1

√
n |g, n⟩

(4.22)

where to get to the last line we added a zero term because of the
√
n factor. In a

similar manner one gets

âσ̂−

(
∞∑
n=0

ce,n |e, n⟩

)
=

∞∑
n=0

ce,n+1

√
n+ 1 |g, n⟩ (4.23)
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âσ̂+

(
∞∑
n=0

cg,n |g, n⟩

)
=

∞∑
n=0

cg,n+1

√
n+ 1 |e, n⟩ (4.24)

â†σ̂+

(
∞∑
n=0

cg,n |g, n⟩

)
=

∞∑
n=0

cg,n−1

√
n |e, n⟩ (4.25)

Therefore we have

∞∑
n=0

(∂tcg,n |g, n⟩+ ∂tce,n |e, n⟩) = −iωp

∞∑
n=0

n (cg,n |g, n⟩+ ce,n |e, n⟩)

− iωa

∞∑
n=0

ce,n |e, n⟩

+ g1 exp [−i (ωc2 +∆2) t]
∞∑
n=0

ce,n−1

√
n |g, n⟩

+ g2 exp [i (ωc1 +∆1) t]
∞∑
n=0

ce,n+1

√
n+ 1 |g, n⟩

− g∗1 exp [i (ωc2 +∆2) t]
∞∑
n=0

cg,n+1

√
n+ 1 |e, n⟩

− g∗2 exp [−i (ωc1 +∆1) t]
∞∑
n=0

cg,n−1

√
n |e, n⟩

(4.26)

multiplying this equation by ⟨g, n| and then by ⟨e, n| (for a specific n), we get the

equations for the coefficients:

∂tcg,n = −inωpcg,n + g1 exp [−i (ωc2 +∆2) t]
√
nce,n−1

+ g2 exp [i (ωc1 +∆1) t]
√
n+ 1ce,n+1

∂tce,n = −inωpce,n − iωace,n − g∗1 exp [i (ωc2 +∆2) t]
√
n+ 1cg,n+1

− g∗2 exp [−i (ωc1 +∆1) t]
√
ncg,n−1

(4.27)

these can be solved perturbatively by substituting the initial states and getting the

next order solutions iteratively by substituting the previous step solutions. An advantage

of this method is that we can see the behavior of individual wave-function solutions cg,n(t)
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and ce,n(t), besides calculating the overall photon statistics. An example code for the

case n = 7 is shown in Appendix A.2.

4.4 Computer simulations

To evaluate a more general behavior of the system, we ran computer simulations written

in Python using the QuTiP package. We used the Hamiltonian in Eqs. (4.1), (4.2). We

took the initial wave function of the system to be the tensor product of the atomic state

with the photon states, |ψ⟩ = |ψatom⟩ ⊗ |ψphoton⟩ (i.e., an initial non-entangled state).

For the atomic state, our basis consisted of only two states, |ψatom⟩ = |g⟩ or |e⟩, while for

the photonic states we work in the photon number basis (Fock states), and keep up to

n = 500 photons: i.e., |ψphoton⟩ = |0⟩, |1⟩, · · · |n = 500⟩. We have numerically found this

size of Fock space to be large enough in order to accurately show the physical features

of the system, while still small enough for the simulation run-time to be feasible. In the

simulations we took the atoms to start in the ground state and the photons in a Fock

state of zero photons (vacuum). Since the control lasers are much more intense than the

probe, the control beams were treated classically, their amplitudes indicate the strength

of each resonance (denoted by g1 and g2) while the probe beam was treated quantum

mechanically using â and â† operators. The probe laser frequency ωp was taken to be

an order of magnitude larger than g1 and g2. The Hamiltonian and the initial state of

the system give all the necessary information in order to evaluate any desired quantum

expectation values (QEV). With the definitions Q̂ = â + â† and P̂ = i(â† − â), we

evaluated the statistical quantities representing quadrature squeezed states ⟨∆Q̂2⟩ and

⟨∆P̂ 2⟩ and photon-number squeezed states based on the quantities ⟨n̂⟩ and ⟨(∆n̂)2⟩

where n̂ = a†â, as well as the atomic excitation probability based on the operators σ̂

and σ̂†. We looked at two types of simulations: For the ideal case where loss of photons

or decay of atoms, denoted by γ and κ, were negligible (γ, κ≪ g21, g
2
2) we solved the

Schrodinger equation numerically:
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iℏ
d|ψ⟩
dt

= Ĥ|ψ⟩ . (4.28)

to then calculate the relevant QEV. For the case taking into account atomic or

photonic decay processes, we calculated the density matrix of the system, solved the

master equation (see Eq. 4.31) for the density matrix numerically, and evaluated the

relevant QEV ⟨A(t)⟩ using

d

dt
⟨A(t)⟩ = Tr

(
d

dt
ρ(t)A(t)

)
(4.29)

The numerical evaluation of the time-dependent QEV using the master equation

required a lot of resources (unlike the Schrodinger equation). To run time-intensive

simulations we used the computing cluster at the Center for High Throughput Computing

(CHTC) at UW-Madison.

4.4.1 Single atom simulations, photon-number statistics

In these simulations, we consider a single atom initially in the ground state, subject to

the strong control lasers and the weak probe laser. The initial conditions for the probe

laser were set to a zero photon Fock state (vacuum). We looked at the dynamics as a

function of time. Here we discuss a couple of representative examples. In Figure 4.2a,

the left image shows the photon statistics with the chosen parameters g1 = 0.25, g2 =

1.0 (arbitrary units), where the resonances are far enough apart. Here, the resonance

involving control laser 1 and the probe beam is stronger than the resonance with control

beam 2 and the probe beam. The plot is semi-periodic, and remarkably, shows finite time

intervals where the probe photons have sub-Poissonian statistics (∆n̂2 < ¯̂n), as the result

of the two-resonance interference. The right image shows the excitation probability of

the atom, which looks like Jaynes-Cummings oscillations of a single resonance. This

makes sense as in this case one of the resonances dominates the other. The numerical

simulations reveal that the photon-number squeezing effect is strongest in this type of a

system where one resonance is stronger than the other, but the weaker resonance is not
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negligible. In the next figures we consider the behavior when the resonances are closer

together. In Figure 4.2b, the pattern of atomic probability oscillations is somewhat

distorted relative to those in Figure 4.2a as both resonances contribute. The photon

statistics in this case show an oscillatory behavior with an increase in the average number

of photons as a function of time. This is because when the two resonances become

comparable in strength, the usual oscillatory dynamic is perturbed, with the photon

field finding additional pathways for amplification. In addition, compared with the case

of far separated resonances, here the interference increases the noise ∆n2 to be large

compared with the average photon number n̄, resulting in super-Poissonian statistics.

Finally, Figure 4.2c shows the situation when the two resonances are of equal strength:

g1 = g2 = 1.0. There is large amplification of the photon field resulting in an increased

average number of photons, while the light maintains a nearly Poissonian statistics. The

atomic transition probabilities change from the initial state and stabilize at nearly 0.5

in this case of equal-strength resonances.

We therefore conclude that photon-number squeezed states appear (for finite times) in

the case where one resonance is stronger than the other, but are ruined as the interference

of the two resonances increases. The full set of results for a single and for multiple atoms

without decay, as we discussed here, as well as the cases including decay, appear in

Appendix B.

4.4.2 Single atom simulations, quadrature squeezing

In this section we look at quadrature squeezing in the system from the interference of

the two resonances. As representative examples, we look at Figure 4.3. We denote

the two quadratures as Q̂ = â + â† and P̂ = i(â† − â), which imply that a squeezed

quadrature has a variance less than 1. In these plots, the fast oscillations are apparent.

From the definitions, since ∆Q̂2 (and also ∆P̂ 2) are proportional to the squares of â and

â†, the oscillations are at twice the probe frequency. Figure 4.3a shows the quadrature

oscillations for the parameters g1 = 1.0 and g2 = 2.0 (arbitrary units) while Figure 4.3b

shows the quadrature oscillations for g1 = 2.0 and g1 = 1.0. the maximum squeezing of
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(a)

(b)

(c)

Figure 4.2: Photon statistics of a probe beam in a system with two interfering resonances,
for the case of a single atom. The parameters g1 and g2 represent the strength of each
resonance. Photon number squeezing occurs when (∆n)2 < n̄. In Figure 4.2a the
resonances are far apart and are dominated by g2. The atomic level transitions show
Jaynes-Cummings oscillations due to g2 resonance, while the photon number oscillations
result in photon-number squeezing. In Figure 4.2b the coupling strengths are closer
together. While the number of photons increases, the variance ∆n2 increases faster and
no photon-number squeezing is observed. In Figure 4.2c the photon statistics is almost
Poissonian, while the transition probability flattens quickly to 0.5.
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(a)

(b)

Figure 4.3: Quadrature oscillations for a refractive index enhancing two-resonance sys-
tem. The amount of quadrature squeezing achieved depends on the resonance strengths
as well as on the initial conditions. The top figure corresponds to the resonance strengths
g1 = 1.0 and g2 = 2.0 (arbitrary units), while the bottom figure corresponds to g1 = 2.0
and g1 = 1.0. These two cases correspond to an optimal choice of parameters, and
achieve a maximum squeezing of ∼ 6 dB.

each quadrature is almost 0.5 (−6 dB) which is significant. The maximum amount of

squeezing depends on both the strength of the resonances and the initial conditions. A

full list of results corresponding to different system parameters appears in Appendix B.

It turns out that maximum squeezing appears for g1 and g2 being close enough. If they

are too far apart, not much interference happens, which is responsible for the nonlinear

effect which creates the quadrature squeezed state. If g1 ≈ g2, the two resonances

interfere destructively and appear to weaken one another, and quadrature squeezing is

not observed.

4.4.3 Multiple Atoms

Here we look at simulation results with up to 10 atoms and see which features of a single

atom remain in this case. The Hamiltonian of a system of n atoms is:
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Ĥ = ℏωpâ
†â+ ℏωa

n∑
i=0

σ̂†
i σ̂i

+ iℏg1 exp [−i (ωc2 +∆2) t] â
†

n∑
i=0

σ̂−
i + iℏg2 exp [i (ωc1 +∆1) t] â

n∑
i=0

σ̂i
− + c.c

(4.30)

We ran the simulations for different parameters and compared the result to the single-

atom case. The full results appear in Appendix B. Here we examine one example, for

g1 = 0.5 and g2 = 1.0. It is apparent that a single atom has both photon-number

squeezing and quadrature squeezing for these parameters. Unfortunately, this squeezing

is destroyed in the case of more than a single atom. This is the case for other resonance

parameters as well. The noise ∆n increases relative to n̄ when the number of atoms is

increased, which makes sense. The transition probability oscillations get distorted due

to the effect of multiple atoms. The quadratures, having been close to 0.5 for optimal

parameters in a single atom, do shift to values larger than 1 as a function of time for

multiple atoms, showing that there is more “noise”. This shows that this experiment

should be ideally done using a single atom. Simulating up to 10 atoms, all interacting

with a Fock space of up to 500 photons, had been a demanding task that required the

use of a computer cluster at UW-Madison for multi-atom systems.
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Figure 4.4: Quadrature and photon-number squeezing in the case of multiple atoms, for
g1 = 0.5, g2 = 1.0. The top figures show the results for a single atom, the second line
figures show for N = 2 atoms, the third line figures show the N = 5 atoms case, and the
bottom figures are for N = 10 atoms. The squeezing that appears for a single atom is
destroyed, although the general time dependence behavior doesn’t change dramatically.

4.5 Detuning

Here we look at the effect of the detuning of each transition from resonance, on the

amount of quadrature squeezing. We denote by ∆1 and ∆2 the detunings for transitions

involving control laser c1 and c2, respectively. We varied ∆1 and ∆2 between -4.0 and

4.0 (in the arbitrary units of the simulations. This is up to about 10% of the energy

transition frequencies of the order of ωc1, ωc2 and ωp). For each choice of (∆1,∆2) we

ran the simulation for a time t = 500/ωp and recorded the minimum value of ⟨∆Q̂2⟩

and ⟨∆P̂ 2⟩ (which corresponds to the maximum amount of quadrature squeezing). The

results are reported in dB. Figure 4.5 shows an example plot for g1 = 1.0 and g3 = 3.0.

It is apparent that the maximum squeezing is obtained not right at ∆1 = ∆2 = 0 but

at a finite detuning, which is nontrivial and interesting. Results for different choices

of resonance strengths g1 and g2 gave different optimal (∆1,∆2), and unfortunately we
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Figure 4.5: Contour plot of the minimum of ∆Q2 quadrant (measured from a simulation
running up to t = 500/ωp) as a function of the detuning of the control lasers from resonance.
The maximum amount of squeezing does not occur for ∆1 = ∆2 = 0.

have not determined a definite pattern. Remarkably, even though the time-dependance

of each quadrature (for a specific choice of ∆1 and ∆2) is different, the minimum values

as a function of detuning are very similar between the Q̂ and P̂ quadratures, and the

two contour plots resemble one another.

4.6 Decay

Here we take into account decay of atoms and photons, which was neglected in the

previous simulations. To represent them, we include the collapse operator
√
κâ for

photonic decay and
√
γσ̂ for atomic decay, where the decay coefficients κ and γ range

from 0.0 to 1.0, of the order of the resonance strength parameters (g1, g2), and observe

the effects on the quadrature squeezing. We chose a couple of parameter values of

(g1, g2) that corresponded to strong quadrature squeezing in single atom simulations

before decay was considered. To correctly take into account the interaction with the

environment present in the system through the decay terms, a master equation should

be considered rather than the Schrodinger equation. The master equation for our system

is:

ρ̇(t) = − i

ℏ
[H(t), ρ(t)] +

1

2
κ
(
2aρ(t)a† − ρ(t)a†a− a†aρ(t)

)
+

1

2
γ
(
2σρ(t)σ† − ρ(t)σ†σ − σσ†ρ(t)

) (4.31)
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where ρ(t) is the density matrix, H(t) is the Hamiltonian of the system, the second

term is due to the photons loss in the cavity, and the third term is due to atomic

decay. This master equation can be solved for ρ(t). Then, using this solution, different

expectation values can be found, i.e. the expectation value of a quantum operator A can

be calculated from:

d

dt
⟨A(t)⟩ = Tr

(
d

dt
ρ(t)A(t)

)
(4.32)

The computer simulations solved this equation numerically using the QuTiP package.

Using this enabled us to find the expectation values of the quadratures as a function

of time, ⟨∆Q̂⟩ and ⟨∆P̂ ⟩. We are interested in the maximum amount of squeezing

achievable under these conditions. The results in Figure 4.6 show the minimum value of

the quadratures as a function of the decay parameters.

We see that loss of photons according to the
√
κâ model does not ruin the squeezing

in the case of (g1, g2) = (1.0, 2.0) and (g1, g2) = (1.0, 5.0), while atomic decay does ruin

it when it is too strong. The case (g1, g2) = (2.0, 1.0) is interesting, since the effect of

photon losses seems stronger in this case than atomic decay. Also, the overall squeezing

amount is higher than in the other two cases (with a minimum of ∆Q being 8 dB) such

that the squeezing is not ruined even for κ and γ being 1.0. This shows that the decay

effect on the amount of squeezing depends strongly on the resonance parameters.

4.7 Conclusions

We have analyzed a system for refraction index enhancement, and found, using nu-

merical simulations, that under certain choices of the system parameters (such as the

resonance strength, the detuning from resonance and the decay parameters) squeezed

states were created. This suggests a new and interesting way to produce quadrature

squeezed or photon-number squeezed light as the case may be, without including an

explicit nonlinearity in the system. Besides the interesting physics, this might have

potential applications as a refractive-index enhancement setup having lower noise in a
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Figure 4.6: Minimum quadrature squeezing as a function of decay coefficients. In the top two
figures the atomic decays have a larger effect than photon losses, and become strong enough
for large decays to destroy the squeezing. In the last figure, photon losses have a stronger effect
but the squeezing is larger and is not destroyed.
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specific quadrature of the probe laser.
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Part II

Detection of axions in guided

structures
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Chapter 5

Motivation - dark matter and axions

According to the current standard model of cosmology, the “concordance cosmological

model”, the energy density in the universe today is composed of roughly 68% dark

energy, 32% matter, and a negligible amount of radiation (initially the radiation density

dominated, but decreased quickly as the universe expanded). In the matter sector, about

27% is dark matter, while only 5% is ordinary (baryonic) matter, see Figure 5.1. So in

a sense, we are familiar with only 5% of the universe!

Figure 5.1: Energy density components of the universe today, according to the ΛCDM
(“concordance”) model.

To understand the effect of dark energy, let us look at Einstein’s general theory

of relativity (GR). According to it, energy sources curve spacetime and particles move

through this curved spacetime. The second Friedmann equation, which is based on
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Einstein’s GR equation in a homogeneous and isotropic universe, reads

ä

a
= −4πG

3

(
ρ+

3P

c2

)
(5.1)

where a is the cosmological scale factor, ρ is the energy density and P is the pressure.

The different components in the Universe (nonrelativistic matter, radiation, dark energy)

have equations of state P = wρc2 where w characterizes that component. For matter

w = 0 and for radiation w = 1/3. In both cases the term in parentheses is positive,

making objects attract each other. For dark energy, however, w < −1/3 which makes the

parentheses negative, and results in a repulsion “force”. Therefore dark energy repels,

and is in fact responsible for the current accelerating expansion rate of the universe.

The nature of dark energy and dark matter is both unknown. Dark energy behaves like

vacuum energy under cosmological expansion. However, calculations from quantum field

theory show a discrepancy of 60 orders of magnitude between the two! [23]. In the next

sections we will focus on dark matter. We will explore observations that give evidence

of dark matter and suggest possible candidates to what dark matter actually is. We will

then review the axion as a prominent dark matter candidate, and as the solution to the

strong CP problem in particle physics.

5.1 Evidence of dark matter

Dark matter, as its name implies, cannot be “seen” directly through observations of

radiation from stellar sources. Its existence is, however, confirmed by its gravitational

effects on matter and radiation. In the next sections we will explore different evidence

for the existence of dark matter.

5.1.1 Galaxy clusters

If one examines all the observed radiating matter in a galaxy cluster, it looks like there is

far more gravitational matter than is revealed by its observed radiation. Its gravitational

attraction is not enough to hold the cluster and the hot gas together, and the cluster is
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expected to “fly apart” considering its constituents velocities. The fact that it is held

together means that there is more matter than we account for by observing the radiation,

another form of matter that does not radiate (which is hence termed “dark matter”).

To approximate the mass of all matter (including the dark matter) we can use the virial

theorem, which is valid for systems at gravitational equilibrium, which are not evolving

anymore. The virial theorem says

2 ⟨K⟩+ ⟨U⟩ = 0 (5.2)

∴ ⟨K⟩ = −⟨U⟩
2

(5.3)

where K is the kinetic energy of the cluster and U is the gravitational potential

energy. The following calculation is based on [24]. The virial theorem for this system

can be written as

1

2
M ⟨v2⟩ = αGM2

2rh
(5.4)

where α is a numerical factor for the system and rh is the half-mass radius, i.e. the

radius at which half the mass is contained inside. The first evidence of dark matter was

provided by the Swiss astronomer Fritz Zwicky during the 1930’s. He was observing the

Coma cluster of galaxies. Let us use the virial theorem to approximate the mass of that

cluster and the amount of dark matter inside. For the Coma cluster, α = 0.4. rh can be

calculated from the half light radius and is rh ≈ 1.5Mpc ≈ 4.6× 1022m, and ⟨v2⟩ can be

calculated from the radial velocity (based on the Doppler shift of the spectral lines) and

the velocity dispersion (the width of the Doppler line) and is ⟨v2⟩ = 2.32 × 1012m2/s2.

Putting all of this together, one obtains

MComa =
⟨v2⟩ rh
αG

≈ 2× 1015M⊙ (5.5)

where M⊙ is one solar mass. Comparing this to the mass of baryonic components
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of the Coma cluster based on the observed emitted radiation, MComa,stars ≈ 3× 1013M⊙

and MComa,gas ≈ 2 × 1014M⊙, the total mass of luminous matter is only about 12% of

the total mass. Therefore the majority of the mass is dark matter! A similar situation

exists in other galaxy clusters.

5.1.2 Galactic rotation curve

It is known that spiral galaxies are made of a bulge at the center, and a thin disk

containing stars and gas. If we observe stars or gas particles in a spiral galaxy and

record their velocities, we can plot their velocity as a function of their distance from the

galactic center. This is called a rotation curve. Suppose a star of mass m rotates at a

radius R from the center. Then the force of gravity acting on it is due to the mass inside

the radius R, M(R), and is equal to the centripetal force:

GM(R)m

R2
=
mv2

R
(5.6)

∴ v =

√
GM(R)

R
(5.7)

If we expect most of the luminous matter to be close to the center at a roughly

constant density, the mass would grow with radius as M ∝ R3. This yields v ∝ R. On

the other hand, at larger radii, we expect the mass to stop growing and be constant, since

almost all the mass would be inside the radius R. Therefore we would get v ∝ 1/
√
R.

This is known as a Keplerian curve, since in our solar system the planets follow this

curve in their motion around the Sun, with almost all the mass of the solar system being

contained in the Sun. This type of rotation curve measurement was accurately carried

out by the astronomers Vera Rubin and Kent Ford in 1970. By measuring the rotation

curve of hot gas in M31 (Andromeda) galaxy, they found that while it increased linearly

at small radii in the bulge, out at larger radii it stayed flat(!) instead of decreasing as

1/
√
R. The luminosity in the galactic disk decreases according to I = I0e

−R/Rs where Rs

is a typical scale of a few kiloparsecs. For M31, Rs ≈ 6 kpc. Rubin and Ford measured



72

the velocity curve up to R ≲ 4Rs, and a couple of years later another team measured

it up to R ≈ 5Rs. Therefore the situation is a decreasing amount of luminous matter

at high radii, but steady amount of mass based on gravitational effects. Therefore there

must be nonluminous matter at large radii, i.e. this provides evidence for the existing of

dark matter inside galaxies. Also, without this additional dark matter mass, the stars /

gas would fly apart and not stay gravitationally bound at these velocities.

5.1.3 CMB anisotropies

Lastly, dark matter can be measured from the anisotropies in the cosmic microwave back-

ground radiation (CMB). In the early universe, after inflation took place, the universe

consisted of a hot plasma of photons and baryons, undergoing acoustic oscillations. The

dark matter (which constitutes most of the mass) did not participate in the oscillations

but constituted the gravitational potential well for these oscillations. These oscillations

continued until the recombination phase, where the electrons combined with protons to

form atoms, and the photons became decoupled from the plasma and were released as

the CMB. Then the acoustic wave ‘froze‘ and its imprints exist in the largely isotropic

CMB spectrum. The existing shape of the measured power spectrum of the isotropies

necessitates dark matter, hence providing evidence for its existence, and by measuring

the height and spacing of the acoustic peaks it is possible to calculate the ratio of dark

to baryonic matter densities.

5.2 Dark Matter candidates

Since dark matter had not been detected yet, the possibilities of what it could be are

vast. Different candidates had been suggested with masses as little as fractions of eV

for particles such as the axions to as large as several stellar masses for MACHO (see

below). Let us consider the different types of major candidates and the current knowledge

regarding them, starting with baryonic matter and moving to nonbaryonic (and yet

hypothetical) options.
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5.2.1 Neutrinos

Neutrinos are one of the first dark matter (DM) candidates coming to mind: For once,

they are particles we know to exist. They are interacting very weakly with the Standard

Model (SM) particles, only through the weak interaction (and no electromagnetic inter-

action means they are ‘dark’). Thermodynamic calculations in the early universe lead

to the number density ratio of neutrinos and photons today [24] nν = (3/11)nγ. This

gives

Ων =
ρν
ρc

=
(
∑
mνc

2)nν

ρc
=

(
∑
mνc

2)
(

3
11

)
nγ

ρc
(5.8)

and taking the number density of CMB photons today as nγ = 412 cm−3 and the

critical density of the universe today as ρc = 5200 eV/cm3 we get

Ων,0 =
(
∑
mνc

2)
(

3
11

)
412 cm−3

5200 eV cm−3
=

∑
mνc

2

47 eV
(5.9)

where Ων,0 is the ratio of the neutrino energy density to the critical energy density

at the current time. Let us consider some data regarding the sum of neutrino masses,

to see if they can make most of the dark matter. Lab experiments set an upper limit

of
∑
mνc

2 ≲ 7.5 eV but cosmology sets a more stringent bound. The exact cosmol-

ogy bounds based on CMB measurements vary between experiments [25] and although

there had been more strict recent results, let us assume the conservative higher bound

of
∑
mνc

2 ≲ 0.68 eV. Neutrino oscillation experiments give on the other hand [26]∑
mνc

2 ≳ 50meV. Therefore we have the bounds 0.00106 < Ων,0 < 0.00144. Compar-

ing this to the dark matter density

Ωdm,0 = 0.26 (5.10)

puts the neutrino between 0.4% − 5.6% of dark matter even with the more relaxed

bounds we chose. This means that only a small (though not insignificant!) fraction

of dark matter is in the form of baryonic SM neutrinos. In addition to this, the small
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neutrino mass described above also implies that neutrinos had been ‘hot’ at their time of

decoupling, moving at relativistic speeds. If they constituted most of dark matter, this

would have prevented structure formation later on since neutrinos would fly away instead

of providing steady gravitational wells for density fluctuations to grow and structure

formation to happen.

5.2.2 MACHO

Another natural baryonic option to consider is stellar objects. The first ones coming to

mind are stars and interstellar gas but they are obviously not good candidates since they

emit light. Interstellar dust also re-emits radiation in the IR range. We are then left with

dim objects inside the galactic halo (the term MACHO stands for Massive Compact Halo

Objects). These include stellar remnants such as black holes and neutron stars, and dim

stars such as red and brown dwarfs. Stellar remnants are less plausible because they arise

from main sequence stars, and since there are not many stars inside the halo, we don’t

expect a lot of stellar remnants there either. Other options are M-stars (“red dwarfs”,

dim stars with M ≲ 0.1M⊙) and brown dwarfs (even dimmer, with M ≲ 0.08M⊙ which

are not massive enough to ignite hydrogen and shine only from residual energy due to

gravitational contraction). These are the best MACHO candidates (and are also the

most common stars in the galactic disk). As these objects are dim and we cannot see

them directly, a technique called ‘microlensing’ is used in experiments, such as MACHO

or EROS, in order to observe them. The technique relies on the fact that if we observe

starlight coming from a distant source, and the light beam passes near a MACHO, the

light beam will bend due to gravity from the stellar object, so the object essentially

functions as a gravitational lens for these beams. As a result, the star light intensity will

be amplified, having a distinct curve as a function of time, which allows to distinguish

it from other events. These types of observations had been made on stars in the Large

Magellanic Cloud (LMC), a small satellite galaxy of the Milky Way, about 50 kpc away.

The LMC is a good choice for light sources since it has enough bright stars, it is far

enough away so that the line of sight intersects a significant fraction of the galactic
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halo, and it is far enough above the galactic plane so that one actually cuts through the

halo, not just through the galactic disk [27]. One problem is that the optical depth for

microlensing stars in the LMC is ∼ 10−6. Therefore, if one observes 106 stars, one has

a good chance of seeing a single microlensing event. Lots of measurements are therefore

required. Such observations had been made for millions of stars over the past 3 decades,

with the use of computerized search techniques. Results from EROS-2 and MACHO put

an upper limit of ∼ 15% of compact halo objects in the mass range 10−6 − 102M⊙ [28].

In addition, the Hubble Space Telescope constrained the population of M-stars in the

galactic halo to less than 6% [29]. Thus, MACHO are not the dominant form of dark

matter in the galactic halo.

5.2.3 WIMP

From the sections above it is evident that baryonic matter does not constitute the major-

ity of dark matter in the universe, therefore we must look at nonbaryonic (hypothetical

as of yet) options. One category is WIMP, or Weakly Interacting Massive Particles, po-

tential cold dark matter (CDM), having a large mass and interacting only weakly with

standard model (SM) particles. One option is provided by a minimal extension of the

SM which introduces an additional two Higgs scalar doublet having a discrete symme-

try. This neutral scalar or pseudoscalar boson particle does not couple directly to SM

fermions or to photons, and would be stable due to the discrete symmetry of the model

[30] and therefore would not decay through the evolution of the universe. Because of

these features it would be an excellent dark matter candidate. Its predicted mass range

is 54-74 GeV [31].

Another possibility is a heavy neutrino. We are familiar with 3 generations of neu-

trinos, which are part of the SM. LEP experiment showed that there are exactly 3

generations of light neutrinos. A fourth generation is possible, however - it would need

to have a mass m > mZ/2 ≈ 46GeV/c2 in order to not have been discovered yet. With

such a heavy mass, we do not expect a large number of such particles to have been

created in the Big Bang, and therefore, whether such a heavy neutrino exists or not, it
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would not explain the majority of dark matter.

Finally, popular options come from Supersymmetry (SUSY). SUSY theories predict

that every particle in the SM has a supersymmetric partner, such that every fermion has

a bosonic partner (names begin with ‘s’ for ‘supersymmetric’, such as selectron, smuon

etc.) and every boson has a supersymmetric fermionic partner (photino, Higgsino, Zino,

etc.) A new quantum number, the R parity (+1 or -1), distinguishes SM particles from

their SUSY partners. If the R parity is conserved (such as the case in the simplest SUSY

theories) then the lightest supersymmetric particle (LSP) must be stable, since it cannot

decay to other heavier SUSY particles, and decay modes to SM particles would violate

conservation of R parity. Such a stable, weakly interacting particle is an attractive

option to be dark matter. However, negative experimental results from CERN and other

laboratories appear to rule out the minimal supersymmetric model as cold dark matter.

Heavier non-minimally supersymmetric particles are still possible, though are less likely.

5.2.4 Axions

Axions belong in the category of WISP (Weakly Interacting Slim Particles). The axion is

a very light pseudoscalar particle (spin-parity 0−) that was originally postulated in order

to solve the “strong CP problem” in particle physics. The problem arises as follows. The

quantum chromodynamics (QCD) Lagrangian includes the term [32]:

L = −Θ̄(αs/8π)G
µνaG̃a

µν (5.11)

where Θ is a dimensionless parameter, Θ̄ is the effective parameter after diagonalizing

quark masses, Ga
µν is the color field strength tensor and G̃a,µν is its dual. This term is

not symmetric under CP transformation (which is a transformation under the combined

C (charge conjugation) and P (parity)). Based on this Lagrangian, the electric dipole

moment can be calculated and is equal to

dn ≈ 10−15 Θ̄ (5.12)
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Naively there is no reason why the Θ̄ parameter should not be of O(1). However,

current experimental bounds are found to be dn < 10−26 e · cm [33]. Comparing this to

Eq. (5.12) leads to the constraint
∣∣Θ̄∣∣ < 10−11, making this CP-violating term essentially

vanish, and the whole Lagrangian symmetric under the CP transformation. Since there is

no a-priori reason to assume such a symmetry, this is known as the “strong CP problem”.

An elegant solution was suggested by Peccei and Quinn in 1977 [34]. They suggested

that a field ϕ exists such that the modified Lagrangian becomes

L =

(
ϕ

fa
− Θ̄

)
αs

8π
GµνaG̃a

µν (5.13)

the vacuum expectation value (VEV) of ϕ is zero above some energy scale fa, and

acquires a nonzero VEV under fa, of Θ̄fa (in a spontaneous symmetry breaking mecha-

nism), which cancels out Θ̄ in Eq. (5.13) and makes this term in the whole Lagrangian

vanish. This then gives a symmetry-invariant Lagrangian under the CP transformation,

and naturally solves the strong CP problem. The particles which are the excitations of

this nonzero VEV field after the symmetry breaking (the Goldstone bosons) are called

“axions”. The properties of the axion such as its mass and its coupling to photons all

depend on the energy scale fa:

ma = 6 eV

(
106GeV

fa

)
(5.14)

and

gaγγ =
αgγ
πfa

(5.15)

where gγ is a dimensionless model-dependent parameter of order unity [35]. Now

let’s examine how well this particle can fit as a dark matter candidate. First, for a large

value of the energy scale fa, the coupling of the axion to photons is small, which fits the

requirement of it being dark. Second, if axions make up a significant fraction of dark

matter, the bounds on the axion mass are fairly strict. Supernova SN1987a occured in
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the Large Magellanic Cloud, a nearby satellite galaxy of the Milky Way. Most of the

energy was released in the form of neutrinos. Measurements of those had put an upper

limit on the mass of axions: too heavy of a mass would have distorted the escape time of

neutrinos on their way to Earth in a measurable way. Axions with masses much above

10−2 eV would be in conflict with the number of neutrinos observed in this supernova

[36]. On the other hand, the smaller the mass of the axions, the larger their energy

density. Cosmology dictates that their density (relative to the critical density) is [35]

Ωa =

(
6µeV

ma

)7/6

(5.16)

An axion of ma ≈ 20µeV would thus account for the entire dark matter density

of the universe, Ωm ≈ 0.23. If the axion mass is much below 1 µeV it would mean

that the big bang produced way more axions than necessary to account for dark matter,

which is unreasonable. This gives the best mass range estimate for dark matter axions

of 10−6 eV < ma < 10−2 eV. It might seem like because of its small mass, the axion

would be relativistic in the early universe just like the neutrino, and thus form a hot

dark matter which wouldn’t be able to establish structure formation and therefore can

not form a good DM candidate. However, the very weak interactions of it with other

particles mean that unlike the neutrino, it never was in thermal equilibrium with other

particles in the early universe, and axions would have formed as a boson condensate

of cold dark matter. The above features make the axion an excellent cold dark matter

candidate.

While the axion could be what the majority of dark matter is made of, its existence

was first motivated by the strong CP problem, and it is perfectly possible that axions

outside the DM range exist, and are the solution to the strong CP problem while not

being part of the DM particles in the universe. Furthermore, axion-like particles (ALP)

are also motivated by string theory, and they are not bound to specific QCD models.

Whether they exist or not, one thing is certain: Axions are worth searching for!
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Chapter 6

Axion detection experiments

In this section I describe some of the major existing and planned experiments for de-

tection of axions. These fall into 3 main categories: Haloscopes, helioscopes and LSW

(light shining through a wall). Some other experiments are described as well. As we have

seen, the axions are predicted to interact very weakly with photons (as seen from Eq.

(5.2.4), with the energy scale fa being large). This makes them an excellent dark matter

candidate, but also hard to detect. Pierre Sikivie from the University of Florida came up

with an idea in 1983 which made the detection of axions much more practical: Axions

are much more likely to convert to photons under the influence of a strong magnetic

field [37]. Likewise photons are likely to convert to axions under a strong magnetic field.

This is based on the Primakoff effect, where neutral pseudoscalar mesons are likely to

be created by or decay to photons under a strong magnetic field. Sikivie envisioned a

microwave cavity in which this is employed, but this is a key component in most axion

detection experiments today. To summarize the progress and results of experiments,

Figure 6.2 is included at the end of the chapter, with the current and future searched

parameter space. In it, the QCD band including the KSVZ and DFSZ models contain

the region where axions solve the strong CP problem. As we saw in the previous chapter,

dark matter axions are most likely to be in the range ∼ 10−6 − 10−2 eV, while QCD

axions don’t need to be (axions might solve the strong CP problem and not be dark

matter). In addition to this, string theories predict that axion-like particles (ALP) are
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not restricted to the QCD band. Therefore in practice all of the (ma, gaγγ) parameter

space is interesting for axion search. In preparing the following descriptions, I found

sources [35], [38] to be particularly helpful.

6.1 Haloscopes

Haloscopes are experiments designed to detect dark matter axions existing in the galactic

halo. A main type of such experiments is the microwave cavity. Dark matter axions have

typical nonrelativistic galactic speeds of v ∼ 10−3c and hence negligible kinetic energy

(since Etot = mac
2 + 1

2
mav

2 = mac
2(1 + v2/2c2) = mac

2(1 + O(10−6))). Hence the

resonance condition is approximately hν = mac
2 and with the assumed mass range for

dark matter axions, the resulting photon frequency ν is in the microwave. The conversion

power of axions to photons is given by [35]

PSIG = ηg2aγγ

(
ρa
ma

)
B2

0V CQL (6.1)

where ρa is the mass density of axions in the halo, ma is the axion mass and gaγγ is the

axion-photon coupling. The quantities η (fraction of power coupled to the antenna), B0

(magnetic field), V (volume), C (mode-dependent form-factor) and QL (loaded quality

factors) are experimentally controlled. The system signal-to-noise ratio is given by

S

N
=

PSIG

kTSYS

√
t

∆ν
(6.2)

where t is the integration time, ∆ν is the bandwidth of the axion signal, and TSYS =

T+TN is the sum of the physical temperature and the noise temperature of the amplifier.

6.1.1 ADMX

The Axion Dark Matter eXperiment is the main haloscope experiment. It is located at

the University of Washington. It has been able to achieve the stringent bounds on the

axion-photon coupling yet, but for a narrow mass range in the µeV. A schematic of
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the system is shown in Figure 6.1. In the experiment, axions enter a microwave cavity

of Q ∼ 105, and if their mass is resonant with the cavity resonance frequency, they

are converted into photons (the system has a main 8T magnet, which increases the

probability of this process to happen). The signal is then detected and amplified using

the SQUID amplifier. The role of the bucking magnet is to cancel the magnetic field

of the main magnet in order to allow the detection of the tiny signal. By changing the

cavity resonance frequency, a range of axion masses can be scanned. The system is cooled

to a low temperature in order to reduce thermal noise. The first phase of the experiment

(1995-2004) had been cooled to superfluid temperatures, having a noise temperature of

TN ∼ 1.5K. In the second phase of the experiment, the temperature was reduced to TN <

1.5TSQL (where SQL is the Standard Quantum Limit, an irreducible noise contribution

of linear amplifiers, kTSQL = hν) [35]. To date, ADMX has covered 460MHz− 1.01GHz

in frequency, corresponding to axion mass of 1.9− 4.2µeV [39], [40] and had been able

to reach KSVZ sensitivities (see Figure 6.2). ADMX will soon incorporate a dilution

refrigerator which should reduce the temperature to TSYS < 200mK, sensitive to DFSZ

axions.

A second, smaller ADMX platform, named ADMX-HF, is planned with a magnetic

field of 9.4T, experiment temperatures of T ∼ 25mK, with noise temperature TN ∼

TSQL. In its initial configuration, the experiment is projected to reach a sensitivity in

axion-photon coupling of ∼ 2 × KSVZ. A major R&D effort is to use a receiver based

on squeezed vacuum states to overcome the quantum noise limit (used currently only

by LIGO and GEO). It will use a Josephson parametric amplifier to measure the signal.

ADMX development has been able to achieve a noise temperature of TN = hν/4.

6.2 Low mass axion searches

6.2.1 NMR based experiment: CASPEr-Wind

The Cosmic Axion Spin Precession Experiment (CASPEr)-Wind, located in Johannes

Gutenberg University Mainz in Germany, is an experiment for detecting axions or ALP
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Figure 6.1: Schematic of the ADMX system. The DM axion enters the the microwave
cavity where it is resonantly converted to microwave photons, under the effect of the
magnetic field from the main magnet, which enhances this process. The bucking magnet
then cancels the field of the main magnet to allow the weak signal to be detected, and
it is then enhanced with the SQUID amplifier. The figure is adapted from [41]

.
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dark matter, relying on the interaction of the axion field with the proton and neutron

spins, described by the Lagrangian

L = gaNN [∂µa(r⃗, t)]Ψ̄nγ
µγ5Ψn (6.3)

where gaNN is the coupling between the axion and the nucleon spins, Ψn is the nucleon

wave function and γµ and γ5 are Dirac matrices. Unlike other axion experiments which

rely on a loop-level axion-photon interaction, this one relies on a tree-level interaction of

the axion with SM particles. The gradient is proportional to an effective magnetic field.

In the nonrelativistic limit the Hamiltonian can be written as γB⃗a · σ⃗N where

B⃗a =
gaNN

γ
∇a ≃ gaNN

√
2ρDM

γ
cos(ωat)v⃗a (6.4)

acts as an effective oscillating magnetic field which couples to nuclear spins [42]. Here

v⃗a ∼ 10−3c is the DM velocity, ρDM ≈ 0.3GeV/cm3 is the local DM density and γ is the

gyromagnetic ratio. Because B⃗a is proportional to the DM velocity, this interaction is

known as the “axion wind”. CASPEr-Wind experiments are aimed to detect this wind.

The main idea behind CASPEr-Wind is to use the time-varying nature of the effect

to cause precession of nuclear spins in a sample of material. The Larmor frequency

of the nuclear spins is scanned by increasing the magnetic field and at the frequency

corresponding to the mass of the axion, an NMR signal is observed using a precise

magnetometer. The experiment is aimed to explore a low mass range currently not

searched for by other experiments. First experimental results were published in 2019

excluding ultralight ALP dark matter in the mass ranges 10−22 eV to 1.3×10−17 eV with

coupling constants gaNN > 6 × 10−5GeV−1 [43] and 1.8 × 10−16 eV to 7.8 × 10−14 eV

corresponding to Compton frequencies ranging from 45 mHz to 19 Hz with coupling

constants gaNN > 5 × 10−5GeV−1 [44]. A second apparatus, CASPEr-Wind high field

(HF), currently under construction, will be capable of searching for ALPs with masses

up to ≈ 2.4× 10−6 eV [45].
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6.3 Helioscopes

Axions or ALPs can be naturally produced inside the Sun’s core, where the Sun’s plasma

creates a strong magnetic field which enhances the conversion of emitted photons into

axions by the Primakoff effect. This flux of axions arrives Earth, and can be detected

using an axion helioscope. These helioscopes implement a strong magnetic field, under

which the axions convert back into photons. Considering the energies, these detected

photons are in the x-ray range. The probability that a photon will convert to an axion

inside the helioscope, traveling a length L in a magnetic field B, is [46] [35]

Paγ = 2.6× 10−17
( gaγγ
10−10GeV−1

)2( B

10T

)2(
L

10m

)2

F (6.5)

where F is a form factor accounting for the coherence:

F =
2(1− cos qL)

(qL)2
(6.6)

and q is the momentum transfer. Since the photon is massless but the axion is not,

they would grow out of phase with distance, therefore to keep the coherence we need

qL≪ 1. For L ∼ 10m this happens at axion masses up to ∼ 10−2 eV.

6.3.1 CAST

The big existing helioscope project is CAST (CERN Axion Solar Telescope) operating

since 2003. It uses the LHC magnet of 9T over a length of 9.3m, and uses pn-CCD

combined with an x-ray mirror system for detection [47]. It was able to follow the

sun a couple of hours every day using an elevation and azimuth drive, and is the first

helioscope to use x-ray focusing optics as well as low background techniques. In its first

phase, CAST-I, it obtained the coupling limit gaγγ ≲ 8.8×10−11GeV−1 for ma ≲ 0.02 eV

[48]. The second phase of the experiment had been using 4He and 3He buffer gases and

is still in operation today. A buffer gas provides an effective mass mγ to the photons,

making the axion-photon momentum difference equal to q = (m2
a −m2

γ)/2E. Eq. (6.6)
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then implies that ma ≃ mγ are most likely to be produced. Changing the pressure and

hence mγ allows for scanning of different axion masses, and the experiment was able to

scan up to ma ≲ 1.2 eV [49]. Figure 6.2 shows the parameter space scanned by it to

date.

6.3.2 IAXO and BabyIAXO

The International AXion Observatory (IAXO) is a planned helioscope, with improved

equipment that should enable it to surpass the sensitivity of CAST by more than an

order of magnitude. It will employ a larger magnetic field over a larger distance, with a

higher area and a more sensitive focusing system. The design intends to include a 25m

long toroid magnet, producing 2.5T in 8 bores of 600mm diameter [35]. To maximize

the efficiency, each of the bores will be equipped with x-ray focusing optics, with the

goal to reach background levels below 10−7 counts · keV−1 cm−2 s−1. It is expected to

have 5 orders of magnitude better signal to noise ratio than CAST, which will enable

it to achieve sensitivity ∼ 10−12GeV−1, and probe a broad range of QCD models. In

addition to the axion-photon coupling, the scientific plan should enable it to probe axion-

electron and axion-nucleon couplings, and thus learn about production mechanisms of

axions in the Sun. The first step to IAXO will be the BabyIAXO experiment. It is

supposed to be a prototype of all subsystems of IAXO and its operation will enable to

observe the full system integration and fix mistakes. In addition, it is a fully functional

helioscope by itself. it will exceed the sensitivity of CAST by a factor of ∼ 4, searching a

similar axion mass range. It will employ a 2T, 10m long superconducting magnet with

two bores, each with a 70 cm diameter. The BabyIAXO experiment relies on common-

coil superconducting cables available only in Russian industry [38]. However, since the

Russian invasion of Ukraine in February 2022, collaboration with Russian institutes is

frozen and the magnet cables are still missing. This affects the planned schedule. After

the approval of the experiment to be hosted at DESY, the collaboration has taken first

steps towards its construction. The first data taking is expected in 2028. The projected

parameter space to be probed is shown in Figure 6.2.
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6.4 Light Shining through a Wall

Light Shining through a Wall (LSW) experiments aim at producing axions in the lab

(rather than detecting axions from the galactic halo or the Sun). In this type of exper-

iments typically a coherent light is produced using a laser at the generation side, and

is then converted to axions using a strong magnetic field. It then passes through an

optically opaque barrier (the wall); this ensures that photons are not able to pass, and

only the weakly-interacting axions pass the barrier to the detection side; there, under

the effect of a magnetic field, the axions are converted back to photons, which are an-

alyzed. Without axions, no light would be produced in the detection side, so a signal

measurement there proves the existence of axions. Most systems employ a Fabry-Perot

cavity at the production and / or the detection side, in order to increase the effective

light power. One advantage of this type of experiments is the theory independence (in

contrast to haloscopes or helioscopes, which depend on astrophysical models). Another

advantage is the control of the laser frequency, and hence the corresponding axion mass

to be probed. The probability of a (γ → a→ γ) oscillation is given by [50]

Pγ→a→γ =
1

16
(gaγγBL)

4

(
2

qL
sin

qL

2

)4

FPCFDC (6.7)

where FPC is the finesse of the production cavity, FDC is the finesse of the detection

cavity, and q is the momentum transfer between the photon and axion, given by q =∣∣∣ω −
√
ω2 −m2

a

∣∣∣.
6.4.1 ALPS I

The Any Light Particle Search (ALPS) 1 at DESY operated between 2007-2010. It

consisted of a 5T HERA superconducting magnet and had two arms of 4.3m each. It

used a frequency doubled 1064 nm laser light with a power of 5W at 532 nm. The laser

entered a vaccuum pipe where the photon-axion conversion was designed to happen.

In order to increase the efficiency of the conversion, an optical resonator enclosed the

generation pipe in order to increase the laser power and therefore enhance a hypothetical
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axion flux. It was the first LSW experiment to use a cavity in the generation tube.

The beam would then pass an optically-thick wall into the detection pipe. Reconverted

photons would have the same TEM00 mode as in the generation resonator. Such photons

would then be directed to a CCD camera for detection. The newest results were published

during 2009-2010 [51] and are shown in Figure 6.2.

6.4.2 OSQAR

The OSQAR (Optical Search for QED Vacuum Birefringence, Axions, and Photon Re-

generation) experiment at CERN uses two 9T dipole magnets of the LHC facility, and

has a total length of 2× 14.3m. It is using an 18.5 W continuous wave laser at a wave-

length of 532 nm. After exiting the second magnet, the laser beam is focused by an

optical lens onto a thermoelectric CCD which is cooled to a temperature in the −92oC

to −95oC range to reduce thermal noise. In 2014 this experiment achieved its current

best limits of gaγγ < 3.5× 10−8GeV−1 at 95% CL for ma < 0.3meV [52]. Its parameter

space exclusion regions are sketched in Figure 6.2.

6.4.3 ALPS II

Any Light Particle Search number 2 will employ two long arms and high-finesse optical

cavities both before and after the light-blocking wall. The experiment will use a 30W,

1064 nm laser. It will also use a long string of superconducting dipole magnets. These are

expected to increase the sensitivity by a factor of 103 relative to ALPS I. The experimen-

tal parameters are: FPC = 5000, FRC = 40000, B = 5.3T, L = 105.6m. Using Eq. (6.7)

and taking gaγγ = 2 × 10−11GeV−1 (motivated by astrophysics) gives Pγ→a→γ ∼ 10−25.

With these parameters, about 2 photons/day are expected to be detected as a result of

the photon → axion → photon conversion [38]. ALPS II will have two different types of

detectors. One of these is a heterodyne detector (HET) which measures the interference

beat note between a local oscillator laser and the regenerated photon field, and the other

is a Transition Edge Sensor (TES) operating at about 100 mK. It allows counting indi-

vidual 1064 nm photons with energy resolution of 7% [38]. Each of those detectors has
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different systematic errors. Thus, if both of them get a signal with the same intensity,

this increases the reliability of both coming from the axion detection. However, since

the two detectors require different optical systems to operate, they cannot be used in

parallel. The installation of ALPS II began in 2019 and a first science run with the

HET detector is planned for 2024. Projected results of ALPS-II experiment are shown

in Figure 6.2.

6.5 Other experiments

Here we consider additional experiments to detect axions, proposed in recent years.

6.5.1 Interferometry-based detection

An interferometry-based experiment had been suggested [54] in which a laser beam

traverses a region of a magnetic field used to convert some of the photons to axions.

This changes the intensity and the phase of the original beam. It then interferes with a

beam from the original source. Unlike traditional LSW experiments, there is only one

conversion of photons-to-axions, and no second conversion of axions-to-photons, therefore

the sensitivity is higher and is proportional to g2aγγ instead of g4aγγ. However, shot-noise

limits the sensitivity. The situation is improved by the use of squeezed-light.

6.5.2 LSW in plasma

A plasma-based detection had been proposed in [55]: In the plasma, the presence of

axions creates a new type of quasiparticle: the axion-plasmon polariton. The plasmon is

an unstable electron wave, and if a magnetic field is applied, only the axion component

will be affected by it and will grow in expense of the plasmon, therefore generating

axions. These axions can then be converted into photons in a regeneration chamber and

be detected, in a manner similar to traditional LSW experiments.
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Figure 6.2: Scanned parameter space of current and future axion experiments. Solid lines
indicate exclusion results of current experiments, while dashed lines indicate projection
bounds of future experiments. The yellow band represents QCD models, where axions
solve the strong CP problem. Adapted from [53]. © IOP Publishing Ltd and Sissa
Medialab. Reproduced by permission of IOP Publishing. All rights reserved
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Chapter 7

Our axion-detection scheme

7.1 Introduction

We propose a plan for LSW-type experimental system (to be built in the future) based

on four-wave mixing of lasers in optical fibers, for detecting the axions. A detailed

description is given in the sections below, but here is an overview of the setup: The

system consists of two separate axion waveguides (optical fibers), a generation fiber and

a detection fiber, see Figure 7.1. In the generation fiber, strong pump and Stokes laser

beams are combined, and their nonlinear interaction of electromagnetic fields, E⃗ · B⃗,

resonantly generates axions which propagate as fiber modes. By carefully choosing the

frequencies of the pump and Stokes lasers, we can scan different axion masses to be

searched. These axions leak into a detection fiber, while the laser photons are blocked.

In the detection fiber we employ two laser beams as well: a mixing beam and a probe

beam. Their frequencies are chosen such that the interaction of the incoming axions with

the mixing beam generates photons at the probe frequency. This affects the intensity

and phase of the probe beam. These changes are detected using a homodyne detector

(for simplicity, we focus on changes only in intensity which are detected by a balanced

detector). In the absence of axions, the probe and mixing beams don’t interfere since

they have different frequencies. Axions create the conditions for interference, and a

nonzero signal is detected.
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Figure 7.1: The experimental scheme for axion generation and detection. The pump
and Stokes beams generate axions in the generation fiber. These axions pass through
the fibers and the metal shield to the detection fiber, while photons are blocked. These
axions mix with the mixing beam, generating photons at the probe frequency. The
changes in intensity of the probe beam are then measured using a balanced detector.
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7.2 Electromagnetic and axion field equations

The Lagrangian describing the axion and electromagnetic fields is given by [56]:

L =
1

2
∂µϕ∂

µϕ− 1

2

(mc
ℏ

)2
ϕ2 − 1

4µ0

FµνF
µν − Aµj

µ−gaγγ
8µ0

ϕ εµναβFµνFαβ (7.1)

where ϕ represents the axion field and F µν is the electromagnetic tensor. The first 4

terms in the Lagrangian are the free-field terms. The first two terms describe the free

axion field, and the next two terms describe the electromagnetic field (including sources).

The last term in blue color describes the interaction between these fields. This term can

also be written as

Laγγ =
gaγγ
µ0c

ϕ E⃗ · B⃗ (7.2)

Based on this Lagrangian it is possible to derive the axion field equation and the

modified Maxwell’s equations for the EM field. In these, there will be coupling between

the fields. The derivation is shown in Appendix D. For a medium with no free charge

density and with current density J⃗ the resulting electromagnetic field equations are:

∇⃗ · E⃗ = −gaγγc∇⃗ϕ · B⃗ (7.3)

∇⃗ · B⃗ = 0 (7.4)

∇⃗ × E⃗ = −∂B⃗
∂t

(7.5)

∇⃗ × B⃗ =
1

c2
∂E⃗

∂t
+ µ0J⃗ +

gaγγ
c

(
∂ϕ

∂t
B⃗ + ∇⃗ϕ× E⃗

)
(7.6)

and the resulting axion field equation is:

∇2ϕ− 1

c2
∂2ϕ

∂t2
−
(mc

ℏ

)2
ϕ = −gaγγ

µ0c
E⃗ · B⃗ (7.7)

where the blue-colored terms are additional terms to the Maxwell / Klein-Gordon
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equations due to the field interactions. Maxwell’s equations for ∇⃗·E⃗ and ∇⃗×B⃗ acquired

additional charge and current density terms while the other two were unaffected, and the

axion field equation acquired a term proportional to E⃗ · B⃗ which produces an effective

second-order nonlinearity. In the following, we will borrow many ideas from nonlinear

optics, specifically from four-wave mixing processes [57].

7.3 Generation of guided axion waves: axitons

Let us consider the generation waveguide (an optical fiber). In this fiber, we use two

strong laser beams: pump and Stokes. Through the term E⃗ · B⃗, the electric field of

the pump and the magnetic field of the Stokes will drive the axion generation. We take

the fiber to be cylindrically symmetric and assume the pump and Stokes lasers to be in

specific modes of the fiber. A schematic of the energy levels of the laser beams and the

axion, along with a schematic of the guided axion waves, which we term “axitons” are

shown in Figure 7.2. Working in cylindrical coordinates (r, φ, z) we can write these two

fields as

E⃗P (r, φ, z) = EP uP (r) exp(iℓPφ) exp(iβP z − iωP t)ê+ c.c

B⃗S(r, φ, z) = −BS us(r) exp(iℓSφ) exp(iβSz − iωSt)ê+ c.c

(7.8)

where c.c denotes complex conjugation. Here, the minus sign in the expression for B⃗S

is arbitrary and was chosen in order to make the RHS in the later Eq. (7.15), following

from Eq. (7.7), positive. EP and BS are the electric and magnetic field amplitudes for

the pump and Stokes laser beams, and ê denotes the common polarization direction for

the two vectors (which is any direction orthogonal to the propagation direction ẑ). The

quantities uP (r) and uS(r) are the radial mode functions of the corresponding lasers, and

the integers ℓP and ℓS are typically referred to as orbital angular momentum numbers

for the associated photons [57]. βP and βS are the propagation constants and ωP and

ωS are angular frequencies of the waves. Noting the energy diagram of Figure 7.2, the
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Figure 7.2: Energy level diagram and simplified schematic for producing guided axitons.
Pump and Stokes laser beams having a frequency difference ωP − ωS, are tuned close
to the rest energy of the axion, resonantly drive axion generation. The two lasers are
confined to an optical fiber and the solid curves are cartoon schematics for the radial
profiles of the two lasers. The spatial profiles of the two beams then confine axion
generation, producing guided axitons, which are shown in the dashed curve.

frequency difference of the pump and Stokes beams, ωP − ωS is tuned close to the rest

energy of the axion. In general, there is another contribution to the generation of the

axion wave, which is driven by the magnetic field of the pump and the electric field

of the Stokes laser. For plane-wave like lasers propagating inside a bulk material, this

second contribution (which is proportional to BPE
∗
S), would interfere destructively with

the main contribution that we consider below (which is proportional to EPB
∗
S), reducing

the produced axion amplitude. Therefore, we choose the relevant modes of the fiber

appropriately so that this second contribution can be ignored compared with the first

one. For example, one could use a TE (transverse electric) mode for the pump, and a TM

(transverse magnetic) mode for the Stokes laser. This way, the vectors EP and BS can

be aligned, maximizing the dot product. However, an angle would be present between

BP and ES, which can be tuned to minimize their dot product using specific choice of

modes. Because the axion generation is driven by the E⃗ · B⃗ term, we are looking for

axion field solutions of the form:
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ϕ(r, φ, z) = uϕ(r) exp[i(ℓP − ℓS)φ] exp[i(βP − βS)z − i(ωP − ωS)t] + c.c (7.9)

Using Eqs. (7.8) and (7.9) in the axion field equation (7.7), using the Laplacian

operator in cylindrical coordinates, and taking the terms in Eq. (7.8) that produce

the same exponents as in the axion ansatz (7.9) and denoting the exponential terms as

“exponents”, we get

[
1

r

(
duϕ
dr

+ r
d2uϕ
dr2

)
− (ℓP − ℓS)

2

r2
uϕ(r)− (βP − βS)

2uϕ(r)

]
· (exponents)

+
1

c2
(ωP − ωS)

2uϕ(r) · (exponents)−
(mc

ℏ

)2
uϕ(r) · (exponents)

=
gaγγ
µ0c

· EP uP (r)B
∗
S u

∗
s(r) · (exponents)

(7.10)

which yields after cancelling out the exponent terms:

d2uϕ(r)

dr2
+

1

r

duϕ(r)

dr
− (ℓP − ℓS)

2

r2
uϕ(r) +

[
(ωP − ωS)

2

c2
− (βP − βS)

2 −
(mc

ℏ

)2]
uϕ(r)

=
gaγγ
µ0c

EP B
∗
S uP (r)u

∗
S(r)

(7.11)

to simplify this equation, denote

∆k2 ≡ (ωP − ωS)
2

c2
− (βP − βS)

2 −
(mc

ℏ

)2
(7.12)

this is the energy difference in units of a k-vector between the pump and Stokes lasers

and the axion, since:

∆E2
lasers

c2ℏ2
=

ℏ2(ωP − ωS)
2

c2ℏ2
=

(ωP − ωS)
2

c2
(7.13)

and
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E2
axion

c2ℏ2
=
p2c2 +m2c4

c2ℏ2
=
p2

ℏ2
+
m2c2

ℏ2
= β2

axion +
(mc

ℏ

)2
= (βP − βS)

2 +
(mc

ℏ

)2
(7.14)

To make the physics stand out, define the dimensionless quantities r̃ ≡ κaxionr and

∆k̃ ≡ ∆k/κaxion which are r and ∆k scaled by the Compton wave-number of the axion,

κaxion = mc/ℏ. With these changes, the radial equation reads:

d2uϕ
dr̃2

+
1

r̃

duϕ
dr̃

− (ℓP − ℓS)
2

r̃2
uϕ +∆k̃2uϕ =

1

κ2axion

gaγγ
µ0c

EPB
∗
S uP (r̃)u

∗
S(r̃) (7.15)

Given the parameters of the system, this equation can now be numerically integrated

to find the radial profile of the axion excitation, uϕ(r̃). We will now look at physical

solutions to this equation that have a maximum at r̃ = 0. We impose the boundary

condition:
duϕ

dr̃
(r̃ = 0) = 0. We then numerically integrate Eq. (7.15), with a trial

initial state uϕ(r̃ = 0). For a given initial state, the integration will typically not result

in a bounded axion field, i.e. uϕ(r̃ → ∞) ̸= 0, which is not physical. Given the

parameters of the system, we vary the initial state uϕ(r̃ = 0) until a bounded solution

with uϕ(r̃ → ∞) = 0 is found.

Figure 7.3 shows numerically calculated normalized axiton profiles, uϕ(r̃), for ∆k̃
2 =

−1 (solid black), ∆k̃2 = −0.1 (solid red), and ∆k̃2 = −0.01 (solid green), respectively.

For comparison, the dashed blue line shows the mode profiles for the driving laser beams,

uP (r̃) and uS(r̃). Here, for simplicity, we take the profiles for the pump and Stokes laser

beams to be Gaussian with unity width, uP (r̃) = u∗S(r̃) = exp(−r̃2). We also take the

angular momentum numbers for the pump and Stokes fields to be the same, ℓP = ℓS.

Due to well-known Bessel function solutions to differential equations of the form of

Eq. (7.15), for a physical bounded solution such that uϕ(r̃ → ∞) = 0, we require

∆k̃2 < 0. As the quantity ∆k̃2 gets closer to 0, the axiton radial mode profile gets

broader and extends significantly beyond the confinement of the driving lasers. This is

well-illustrated in the solid green curve in Fig. 7.3. The quantity ∆k̃2 will likely be an
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Figure 7.3: Numerically calculated normalized axiton profiles, uϕ(r̃ = 0), for ∆k̃ = −1
(solid black), ∆k̃ = −0.1 (solid red) and ∆k̃ = −0.01 (solid green), respectively. For
comparison, the dashed blue line shows the mode profiles for the driving laser beams,
uP (r̃) and uS(r̃). For a bounded physical solution such that uϕ(r̃ → ∞) = 0, we require
∆k̃ < 0. As the quantity ∆k̃2 gets closer to 0, the axion mode profile gets broader and
extends significantly beyond the confinement of the driving lasers.
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important parameter to tune in future experiments, since the broader the axion profile

is, the more it will leak to the second fiber as we will discuss in the detection scheme

below. The numerically found initial amplitudes for the axitons, each multiplied by the

scaling factor on the right hand side of Eq. (7.15) (that is, by gaγγEPB
∗
S/(µ0c κ

2
axion))

are uϕ(r̃ = 0) = 0.23 (for ∆k̃2 = −1), uϕ(r̃ = 0) = 0.48 (for ∆k̃2 = −0.1), and

uϕ(r̃ = 0) = 0.76 (for ∆k̃2 = −0.01), respectively. Once the radial mode profile for the

axion field is numerically found as shown in Fig. 7.3, the expression in eq. (7.9) gives

the full description of the axiton mode.

7.4 Detection of axions using the guided-wave ge-

ometry

In the previous section we focused on the generation of confined axitons by the pump

and Stokes beams, which propagate along the fiber. Now, we discuss the second half of

the problem, namely how to detect these guided axitons. The vision that we have for

a future experiment is shown in Figure. 7.4. Inspired by the LSW experiments, we use

a separate fiber, the detection fiber. This is necessary, since any material will possess a

four-wave mixing nonlinearity, which would completely overwhelm the four-wave mixing

interaction mediated by the axion field. We therefore need to make sure that the four

involved laser beams do not spatially overlap. The central idea in Figure 7.4 is that the

axiton mode produced in the generation fiber overlaps with the detection fiber, while the

pump and Stokes laser beam profiles do not. If necessary, the extinction of the pump

and Stokes lasers at the detection fiber can be guaranteed by putting a metal shield

between the two fibers (see Figure 7.1 and section 7.6). In the detection fiber, the axion

field mixes with the magnetic field of another laser, the mixing laser. Through the axion

interaction, the mixing laser then affects the propagation (both phase and intensity) of

a probe laser beam. The search for the axion relies on detecting this change in the probe

laser beam. In a similar manner to the pump and Stokes beams in the generation fiber,

we now take the mixing and probe lasers to be modes of the detection fiber and assume
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Figure 7.4: Left: energy level diagram for the four-wave mixing scheme for generating and
detecting the axions. The axion field, ϕ, produced by the pump and Stokes laser beams
mix with the mixing laser, affecting the propagation of the probe laser at frequency ω0.
The four-wave mixing interaction forms a closed loop: ωP − ωS + ωM = ω0. The mixing
and the probe lasers propagate along a separate fiber, which we refer to as the detection
fiber. Inspired by the LSW experiments, the axion field produced in the generation fiber
(by the pump and Stokes lasers), overlaps with the detection fiber and mediates the
interaction between the mixing and probe lasers.

the following forms for the two waves:

E⃗probe(r, φ, z) = E0(z)u0(r) exp(iℓ0φ) exp(iβz − iω0t)ê+ c.c

B⃗M(r, φ, z) = BMuM(r) exp(iℓMφ) exp(iβMz − iωM t)ê+ c.c

(7.16)

Here, BM is the magnetic field amplitude of the mixing beam, and E0(z) is the electric

field amplitude of the probe beam. It depends on the propagation coordinate z as a result

of the interaction with the axion field. The change of E0(z) will allow the measuring of

the changes in the intensity and the phase of the probe beam, thus detecting the axion.

In the above expression, u0(r) and uM(r) are the radial mode functions of the probe and

mixing beams, and ℓ0 and ℓM are their angular momentum numbers. β0 and βM are the

propagation constants in the direction of propagation, and ω0 and ωM are the angular

frequencies. Now, in order to solve for the probe beam after the interaction with the
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mixing beam and the axion, we use Maxwell’s equations to get an equation describing

this interaction. Taking the equation

∇× E⃗ = −∂B⃗
∂t

(7.17)

then applying ∇× on both sides and using a derivative identity,

∇×∇× E⃗ = − ∂

∂t
∇× B⃗ (7.18)

∴ ∇(∇ · E⃗)−∇2E⃗ = − ∂

∂t

[
1

c2
∂E⃗

∂t
+ µ0J⃗ +

gaγγ
c

(
∂ϕ

∂t
B⃗ +∇ϕ× E⃗

)]
(7.19)

to solve this analytically, we make some simplifying assumptions. From the first

Maxwell’s equation,

∇ · E⃗ = −gaγγc∇ϕ · B⃗ (7.20)

where

∇ϕ · B⃗ =
∂ϕ

∂r
Br +

1

r

∂ϕ

∂φ
Bφ (7.21)

(and Bz = 0 as the magnetic field is transverse, so the component (∂ϕ/∂z)Bz doesn’t

exist). We assume that the axion field varies sufficiently slowly as a function of the radial

coordinate in the detection fiber, ∂ϕ/∂r ≈ 0. We also assume that the pump and Stokes

driving laser modes have ℓp = ℓS so that ∂ϕ/∂φ = 0. With these assumptions, we have

∇ · E⃗ = 0 (7.22)

now, consider the probe field to have a current density J⃗ , and suppose the fiber has

an index of refraction n. Since there are no free charges flowing, J⃗ is the current density

due to the bound charges, J⃗ = ∂P⃗ /∂t where P⃗ is the polarization of the material. Taking

the linear term, P⃗ = ϵ0χeE⃗. The index of refraction is n =
√
1 + χe and c = 1/

√
µ0ϵ0.



101

Using all of this, we have

1

c2
∂E⃗

∂t
+ µ0J⃗ = µ0ϵ0

∂E⃗

∂t
+ µ0

∂P⃗

∂t

= µ0ϵ0
∂E⃗

∂t
+ µ0ϵ0χe

∂E⃗

∂t

= µ0ϵ0(1 + χe)
∂E⃗

∂t

=
n2

c2
∂E⃗

∂t

(7.23)

with these modifications, Eq. (7.19) becomes:

∇2E⃗ =
n2

c2
∂2E⃗

∂t2
+
gaγγ
c

[
∂2ϕ

∂t2
B⃗ +

∂ϕ

∂t

∂B⃗

∂t
+
∂

∂t
(∇ϕ× E⃗)

]
(7.24)

Consider the last term, gaγγ
c

∂
∂t
(∇ϕ× E⃗). The electric field contributing to this term

is the mixing field E⃗M (which together with the axion field creates a term at the probe

frequency ω0). For simplicity, we assume the mixing beam is in a fiber mode such

that EM is small and this term is negligible. Then, substituting the interacting fields

expressions (7.9) and (7.16) into Eq. (7.24):

[
d2u0
dr2

+
1

r

du0
dr

− ℓ20
r2
u0

]
E0 exp(iℓ0φ) exp[i(β0z − ω0t)]

+

[
d2E0

dz2
+ 2iβ0

dE0

dz
− β2

0E0

]
u0 exp(iℓ0φ) exp[i(β0z − ω0t)]

=− n2

c2
ω2
0E0u0 exp(iℓ0φ) exp[i(β0z − ω0t)]

−gaγγ
c
BM(ωP − ωS)

2uϕuM exp[i(ℓP − ℓS + ℓM)φ]·

· exp[i(βP − βS + βM)z − i(ωP − ωS + ωM)t]

−gaγγ
c
BM(ωP − ωS)ωMuϕuM exp[i(ℓP − ℓS + ℓM)φ]·

· exp[i(βP − βS + βM)z − i(ωP − ωS + ωM)t]

(7.25)

we now make a couple of simplifying assumptions: (i) conservation of energy: we

assume the frequencies satisfy: ωP −ωS +ωM = ω0. (ii) conservation of angular momen-
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tum: angular momentum numbers satisfy ℓP − ℓS + ℓM = ℓ0. (iii) the Slowly Varying

Envelope Approximation (SVEA) for the probe beam,
∣∣dE0

dz

∣∣ ≪ β0E0. Finally, since

without the axion interaction (setting uϕ = 0) the probe wave is a mode of the fiber, we

get the following equation for the radial profile:

d2u0
dr2

+
1

r

du0
dr

+

(
n2

c2
ω2
0E0 − β2

0 −
ℓ20
r2

)
u0 = 0 (7.26)

(here the SVEAmakes |−2iβ0dE0/dz| ≪ |−β2
0E0| and also d2E0/dz

2 ≪ |−2iβ0dE0/dz|

therefore we can ignore these terms relative to β2
0). This allows us to cancel these terms.

With these assumptions and simplifications, Eq. (7.25) reduces to:

2iβ0
dE0

dz
u0 = −gaγγ

c
(ωP − ωS)ω0BMuϕ uM exp[i(βP − βS + βM − β0)z] (7.27)

where we dropped d2E0/dz
2 again due to the SVEA, and assumed conservation of

energy and angular momentum. Finally, to simplify this further, we assume that the

probe and mixing beams have similar radial profiles, u0(r) ≈ uM(r). We also take the

radial variation of the axion field over the detection fiber to be negligible, and assume

uϕ(r) ≈ constant. Since Eq. (7.15) has dimensionless parameters, then up to a numerical

factor, the value of the axion radial field profile is uϕ ∼ 1
κ2
axion

gaγγ
µ0c

EPB
∗
S. Using these, we

get the propagation equation for the probe beam:

2iβ0
dE0

dz
= −

g2aγγ
c2

1

κ2axion
(ωP −ωS)ω0

(
1

µ0

BMB
∗
s

)
EP exp[i(βP − βS + βM − β0)z] (7.28)

In the above expression, the quantity (βP−βS+βM−β0)z is the total phase mismatch

of the four-wave mixing interaction. Denoting ∆kFWM ≡ βP − βS + βM − β0, and

neff ≡ β0

ω0/c
as the refractive index of the probe as it propagates through the detection

fiber, the differential equation for the probe propagation can be written as
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dE0

dz
= iξEP exp(i∆kFWMz) (7.29)

where the quantity ξ summarizes the whole interaction,

ξ = g2aγγ
1

neff

1

c

1

κ2axion

(
1

2µ0

BMB
∗
S

)
(ωP − ωS) (7.30)

Let us establish that ξ is a small number, mainly due to the greatness of κaxion.

Considering the parameters in Eq. (7.30), let us assume high-end parameters with a

higher-end value of gaγγ ∼ 10−3GeV−1. Suppose that using metamaterials neff ∼ 0.01.

Also, taking mass at the lower range of our search ma ∼ 10−6 eV we get on the high

end that κaxion = mac/ℏ ∼ 1036m−1; Now consider lasers at the higher end intensity

suggested in phase 4 of our experiment (see table 7.1). Taking IS ∼ IM ∼ 1015W/m2,

we have ES ∼ EM ∼ 108V/m. Then with B ∼ E/c, we have BM ∼ BS ∼ 1T,

µ0 ∼ 10−6mkg s−2A−2, and ωP ∼ ωS ∼ 1015 rad/s (near-IR 1.55µm frequencies). Let

us take an interaction length in the fiber of L ≈ 1000 km. With these numbers, our

(higher-end) approximation is ξ ∼ 10−53. We will use the smallness of ξ in the derivation

of Eq. (7.34) below.

We next focus on the ideal phase-matched case where we assume that the mode wave

numbers can be adjusted such that ∆kFWM → 0. In this case, the probe propagation

equation has a particularly simple form and can be immediately solved:

dE0

dz
= iξEP (7.31)

⇒ E0(L) = E0(0) + iξEPL (7.32)

Here, L is the total length of each fiber, which is essentially the interaction length.

Eq. (7.32) describes the change in the electric field of the probe beam due to the axion

interaction. Based on this we will be able to find the change in intensity. Squaring both

sides of Eq. (7.32), we get
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|E0(L)|2 =
∣∣∣∣E0(0)

(
1 +

iξEPL

E0(0)

)∣∣∣∣2
∴

|E0(L)|2

|E0(0)|2
=

∣∣∣∣1 + iξ {ℜ(EP ) + iℑ(EP )}L
E0(0)

∣∣∣∣2
∴

|E0(L)|2

|E0(0)|2
=

(
1− ξℑ(EP )L

E0(0)

)2

+

(
ξℜ(EP )L

E0(0)

)2

∴
|E0(L)|2

|E0(0)|2
= 1− 2ξℑ(EP )L

E0(0)
+
ξ2(ℑ(Ep))

2L2

E0(0)2
+
ξ2(ℜ(Ep))

2L2

E0(0)2

(7.33)

where the symbols ℜ and ℑ stand for taking the real part and the imaginary part of

the term inside the brackets. The last two terms are of order (ξL)2 and are negligible

compared with the first two. Therefore

|E0(L)|2

|E0(0)|2
≈ 1− 2ξℑ(EP )L

E0(0)
(7.34)

and considering the intensity I ∝ |E2|:

I(L)

I(0)
= 1− 2ξL

ℑ(EP )

E0(0)
(7.35)

Note that by changing the phase of the pump field, EP , we can change the sign of the

quantity ℑ(EP ), and thereby control whether the probe beam will experience absorption

or amplification due to axion-mediated four-wave mixing interaction. By measuring the

change in intensity, we can find the value of ξ, which allows us to put a bound on the

coupling constant, as described in the next section.

7.5 Bounds on the coupling constant

We now discuss the bounds that this type of experiment can place on the coupling

constant, given specific experimental conditions. The sensitivity of such an experiment

will critically depend on the precision in which we can measure the change in the intensity

of the probe beam. From Eq. (7.35), the fractional change in intensity is
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∆I

I
=

|I(L)− I(0)|
I(0)

= 2ξL
ℑ(EP )

E0(0)
(7.36)

To increase the achievable sensitivity, we apply photon-number squeezing to the probe

photons (creating sub-Poissonian light), and indicate the degree of squeezing by the

Mandel-Q parameter, denoted as QM (see Eq. 2.88). In the absence of other noise

sources, and given a total number N of detected probe photons, the shot-noise fluctua-

tions would be of order
√
N , and the sub shot-noise detection sensitivity can be written

as

∆I

I
= (1 +QM)

√
N

N
= (1 +QM)

1√
N

(7.37)

At this point it is important to notice that nonlinear Raman and Brillouin scattering

of the mixing beam in the fiber would introduce noise at the probe beam, reducing

the sensitivity of the experiment. While Brillouin scattering could be controlled fairly

well (see the discussion in section 7.6), Raman scattering will inevitably reduce the

experiment sensitivity. To get a rough estimate of this effect, we assume the “worst case

scenario” in which the linewidth of the probe laser fully overlaps with the linewidth of

the Raman scattering. We assume to first order that the Raman lineshape is flat, and

also that each affected probe photon is eliminated (rather than changed in a more general

way, for example, a change in phase). To get a sense for the size of this effect, we assume

the probe laser linewidth to be δp ∼ 100 kHz, and the Raman scattering linewidth to be

Γ ∼ 1THz. Therefore a first order approximation of the power at which mixing beam

photons are Raman scattered:

PR ≃ PM
δp
ΓR

∼ PM
100 kHz

1THz
= 10−7PM (7.38)

Now, the number of photons lost in the Raman scattering during a time T :

NR =
PRT

ℏωM

(7.39)
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where T is the integration time. Let us calculate this numerically for phase 4 of

the experiment. For this phase, taking a fiber diameter of ∼ 100µm, we have PM ∼

7.85× 106W and PR ∼ 0.785W. This corresponds to NR ≈ 1.98× 1024 photons lost due

to Raman scattering (compared with Np ∼ 2.52× 1024 probe photons, so 78% are lost!).

Therefore, we take N = Np − NR ≈ 0.54 × 1024 as the number of probe beam photons

surviving the noise in Eq. (7.37), for phase 4 of the experiment. Now, equating Eqs.

(7.36), (7.37) we get:

2ξL
ℑ(EP )

E0(0)
= (1 +QM)

1√
N

(7.40)

then, since P ∝ E2 (where P is the power) and assuming similar mode sizes, we can

write:

ℑ(EP )

E0(0)
≈
√
PP

P0

(7.41)

where PP is the optical power of the pump laser and P0 is the optical power of the

probe beam. Therefore

2ξL

√
PP

P0

= (1 +QM)
1√
N

(7.42)

and using the expression for ξ from Eq. (7.30) we get:

g2aγγ = (1 +QM)
neffκ

2
axion

2L( 1
2µ0
BMB∗

S)
√
N
√

PP

P0

(
ωP−ωS

c

) (7.43)

Finally, we will make the assumption that ∆k2 in expression (7.12) is zero, and also

that (βP − βS) = 0 which corresponds to an axion having no kinetic energy. Using these

simplifying assumptions, (ωP − ωS)/c = κaxion = mac/ℏ and we get

g2aγγ = (1 +QM)
neff mac

2ℏL( 1
2µ0
BMB∗

S)
√
N
√

PP

P0

(7.44)

The quantity 1
2µ0
BMB

∗
S can be thought of as the magnetic energy density. We did
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Parameter Phase-1 Phase-2 Phase-3 Phase-4

Length of the fiber (L) 1 km 10 km 100 km 1000 km
Power in probe (P0) 1 mW 10 mW 100 mW 1 W
Integration time (T ) 100 s 103 s 104 s 106 s
Power in pump (PP ) 1 W 10 W 100 W 10 kW

Intensity of Stokes (IS) 0.1GW/cm2 1GW/cm2 10GW/cm2 100GW/cm2

Intensity of mixing (IM) 0.1GW/cm2 1GW/cm2 10GW/cm2 100GW/cm2

Probe refractive index (neff) 1 10−1 10−2 10−4

Squeezing of probe (dB) 0 dB 3 dB 6 dB 12 dB

Table 7.1: The set of parameters that are used for the four envisioned phases of the
experiment.

the above calculation assuming ∆kFWM = 0. For a finite ∆kFWM, the sensitivity of the

scheme would be reduced, to first order by a factor of ∼ (∆kFWML)
2 (see Appendix

E). We next evaluate the bounds on the coupling constant for four envisioned phases

of the experiment. The parameters that are used in these four phases are given below

in Table 7.1. The parameters for the lasers are well within the current state of the art

of high-power fiber lasers [58]. We envision that the parameters that are used in the

first two phases of the experiment (phase-1 and phase-2 ) can be achieved in a few years

timescale, while the last two phases of the experiment (phase-3 and phase-4 ) can be

performed within the next 5 to 10 years. The calculated bounds for the axion-photon

coupling for these four envisioned phases of the experiment are shown in Figure 7.5.

The range of axion masses in our plot is motivated by astrophysical constraints of axion

dark matter. To put the parameters that are listed in Table 7.1 into perspective, the

ALPS II project and IAXO (see sections 6.3.2 and 6.4.3) are shown as dashed lines. The

envisioned phase-4 experiment of our scheme (solid black line) is quite competitive with

the planned ALPS II and IAXO experiments.

7.6 Noise and other practical limitations, and ways

to improve them

Here we consider the most likely sources of noise, practical challenges and ways to op-

timize them and improve the system. One main source of noise in the experiment is
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Figure 7.5: The calculated detection sensitivity for the axion-photon coupling constant
for four different phases of the experiment. The phase-4 experiment is quite competitive
with several planned experiments, such as the next generation LSW experiment (ALPS
II) and the next generation solar helioscope (IAXO).

stimulated Raman and Brillouin scatterings of the intense mixing beam, which would

affect the probe laser photons. Those are unavoidable at our high laser powers. We have

taken Raman scattering into account in the calculation of the sensitivity limits, assuming

the “worst case” (but simple to calculate) scenario where every affected probe photon was

destroyed. Hollow-core photonic crystals would help reducing this effect since the core

is vacuum. This could be used in phases 1 and 2 of the experiment where neff = 1. For

Brillouin scattering, since the scattered photons are propagating backwards, it should

be possible to keep them fairly separated from the probe photons, thus minimizing that

effect.

Another challenge is related to a destructive interference effect in the generation fiber.

To generate axions we relied on the E⃗ ·B⃗ nonlinearity in the Klein-Gordon equation, and

assumed that pump and Stokes beams combine as EPB
∗
S. However, another term would

contribute at a similar frequency, BPE
∗
S, with an opposite sign, creating a destructive

interference. Assuming the pump beam to be in the transverse-electric (TE) mode
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and the Stokes beam to be in the transverse magnetic (TM) mode, the combination is

EPB
∗
S − BPE

∗
S, which is nonzero considering different refractive indices for the pump

and Stokes lasers, nP and nS. This can be especially well controlled and optimized by

using hybrid modes in sub-wavelength fiber. Those allow for non-orthogonal electric and

magnetic field, and one could find the optimized angles to minimize this interference

effect. This direction is being numerically investigated by our lab group.

Another possible systematics is leakage of the pump and Stokes laser beams from the

generation fiber to the detection fiber. While the axion can easily pass between the two

fibers (a fact on which the detection apparatus relies on) and the lasers should not, there

would inevitably be little amount of leakage of the optical modes as well. To minimize

this effect, we place a metal shield between the two fibers.

Another important effect comes from the index of refraction. To optimize the sen-

sitivity of the experiment, we would ideally want the material to have a low index of

refraction for the probe beam, as seen from Eq. (7.44). This is especially true in phases

3 and 4 of the experiment. A possible way to achieve this is to use appropriate metama-

terials, such as polaritonic materials, multilayered metamaterials and photonic crystals

[59] where the current state of the art at near-IR frequencies is n ∼ 0.01 [60]. One

practical problem of using a low index for the probe is that the mixing beam refractive

index should not be as low since it would result in losses. At the higher end of our

envisioned axion mass range of ∼ 10−2 eV the frequency separation between the two

beams is high enough and such a separation of refraction index is feasible. At the lower

end of ∼ 10−6 eV it would be harder to get two different indices of refraction, and the

mixing beam would experience more loss. Therefore, scanning an axion mass closer to

∼ 10−2 eV is preferable for this experiment.

Another limitation favoring the higher mass range of our search comes from the

resilience of the fiber to bending. The Compton wavelength of the axion is λa = h/mac.

For masses close to 10−6 eV, the wavelength of the axion would be large, requiring a

thicker of fiber. Optical fibers with such high radius would be susceptible to breaking

as the glass would need to be bent in order to fit a lab facility for the long optical fibers
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envisioned in this experiment.

An possible improvement in the system could be achieved by integrating a high-finesse

cavity with the generation and detection fibers. Using a distributed Bragg reflector at

each end of the fiber (which may be achieved by modulating the refractive index over

a section near the beginning and the end each fiber), the lasers can be made to bounce

back and forth along the fiber, thereby significantly increasing the interaction length.

For this case, the sensitivity bounds for the axion-photon coupling constant gaγγ would

reduce by a factor
√
F , where F is the cavity finesse.

Finally, some attenuation of the beams over distance or loss because of fiber bending

is unavoidable. Our beams operate around λ = 1.55µm which minimizes beam loss in

the fiber. Losses still present can be compensated for by the use of optical repeaters

such as an erbium-doped fiber amplifier (EDFA), ensuring that the axiton propagation

is least affected.

7.7 Summary and future prospects

We have described an experimental setup based on four-wave mixing of lasers in optical

fibers, with the mediation of the axion. The interaction with the axion affects the probe

laser’s intensity and phase in a measurable way. We assumed photon-number squeezing

with sub shot-noise limitation of the experimental sensitivity, also taking into account

Raman scattering, though other issues arise as well which reduce the detection sensitiv-

ity further, as described in the previous section. Yet, the prospects of this experiment

compared to existing and projected ones look promising. Our research group is inves-

tigating further improvements. One direction which is investigated is the form of the

axion waves (axitons) propagating in the optical fiber. For simplicity we have consid-

ered specific modes (TE for the pump and TM for the Stokes). However, other modes

might be more advantageous as mentioned in section 7.6, though the calculation could

be complicated. For this, using COMSOL Multiphysics, a commercially available soft-

ware for solving Maxwell’s equations including charge and current modifications (such
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as contributed by the axion) as described for example in [61] and specified boundary

conditions as provided by the optical fiber, allows us to solve the equation numerically

for more complicated mode functions of the fields, and then investigate the resulting

axiton profile solutions.
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Appendix A

Analytical calculations of squeezing

In this appendix we include the full analytical calculations for the quadrature squeezing

calculations and wave function calculations done under certain conditions

A.1 Exact calculation in a vacuum state

Based on Eqs. (4.1), (4.2) the full Hamiltonian of the system is:

Ĥ = ℏωpâ
†â+ ℏωaσ̂

+σ̂− + iℏg1 exp [−i (ωc2 +∆2) t] â
†σ̂− + iℏg2 exp [i (ωc1 +∆1) t] âσ̂

−

− iℏg∗1 exp [i (ωc2 +∆2) t] âσ̂
+ − iℏg∗2 exp [−i (ωc1 +∆1) t] â

†σ̂+

(A.1)

we can use the Heisenberg equation to get the equations of motion. The equation for

â:

dâ

dt
=

1

iℏ

[
â, Ĥ

]
=

1

iℏ
(
ℏωpâ+ iℏg1 exp [−i (ωc2 +∆2) t] σ̂

− − iℏg∗2 exp [−i (ωc1 +∆1) t] σ̂
+
)

= −iωpâ+ g1 exp [−i (ωc2 +∆2) t] σ̂
− − g∗2 exp [−i (ωc1 +∆1) t] σ̂

+

(A.2)

the equation for σ̂:
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dσ̂

dt
=

1

iℏ

[
σ̂, Ĥ

]
=

1

iℏ
(
ℏωaσ̂

− + iℏg∗1 exp [i (ωc2 +∆2) t] âσ̂z + iℏg∗2 exp [−i (ωc1 +∆1) t] â
†σ̂z
)

= −iωaσ̂
− + g∗1 exp [i (ωc2 +∆2) t] âσ̂z + g∗2 exp [−i (ωc1 +∆1) t] â

†σ̂z

(A.3)

looking at them together:

dâ

dt
= −iωpâ+ g1 exp [−i (ωc2 +∆2) t] σ̂

− − g∗2 exp [−i (ωc1 +∆1) t] σ̂
+

dσ̂

dt
= −iωaσ̂zσ̂

− + g∗1 exp [i (ωc2 +∆2) t] âσ̂z + g∗2 exp [−i (ωc1 +∆1) t] â
†σ̂z

(A.4)

now, to get rid of the first term on the RHS, define

â ≡ ˜̂a exp (−iωpt)

σ̂ ≡ σ̂z ˜̂σ exp (−iωat)

(A.5)

substitution gives

d˜̂a

dt
= g1 exp [−i (ωc2 +∆2 − ωp + ωa) t] ˜̂σ

− − g∗2 exp [−i (ωc1 +∆1 − ωp − ωa) t] ˜̂σ
+

σ̂z
d˜̂σ

dt
= g∗1 exp [i (ωc2 +∆2 − ωp + ωa) t] âσ̂z + g∗2 exp [−i (ωc1 +∆1 − ωp − ωa) t] â

†σ̂z

(A.6)

we can multiply the second equation by σ̂−1
z and define

ωc1 +∆1 − ωp − ωa ≡ δω1

ωc2 +∆2 − ωp + ωa ≡ δω2

(A.7)

so that the equations become
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d˜̂a

dt
= g1 exp (−iδω2t) ˜̂σ

− − g∗2 exp (−iδω1t) ˜̂σ
+

d˜̂σ

dt
= g∗1 exp (iδω2t) ˜̂a+ g∗2 exp (−iδω1t) ˜̂a

†
(A.8)

to proceed, assume that ˜̂a, ˜̂a+ vary much slower than

exp(iδω1t) and exp(iδω2t). Then from the second equation:

˜̂σ (t) =
g∗1
iδω2

exp (iδω2t) ˜̂a−
g∗2
iδω1

exp (−iδω1t) ˜̂a
† (A.9)

substituting this in the first equation,

d˜̂a

dt
= g1 exp (−iδω2t)

[
g∗1
iδω2

exp (iδω2t) ˜̂a−
g2
iδω1

∗
exp (−iδω1t) ˜̂a

†
]

− g∗2 exp (−iδω1t)

[
− g1
iδω2

exp (−iδω2t) ˜̂a
† +

g2
iδω1

exp (iδω1t) ˜̂a

] (A.10)

or

d˜̂a

dt
=

|g1|2

iδω2

˜̂a− g1g
∗
2

iδω1

exp [−i (δω1 + δω2) t] ˜̂a
† +

g1g
∗
2

iδω2

exp [−i (δω1 + δω2) t] ˜̂a
† − |g2|2

iδω1

˜̂a

(A.11)

and therefore

d˜̂a

dt
= −i

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a+ ig1g

∗
2

(
1

δω1

− 1

δω2

)
exp [−i (δω1 + δω2) t] ˜̂a

† (A.12)

Now let’s calculate the quadratures. Defining Q̂ = â+ â†, we have

dQ̂

dt
=
dâ

dt
+
dâ†

dt
(A.13)

and using the fact that
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dâ

dt
=

d

dt

[
˜̂a exp (−iωpt)

]
=

(
d˜̂a

dt
− iωp

˜̂a

)
exp (−iωpt)

dâ†

dt
=

d

dt

[
˜̂a† exp (iωpt)

]
=

(
d˜̂a†

dt
+ iωp

˜̂a†

)
exp (iωpt)

(A.14)

we have

dQ̂

dt
= exp (−iωpt)

d˜̂a

dt
+ exp (iωpt)

d˜̂a†

dt
− iωp exp (−iωpt) ˜̂a+ iωp exp (iωpt) ˜̂a

† (A.15)

now we use Eq. (A.12) to express this using ˜̂a and ˜̂a†:

dQ̂

dt
= exp (−iωpt)

[
−i

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a+ ig1g

∗
2

(
1

δω1

− 1

δω2

)
exp [−i (δω1 + δω2) t] ˜̂a

†

]

+ exp (iωpt)

[
i

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a† − ig∗1g2

(
1

δω1

− 1

δω2

)
exp [i (δω1 + δω2) t] ˜̂a

]

− iωp exp (−iωpt) ˜̂a+ iωp exp (iωpt) ˜̂a
†

(A.16)

or, finally

dQ̂

dt
=

{
−i

(
|g1|2

δω2

− |g2|2

δω1

+ ωp

)
exp (−iωpt)

−ig∗1g2
(

1

δω1

− 1

δω2

)
exp [i (δω1 + δω2) t] exp (iωpt)

}
˜̂a

+

{
i

(
|g1|2

δω2

− |g2|2

δω1

+ ωp

)
exp (iωpt)

+ig1g
∗
2

(
1

δω1

− 1

δω2

)
exp [−i (δω1 + δω2) t] exp (−iωpt)

}
˜̂a†

(A.17)

Now, since
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Q̂2 =
(
â+ â†

)2
= â2 + ââ† + â†â+ â†

2

(A.18)

we have

d
(
Q̂2
)

dt
= â

dâ

dt
+
dâ

dt
â+

ˆ
â
dâ†

dt
+
dâ

dt
â† +

dâ†

dt
â+ â†

dâ

dt
+
dâ†

dt
â+ â†

dâ†

dt
+
dâ†

dt
â†

=
(
â+ â†

) dâ
dt

+
(
â+ â†

) dâ†
dt

+
dâ

dt

(
â+ â†

)
+
dâ†

dt

(
â+ â†

) (A.19)

therefore

d
(
Q̂2
)

dt
=
(
˜̂a exp (−2iωpt) + ˜̂a†

)(d˜̂a
dt

− iωp
˜̂a

)

+
(
˜̂a+ ˜̂a† exp (2iωpt)

)(d˜̂a†
dt

+ iωp
˜̂a†

)

+

(
d˜̂a

dt
− iωp

˜̂a

)(
˜̂a exp (−2iωpt) + ˜̂a†

)
+

(
d˜̂a†

dt
+ iωp

˜̂a†

)(
˜̂a+ ˜̂a† exp (2iωpt)

)
(A.20)

From this,

d
(
Q̂2
)

dt
= exp (−2iωpt) ˜̂a

d˜̂a

dt
− iωp exp (−2iωpt) ˜̂a

2 + ˜̂a†
d˜̂a

dt

+ ˜̂a
d˜̂a†

dt
+ exp (2iωpt) ˜̂a

†d
˜̂a†

dt
+ 2iωp exp (2iωpt) ˜̂a

†2

+ exp (−2iωpt)
d˜̂a

dt
˜̂a+

d˜̂a

dt
˜̂a† − iωp exp (−2iωpt) ˜̂a

2

+
d˜̂a†

dt
˜̂a+ exp (2iωpt)

d˜̂a†

dt
˜̂a†

(A.21)

the first line in Eq. (A.21) gives
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T1 = exp (−2iωpt) ˜̂a
d˜̂a

dt
− iωp exp (−2iωpt) ˜̂a

2 + ˜̂a†
d˜̂a

dt

= exp (−2iωpt) ˜̂a

[
−i

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a

+ig1g
∗
2

(
1

δω1

− 1

δω2

)
exp [−i (δω1 + δω2) t] ˜̂a

†
]

− iωp exp (−2iωpt) ˜̂a
2 + ˜̂a†

[
−i

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a

+ig1g
∗
2

(
1

δω1

− 1

δω2

)
exp [−i (δω1 + δω2) t] ˜̂a

†
]

= −i

(
|g1|2

δω2

− |g2|2

δω1

+ ωp

)
exp (−2iωpt) ˜̂a

2

+ ig1g
∗
2

(
1

δω1

− 1

δω2

)
exp (−2iωpt) exp [−i (δω1 + δω2) t] ˜̂a˜̂a

†

− i

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a†˜̂a+ ig1g

∗
2

(
1

δω1

− 1

δω2

)
exp [−i (δω1 + δω2) t] ˜̂a

†2

(A.22)

the second line in Eq. (A.21) gives

T2 = ˜̂a
d˜̂a†

dt
+ exp (2iωpt) ˜̂a

†d
˜̂a†

dt
+ iωp exp (2iωpt) ˜̂a

†2

= ˜̂a

[
i

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a† − ig∗1g2

(
1

δω1

− 1

δω2

)
exp [i (δω1 + δω2) t] ˜̂a

]

+ exp (2iωpt) ˜̂a
†

[
i

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a† − ig∗1g2

(
1

δω1

− 1

δω2

)
exp [i (δω1 + δω2) t] ˜̂a

]

+ iωp exp (2iωpt) ˜̂a
†2

= i

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a˜̂a† − ig∗1g2

(
1

δω1

− 1

δω2

)
exp [i (δω1 + δω2) t] ˜̂a

2

+ i

(
|g1|2

δω2

− |g2|2

δω1

)
exp (2iωpt) ˜̂a

†2

− ig∗1g2

(
1

δω1

− 1

δω2

)
exp (2iωpt) exp [i (δω1 + δω2) t] ˜̂a

†˜̂a

(A.23)

the third line in Eq. (A.21) gives:
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T3 = exp (−2iωpt)
d˜̂a

dt
˜̂a+

d˜̂a

dt
˜̂a† − iωp exp (−2iωpt) ˜̂a

2

= exp (−2iωpt)

[
−i

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a

+ig1g
∗
2

(
1

δω1

− 1

δω2

)
exp [−i (δω1 + δω2) t] ˜̂a

†
]
˜̂a

− i

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a˜̂a† + ig1g

∗
2

(
1

δω1

− 1

δω2

)
exp [−i (δω1 + δω2) t] ˜̂a

†2

− iωp exp (−2iωpt) ˜̂a
2

= −i

(
|g1|2

δω2

− |g2|2

δω1

)
exp (−2iωpt) ˜̂a

2

+ ig1g
∗
2

(
1

δω1

− 1

δω2

)
exp (−2iωpt) exp [−i (δω1 + δω2) t] ˜̂a

†˜̂a

− i

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a˜̂a† + ig1g

∗
2

(
1

δω1

− 1

δω2

)
exp [−i (δω1 + δω2) t] ˜̂a

†2

(A.24)

and the fourth line in Eq. (A.21) gives:

T4 =
d˜̂a†

dt
˜̂a+ exp (2iωpt)

d˜̂a†

dt
˜̂a†

= i

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a†˜̂a− ig∗1g2

(
1

δω1

− 1

δω2

)
exp [i (δω1 + δω2) t] ˜̂a

2

+ i exp (2iωpt)

(
|g1|2

δω2

− |g2|2

δω1

)
˜̂a†2

− ig∗1g2

(
1

δω1

− 1

δω2

)
exp (2iωpt) exp [i (δω1 + δω2) t] ˜̂a˜̂a

†

(A.25)

adding up the terms T1 + T2 + T3 + T4 we finally get
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d
(
Q̂2
)

dt
=

{
−2i

(
|g1|2

δω2

− |g2|2

δω1

)
exp (−2iωpt)

−2i g∗1g2

(
1

δω1

− 1

δω2

)
exp [i (δω1 + δω2) t]

}
˜̂a2

+

{
2ig1g

∗
2

(
1

δω1

− 1

δω2

)
exp [−i (δω1 + δω2) t]

+2i

(
|g1|2

δω2

− |g2|2

δω1

)
exp (2iωpt)

}
˜̂a†2

+

{
ig1g

∗
2

(
1

δω1

− 1

δω2

)
exp (−2iωpt) exp [−i (δω1 + δω2) t]

−ig∗1g2
(

1

δω1

− 1

δω2

)
exp (2iωpt) exp [i (δω1 + δω2) t]

}
˜̂a†˜̂a

+

{
ig1g

∗
2

(
1

δω1

− 1

δω2

)
exp (−2iωpt) exp [−i (δω1 + δω2) t]

−ig∗1g2
(

1

δω1

− 1

δω2

)
exp (2iωpt) exp [i (δω1 + δω2) t]

}
˜̂a˜̂a†

(A.26)

Consider the quadrature we are looking for:

d

dt
⟨∆Q̂2⟩ = d

dt

(
⟨Q̂2⟩ − ⟨Q̂⟩

2
)

=
d

dt
⟨Q̂2⟩ − d

dt

(
⟨Q̂⟩

2
)

=
d

dt
⟨Q̂2⟩ − 2 ⟨Q̂⟩ d ⟨Q̂⟩

dt

=

〈
d
(
Q̂2
)

dt

〉
− 2 ⟨Q̂⟩

〈
dQ̂

dt

〉
(A.27)

We now calculate the quadrature squeezing associated with a vacuum state. In such

a state,

⟨Q̂⟩ = ⟨0|Q̂|0⟩ = ⟨0|
(
â+ â†

)
|0⟩ = 0 (A.28)

therefore the second term in the d ⟨∆Q̂2⟩ /dt expression above vanishes, and we have
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d

dt
⟨∆Q̂2⟩ =

〈
d
(
Q̂2
)

dt

〉
(A.29)

Using Eq. (A.26) and considering that only the term proportional to ˜̂a ˜̂a† survives in

the vacuum expectation value, we get

d

dt
⟨∆Q̂2⟩ = ig1g

∗
2

(
1

δω1

− 1

δω2

)
exp [−i (ωc1 + ωc2 +∆1 +∆2) t]

− ig∗1g2

(
1

δω1

− 1

δω2

)
exp [i (ωc1 + ωc2 +∆1 +∆2) t]

(A.30)

this is easily integrated to give

⟨∆Q̂2⟩ = − 1

(ωc1 + ωc2 +∆1 +∆2)

(
1

δω1

− 1

δω2

)
(g∗1g2 exp [i (ωc1 + ωc2 +∆1 +∆2) t]

+g1g
∗
2 exp [−i (ωc1 + ωc2 +∆1 +∆2) t])

(A.31)

A.2 Code for perturbative calculation of wave func-

tions

Here we include a code complementing section 4.3.2 for the calculation of the system

wave functions.

(* initial conditions: setting the initial values of the wave \

function coefficients, as well as the system parameter values *)

g0 = 1;

g1 = 0;

g2 = 0;

g3 = 0;

g4 = 0;
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g5 = 0;

g6 = 0;

e0 = 0;

e1 = 0;

e2 = 0;

e3 = 0;

e4 = 0;

e5 = 0;

e6 = 0;

wa = 3;

wp = 7;

wc1 = 10;

wc2 = 4;

Delta1 = 0;

Delta2 = 0;

k1 = 0.2;

k2 = 0.1;

(* order to which the perturbation will be calculated *)

PertOrder = 8;

For[j = 0, j < PertOrder, j++,

(* solving the differential equations for the wave-function \

coefficients, substituting the previous order solution in each \

iteration *)
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sol1 = DSolve[{ cg0’[t] == k2 Exp[I (wc1 + Delta1) t]*e1 ,

cg0[0] == 1}, cg0[t], t];

sol2 = DSolve[{

cg1’[t] == -I wp g1 + k1 Exp[-I (wc2 + Delta2) t] e0 +

k2 Exp[I (wc1 + Delta1) t] Sqrt[2] e2, cg1[0] == 0}, cg1[t],

t];

sol3 = DSolve[{

cg2’[t] == -2 I wp g2 + k1 Exp[-I (wc2 + Delta2) t] Sqrt[2] e1 +

k2 Exp[I (wc1 + Delta1) t] Sqrt[3] e3, cg2[0] == 0}, cg2[t],

t];

sol4 = DSolve[{cg3’[t] == -3 I wp g3 +

k1 Exp[-I (wc2 + Delta2) t] Sqrt[3] e2 +

k2 Exp[I (wc1 + Delta1) t] Sqrt[4] e4 , cg3[0] == 0}, cg3[t], t];

sol5 = DSolve[{cg4’[t] == -4 I wp g1 +

k1 Exp[-I (wc2 + Delta2) t] Sqrt[4] e3 +

k2 Exp[I (wc1 + Delta1) t] Sqrt[5] e5, cg4[0] == 0}, cg4[t],

t];

sol6 = DSolve[{

cg5’[t] == -5 I wp g1 + k1 Exp[-I (wc2 + Delta2) t] Sqrt[5] e4 +

k2 Exp[I (wc1 + Delta1) t] Sqrt[6] e6 , cg5[0] == 0}, cg5[t], t];

sol7 = DSolve[{cg6’[t] == -6 I wp g1 +

k1 Exp[-I (wc2 + Delta2) t] Sqrt[6] e5 , cg6[0] == 0}, cg6[t],

t];

sol8 = DSolve[{

ce0’[t] == -I*wa*e0 - Conjugate[k1] Exp[I (wc2 + Delta2) t] g1,

ce0[0] == 0}, ce0[t], t];

sol9 = DSolve[{

ce1’[t] == -I wp *e1 - I*wa*e1 -
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Conjugate[k1] Exp[I (wc2 + Delta2) t] g2 -

Conjugate[k2] Exp[-I (wc1 + Delta1) t] g0, ce1[0] == 0}, ce1[t],

t];

sol10 =

DSolve[{

ce2’[t] == -2 I wp *e2 - I*wa*e2 -

Conjugate[k1] Exp[I (wc2 + Delta2) t] Sqrt[3] g3 -

Conjugate[k2] Exp[-I (wc1 + Delta1) t] Sqrt[2] g1, ce2[0] == 0},

ce2[t], t];

sol11 =

DSolve[{

ce3’[t] == -3 I wp *e3 - I*wa*e3 -

Conjugate[k1] Exp[I (wc2 + Delta2) t] Sqrt[4] g4 -

Conjugate[k2] Exp[-I (wc1 + Delta1) t] Sqrt[3] g2, ce3[0] == 0},

ce3[t], t];

sol12 =

DSolve[{

ce4’[t] == -4 I wp *e4 - I*wa*e4 -

Conjugate[k1] Exp[I (wc2 + Delta2) t] Sqrt[5] g5 -

Conjugate[k2] Exp[-I (wc1 + Delta1) t] Sqrt[4] g3, ce4[0] == 0},

ce4[t], t];

sol13 =

DSolve[{

ce5’[t] == -5 I wp *e5 - I*wa*e5 -

Conjugate[k1] Exp[I (wc2 + Delta2) t] Sqrt[6] g6 -

Conjugate[k2] Exp[-I (wc1 + Delta1) t] Sqrt[5] g4, ce5[0] == 0},

ce5[t], t];

sol14 =

DSolve[{
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ce6’[t] == -6 I wp *e6 - I*wa*e6 -

Conjugate[k2] Exp[-I (wc1 + Delta1) t] Sqrt[6] g5, ce6[0] == 0},

ce6[t], t];

g0 = cg0[t] /. sol1[[1]];

g1 = cg1[t] /. sol2[[1]];

g2 = cg2[t] /. sol3[[1]];

g3 = cg3[t] /. sol4[[1]];

g4 = cg4[t] /. sol5[[1]];

g5 = cg5[t] /. sol6[[1]];

g6 = cg6[t] /. sol7[[1]];

e0 = ce0[t] /. sol8[[1]];

e1 = ce1[t] /. sol9[[1]];

e2 = ce2[t] /. sol10[[1]];

e3 = ce3[t] /. sol11[[1]];

e4 = ce4[t] /. sol12[[1]];

e5 = ce5[t] /. sol13[[1]];

e6 = ce6[t] /. sol14[[1]];

solutions =

FullSimplify[

List[sol1, sol2, sol3, sol4, sol5, sol6, sol7, sol8, sol9, sol10,

sol11, sol12, sol13, sol14]];

]

ProbExcited = (Abs[e0])^2 + (Abs[e1])^2 + (Abs[e2])^2 + (Abs[

e3])^2 + (Abs[e4])^2 + (Abs[e5])^2 + (Abs[e6])^2
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ProbGround = (Abs[g0])^2 + (Abs[g1])^2 + (Abs[g2])^2 + (Abs[

g3])^2 + (Abs[g4])^2 + (Abs[g5])^2 + (Abs[g6])^2
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Appendix B

Squeezed light, all simulation results

In this chapter we include a comprehensive collection of our simulation results, showing

the time evolution of quadrature and photon statistics expectation values, and revealing

quadrature and photon-number squeezing of light for specific parameter.

g1 = 0.25, g2 = 1.0

N = 1 atom

N = 2 atoms

N = 5 atoms

N = 10 atoms
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g1 = 0.5, g2 = 1.0

N = 1 atom

N = 2 atoms

N = 5 atoms

N = 10 atoms



128

g1 = 0.75, g2 = 1.0

N = 1 atom

N = 2 atoms

N = 5 atoms

g1 = 1.0, g2 = 1.0

N = 1 atom

N = 2 atoms

N = 5 atoms
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g1 = 1.0, g2 = 0.25

N = 1 atom

N = 5 atoms

N = 10 atoms

g1 = 1.0, g2 = 0.5

N = 1 atom

N = 2 atoms
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N = 5 atoms

N = 10 atoms

g1 = 1.0, g2 = 0.75

N = 1 atom

N = 2 atoms

N = 5 atoms



131

g1 = 1.0, g2 = 2.0

N = 1 atom

N = 2 atoms

N = 5 atoms

N = 10 atoms

g1 = 1.0, g2 = 5.0

N = 1 atom
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N = 2 atoms

N = 5 atoms

N = 10 atoms

g1 = 1.0, g2 = 10.0

N = 1 atom

N = 2 atoms

N = 5 atoms
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N = 10 atoms

g1 = 2.0, g2 = 1.0

N = 1 atom

N = 2 atoms

N = 5 atoms

N = 10 atoms
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g1 = 5.0, g2 = 1.0

N = 1 atom

N = 2 atoms

N = 5 atoms

N = 10 atoms
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g1 = 10.0, g2 = 1.0

N = 1 atom

N = 2 atoms

N = 5 atoms

N = 10 atoms
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Appendix C

Squeezed light, simulation code

import numpy as np

import matplotlib.pyplot as plt

from qutip import *

import matplotlib.ticker as mtick

from mpl_toolkits.mplot3d import Axes3D

import os.path

import sys

wp = 70.0 # probe beam frequency

wc1 = 100.0 # control laser 1 frequency

wc2 = 40.0 # control laser 2 frequency

wa = 30.0 # atom frequency

g1_default = 0.5 # coupling strength resonance 1

g2_default = 1.0 # coupling strength resonance 2

kappa = 0.000 # photon dissipation rate

gamma = 0.00 # atoms dissipation rate



137

N = 500 # dimension of Fock space

n_th_a = 0.0 # temperature in frequency units

Delta1_default = 0.0

Delta2_default = 0.0

# definition of the time interval to run

t_min = 0.0

t_max = 500.0

time_step = 0.01

tlist = np.arange(t_min, t_max, time_step)

### SINGLE ATOM DEFINITIONS ###

# intial state (wave function) of the system

psi0_number_state = tensor(basis(N,n), basis(2,0))

# start with a photon number state n

psi0_coherent = tensor(coherent(N,alpha), basis(2,0))

# start with a coherent state of parameter alpha

psi0_vacuum = tensor(coherent(N,0), basis(2,0))

# start with a vacuum state

psi0_default = psi0_vacuum

# Operator definitions. From this, expectation values are calculated
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a = tensor(destroy(N), qeye(2))

sigma_minus = tensor(qeye(N), destroy(2))

sigma_plus = sigma_minus.dag()

n_operator = a.dag()*a

Q_op = a + a.dag()

P_op = 1j*(a.dag() - a)

# Hamiltonian definition

def Hamiltonian(g1, g2, g3, Delta1, Delta2):

#Here Delta1 and Delta2 are the detunings from resonance

H0 = wp*a.dag()*a + wa*sigma_plus*sigma_minus

H1 = g1*a.dag()*sigma_minus

H2 = g2*a*sigma_minus

H3 = H1.dag() #H3 = np.conjugate(g1)*sigma_plus*a

H4 = H2.dag() #H4 = np.conjugate(g2)*sigma_plus*a.dag()

H5 = g3 * a**2

H6 = H5.dag()

def H1_coeff(t, args):

return np.exp(-1j*(wc2+Delta2)*t)

def H2_coeff(t, args):

return np.exp(1j*(wc1+Delta1)*t)
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def H3_coeff(t, args):

return np.exp(1j*(wc2+Delta2)*t)

def H4_coeff(t, args):

return np.exp(-1j*(wc1+Delta1)*t)

def H5_coeff(t, args):

return np.exp(-1j*wc3*t)

def H6_coeff(t, args):

return np.exp(1j*wc3*t)

H = [H0,[H1,H1_coeff],[H2,H2_coeff],[H3,H3_coeff],

[H4,H4_coeff],[H5,H5_coeff],[H6,H6_coeff]]

return H

### MULTIPLE ATOMS DEFINITIONS ###

# intial state (wave function) of the system

psi0_vacuum = qutip.tensor(basis(N,0),

*[qutip.basis(2, 0) for _ in range(atom_num)])

psi0_number_state = qutip.tensor(basis(N,n),

*[qutip.basis(2, 0) for _ in range(atom_num)])

# start with a photon number state

psi0_coherent = qutip.tensor(basis(N,alpha),
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*[qutip.basis(2, 0) for _ in range(atom_num)])

# start with a coherent state

# operators

a = qutip.tensor(destroy(N),*[qeye(2) for _ in range(atom_num)])

sigma_multiplications = 0

sigma_minus_sum = 0

sigma_plus_sum = 0

for i in range(atom_num):

lst = [qeye(N)] + [qeye(2) for _ in range(i)] + [destroy(2)]

+ [qeye(2) for _ in range(atom_num-i-1)]

sigma_minus = qutip.tensor(*lst)

sigma_plus = sigma_minus.dag()

sigma_multiplications += sigma_plus * sigma_minus

sigma_minus_sum += sigma_minus

sigma_plus_sum += sigma_plus

n_operator = a.dag()*a

Q_op = a + a.dag()

P_op = 1j*(a.dag() - a)

# Expectation values to calculate

tmp_lst = [qeye(N)] + [qeye(2) for _ in range(0)] + [destroy(2)]



141

+ [qeye(2) for _ in range(atom_num-0-1)]

sigma_minus_one = qutip.tensor(*tmp_lst)

sigma_minus = sigma_minus_one

sigma_plus = sigma_minus.dag()

# Hamiltonian

H0 = wp*a.dag()*a + wa * sigma_multiplications

def Hamiltonian(g1, g2, g3, Delta1, Delta2):

H1 = g1*a.dag()*sigma_minus_sum

H2 = g2*a*sigma_minus_sum

H3 = H1.dag() #H3 = np.conjugate(g1)*sigma_plus*a

H4 = H2.dag() #H4 = np.conjugate(g2)*sigma_plus*a.dag()

H5 = g3 * a**2

H6 = H5.dag()

def H1_coeff(t, args):

return np.exp(-1j*(wc2+Delta2)*t)

def H2_coeff(t, args):

return np.exp(1j*(wc1+Delta1)*t)

def H3_coeff(t, args):

return np.exp(1j*(wc2+Delta2)*t)
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def H4_coeff(t, args):

return np.exp(-1j*(wc1+Delta1)*t)

def H5_coeff(t, args):

return np.exp(-1j*wc3*t)

def H6_coeff(t, args):

return np.exp(1j*wc3*t)

H = [H0,[H1,H1_coeff],[H2,H2_coeff],[H3,H3_coeff],

[H4,H4_coeff],[H5,H5_coeff],[H6,H6_coeff]]

return H

# Dissipation operators (if these are nonzero, the simulation

uses a master equation rather than Schrodinger’s equation)

c_op_list = []

rate = kappa * (1 + n_th_a)

if rate > 0.0:

c_op_list.append(np.sqrt(rate) * a)

#c_op_list.append(np.sqrt(rate) * sigma_minus)

rate = kappa * n_th_a

if rate > 0.0:
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c_op_list.append(np.sqrt(rate) * a.dag())

rate = gamma

if rate > 0.0:

c_op_list.append(np.sqrt(rate) * sigma_minus)

def Calculate_dynamics(psi0, H):

#QuTiP calculates the expectation values of the defined operators

by using either Schrodinger’s equation or a master equation

calc_list = [n_operator, n_operator**2, Q_op, \

Q_op**2, P_op, P_op**2, sigma_plus*sigma_minus,

sigma_minus*sigma_plus]

output = mesolve(H, psi0, tlist, c_op_list, calc_list)

n_avg = output.expect[0]

n_squared_avg = output.expect[1]

n_variance = n_squared_avg - n_avg**2

Q_avg = output.expect[2]

Q_avg_squared = output.expect[3]

Delta_Q = np.sqrt(Q_avg_squared - Q_avg**2)

P_avg = output.expect[4]
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P_avg_squared = output.expect[5]

Delta_P = np.sqrt(P_avg_squared - P_avg**2)

prob_excited = output.expect[6]

prob_ground = output.expect[7]

return(n_avg, n_variance, Delta_Q, Delta_P,

prob_excited, prob_ground)

def Calculate_photon_statistics():

#Calculating time-dependent expectation values

of the photons and the atom

Delta1_set = 0.0

Delta2_set = 0.0

H = Hamiltonian(g1_default, g2_default, Delta1_set, Delta2_set)

n_avg, n_variance, Delta_Q, Delta_P, prob_excited,

prob_ground = Calculate_dynamics(psi0_vacuum, H)

save_path = ’Results/’

results_file_name = "results_g1="+str(g1_default)+

"g2="+str(g2_default)+".txt"
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completeName = os.path.join(save_path, results_file_name)

with open(completeName, ’w’):

np.savetxt(completeName, np.column_stack((n_avg,

n_variance, Delta_Q, Delta_P, prob_excited,

prob_ground)),delimiter=",")

def Plot_photon_statistics():

#Plotting expectation values for photon statistics analysis

t_min = 0.0

t_max = 500.0

time_step = 0.001

tlist = (1/wp)*np.arange(t_min, t_max, time_step)

data_file = "all_results.txt"

data_sorted = np.loadtxt(data_file, delimiter=’,’)

n_avg = np.array(data_sorted[:,0])

n_variance = np.array(data_sorted[:,1])

Delta_Q = np.array(data_sorted[:,2])

Delta_P = np.array(data_sorted[:,3])

prob_excited = np.array(data_sorted[:,4])

prob_ground = np.array(data_sorted[:,5])

kappa_val = 0.0

gamma_val = 0.0

g1_val = 10.0
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g2_val = 1.0

fig.suptitle("$g_1 = {}, g_2 = {}$ ".format(g1_val, g2_val))

plt.subplot(3,3,1)

plt.xlabel("$\\omega_p t$")

plt.ylabel("Photon statistics")

plt.plot(wp*tlist, n_avg, label=’$\overline{n}$’)

plt.plot(wp*tlist, n_variance, label=’$(\\Delta n)^2$’)

ax = plt.gca()

ax.legend()

ax.xaxis.set_major_formatter(mtick.FormatStrFormatter(’%.1f’))

ax.yaxis.set_major_formatter(mtick.FormatStrFormatter(’%.1f’))

plt.subplot(3,3,2)

plt.xlabel("$\\omega_p t$")

plt.ylabel("Probabilities")

plt.plot(wp*tlist, prob_ground, label=’prob ground’)

plt.plot(wp*tlist, prob_excited, label = ’prob excited’)

ax = plt.gca()

ax.legend()

ax.xaxis.set_major_formatter(mtick.FormatStrFormatter(’%.1f’))

ax.yaxis.set_major_formatter(mtick.FormatStrFormatter(’%.1f’))

plt.subplot(3,3,3)
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plt.xlabel("$\\omega_p t$")

plt.ylabel("Squeezing")

plt.plot(wp*tlist, Delta_Q, label=’$\\Delta Q$’)

plt.plot(wp*tlist, Delta_P, label=’$\\Delta P$’)

ax = plt.gca()

ax.legend()

ax.xaxis.set_major_formatter(mtick.FormatStrFormatter(’%.1f’))

ax.yaxis.set_major_formatter(mtick.FormatStrFormatter(’%.1f’))

return (tlist, Delta_Q, Delta_P)

def calculate_range(list_of_detunings):

#Plots the minimum value of the quadratures Q and P, for a range

of detunings Delta1 and Delta2 from the two resonances

#list_of_detunings include the range of detunings D1 and D2

from the two resonances

psi0 = psi0_default

H = Hamiltonian(g1_default, g2_default, g3_default, D1, D2)

n_avg, n_variance, Delta_Q, Delta_P, prob_excited =

Calculate_dynamics(psi0, H)

Delta_Q_vac, Delta_P_vac = Quadrature_squeezing_vacuum(H0)

Qlog = 10*np.log10(Delta_Q**2)

Plog = 10*np.log10(Delta_P**2)
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Qmin= np.min(Qlog)

Pmin = np.min(Plog)

save_path = ’Results/’

results_file_name = "results_"+str(D1)+"_"+str(D2)+".txt"

completeName = os.path.join(save_path, results_file_name)

with open(completeName, ’w’) as file:

file.write(’{}, {}, {}, {}\n’.format(D1, D2, Qmin, Pmin))

file.close()

def plot_range_from_data():

# this function makes a contour plot of the data calculated with

the function plot_range_calculate.

data_set = load_data()

data_sorted = np.array(sorted(map(tuple,data_set)))

Delta1_array = np.array(data_sorted[:,0])

Delta2_array = np.array(data_sorted[:,1])

Qmins = np.array(data_sorted[:,2])

Pmins = np.array(data_sorted[:,3])
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Mandel_Q = np.array(data_sorted[:,4])

Detuning_interval = np.arange(min_D,max_D,spacing)

#the interval along which D1 and D2 were calculated

D1, D2 = np.meshgrid(Detuning_interval, Detuning_interval)

#D1 and D2 as 2D object containing the detunings, for the

contour plot

counter = 0

Qmin_array = np.zeros( (Detuning_interval.size,

Detuning_interval.size) )

Pmin_array = np.zeros( (Detuning_interval.size,

Detuning_interval.size) )

Mandel_Q_array = np.zeros( (Detuning_interval.size,

Detuning_interval.size) )

for i in range(Detuning_interval.size):

for j in range(Detuning_interval.size):

Qmin_array[j,i] = Qmins[counter]

Pmin_array[j,i] = Pmins[counter]

Mandel_Q_array[j,i] = Mandel_Q[counter]

counter+=1

figQ = plt.figure(’Q and P contour plots’)
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ax = plt.gca()

ax.xaxis.set_major_formatter(mtick.FormatStrFormatter(’%.1f’))

ax.yaxis.set_major_formatter(mtick.FormatStrFormatter(’%.1f’))

plt.subplot(2,3,1)

cq = plt.contourf(D1, D2, Qmin_array, 500)

cbar1 = plt.colorbar(cq)

plt.title(’min of $(\Delta Q)^2$ in dB’)

plt.xlabel(’$\Delta_1$’)

plt.ylabel(’$\Delta_2$’)

plt.show()

plt.subplot(2,3,2)

cp = plt.contourf(D1, D2, Pmin_array, 500)

cbar2 = plt.colorbar(cp)

plt.title(’min of $(\Delta P)^2$ in dB’)

plt.xlabel(’$\Delta_1$’)

plt.ylabel(’$\Delta_2$’)

plt.show()

plt.subplot(2,3,3)

cp = plt.contourf(D1, D2, Mandel_Q_array, 500)

cbar3 = plt.colorbar(cp)

cbar3.ax.yaxis.set_major_formatter(mtick.FormatStrFormatter(’%.1f’))

plt.title(’Contour min ($\Delta n^2 - \overline{n}$) Plot’)

plt.xlabel(’$\Delta_1$’)

plt.ylabel(’$\Delta_2$’)

plt.show()
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return (D1, D2, Qmin_array, Pmin_array, Mandel_Q_array)

return data_sorted

return (Delta1_array, Delta2_array)

return Mandel_Q
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Appendix D

Field equations from EM and axion

Lagrangian

It is natural and convenient to derive the electromagnetic and axion field equations using

a relativistcally covariant formalism. The covariant Lagrangian describing the axion and

electromagnetic fields is

L =
1

2
∂µϕ∂

µϕ− 1

2

(mc
ℏ

)2
ϕ2 − 1

4µ0

FµνF
µν − Aµj

µ − gaγγ
8µ0

ϕ εµναβFµνFαβ (D.1)

where ϕ describes the axion field and F µν is the electromagnetic tensor, given by

F µν = ∂µAν − ∂νAµ where Aµ = (1
c
ϕe, A⃗) is the four-potential and ϕe and A⃗ are the

electric potential and the magnetic vector potential. jµ = (cρ, J⃗) is the 4-current. The

electromagnetic tensor can also be expressed using the electric and magnetic fields as

we discuss below. The first 4 terms in the Lagrangian are the free-field terms. The first

two terms describe the axion scalar field while the third and fourth terms describe the

electromagnetic (EM) field. The last term describes the interaction between the EM

field and the axion. Using the Euler-Lagrange (EL) equations, we can derive the axion

field equation and modified Maxwell’s equations describing these fields.

It is useful to express the electromagnetic tensor using the electric and magnetic

fields. In 3D terms, the electric and magnetic fields E⃗ and B⃗ are both vector quantities,
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each having 3 components and all together they have 6 components. Relativistically,

these 6 components form an anti-symmetric tensor F µν = −F νµ. This tensor can be

written in a matrix form as:

F µν =



0 −Ex/c −Ey/c −EZ/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0


(D.2)

or using the components F 00 = 0, F 0i = −Ei/c, F i0 = Ei/c, F ij = −εijkBk. From

this, we can get Fµν . In all of the following we use repeated indices to mean summation

over that index (contraction of the tensors over that index). Using the flat-space metric

gµν = gµν = diag(1,−1,−1,−1) to raise and lower indices:

Fµν = gµαF
αβgβν =



0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0


(D.3)

Finally, we define the dual tensor

Gµν =
1

2
εµνρσFρσ =



0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c

By −Ez/c 0 Ez/c

Bz Ey/c −Ex/c 0


(D.4)

and from these tensors we get the useful relation GµνFµν = −4E⃗ · B⃗/c. Let us now

derive the axion field equation. The EL equation for the axion field:

∂L
∂ϕ

= ∂σ
∂L

∂(∂σϕ)
(D.5)

and using the fact that
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∂(∂µϕ)

∂(∂νϕ)
= δνµ (D.6)

we have

∂σ
∂L

∂(∂σϕ)
= ∂σ

∂

∂(∂σϕ)

[
1

2
gµν∂µϕ∂νϕ

]
=

1

2
∂σ

[
gµν

∂(∂µϕ)

∂(∂σϕ
)∂νϕ+ gµν∂µϕ

∂(∂νϕ)

∂(∂σϕ)

]
=

1

2
∂σ(g

µνδσµ∂νϕ+ gµν∂µϕδ
σ
ν )

=
1

2
∂σ(g

σν∂νϕ+ gµσ∂µϕ)

=
1

2
∂σ(∂

σϕ+ ∂σϕ)

= ∂σ∂
σϕ

(D.7)

and

∂L
∂ϕ

= −
(mc

ℏ

)2
ϕ− gaγγ

8µ0

εµναβFµνFαβ

= −
(mc

ℏ

)2
ϕ+

gaγγ
8µ0

· 8E⃗ · B⃗
c

= −
(mc

ℏ

)2
ϕ+

gaγγ
µ0c

E⃗ · B⃗

(D.8)

therefore

∂σ∂
σϕ = −

(mc
ℏ

)2
ϕ+

gaγγ
µ0c

E⃗ · B⃗

∴ ∂0∂
0ϕ+ ∂j∂

jϕ = −
(mc

ℏ

)2
ϕ+

gaγγ
µ0c

E⃗ · B⃗
(D.9)

now, considering that ∂µ = (1
c
∂
∂t
,∇) while ∂µ = gµν∂ν = (1

c
∂
∂t
,−∇), we get:



155

1

c2
∂2ϕ

∂t2
−∇2ϕ = −

(mc
ℏ

)2
ϕ+

gaγγ
µ0c

E⃗ · B⃗

∴ ∇2ϕ− 1

c2
∂2ϕ

∂t2
−
(mc

ℏ

)2
ϕ = −gaγγ

µ0c
E⃗ · B⃗

(D.10)

Now, let’s consider the electromagnetic field equations. The two homogeneous Maxwell’s

equations follow from the identity:

∂λF µν + ∂µF νλ + ∂νF λµ = 0

which can be written using the 4D Levi-Civita tensor:

εαλµν∂
λF µν = 0 (D.11)

the proof of it relies on the properties of the electromagnetic tensor. Since this doesn’t

depend on other fields / sources, it should be clear at this point that the homogeneous

Maxwell’s equations will remain unchanged with the addition of the axion field. We can

prove this identity by writing F µν = ∂µAν − ∂νAµ. Then

εαλµν∂
λ(∂µAν − ∂νAµ) = 0

∴ εαλµν∂
λ∂µAν − εαλµν∂

λ∂νAµ = 0

(D.12)

since εαλµν is a totally antisymmetric tensor, it is antisymmetric in the change of

indices λ ↔ µ while ∂λ∂µ is symmetric in these indices, so their contraction is equal to

zero and the first term vanishes. The second term vanishes for the same reason, with

the change of indices λ ↔ ν. This proves the identity (D.11). In the following we will

use the relation

εjkiεjkℓ = δkkδiℓ − δkℓδik = 3δiℓ − δiℓ = 2δiℓ (D.13)

To get the first homogeneous Maxwell’s equation, take α = 0.
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ε0λµν∂
λF µν = εijk∂iF jk = −εijk∂iεjkℓBℓ

= −2δiℓ∂iBℓ = −2∂ℓBℓ = −2∇ · B⃗ = 0

(D.14)

therefore,

∇ · B⃗ = 0 (D.15)

To get the other homogeneous Maxwell equation, set α = i = 1, 2, 3:

εiλµν∂
λF µν = εi0jk∂

0F jk + εij0k∂
jF 0k + εijk0∂

jF k0

= (−εijk)∂0(−εjkℓBℓ) + εijk∂j
(
−E

k

c

)
− εijk∂j

(
Ek

c

)
= 2δiℓ∂0Bℓ − 1

c
εijk∂jEk − 1

c
εijk∂jEk

= 2

(
1

c

∂

∂t

)
Bi − 2

c
εijk(−∇j)Ek

=
2

c

(
∂Bi

∂t
+ εijk∇jEk

)
= 0

(D.16)

therefore,

∂B⃗

∂t
+∇× E⃗ = 0

∴ ∇× E⃗ = −∂B⃗
∂t

(D.17)

we will make use of these homogeneous Maxwell’s equations in deriving the new

non-homogeneous Maxwell’s equations. To derive the new non-homogeneous Maxwell’s

equations, consider the EL equation for the electromagnetic fields:

∂L
∂Aλ

= ∂σ
∂L

∂(∂σAλ)
(D.18)

we will use the fact that
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∂(∂µAν)

∂(∂σAλ)
= δσµδ

λ
ν (D.19)

it is useful to first calculate

∂Fµν

∂(∂σAλ)
=
∂(∂µAν − ∂νAµ)

∂(∂σAλ)
= δσµδ

λ
ν − δσν δ

λ
µ (D.20)

therefore:

∂L
∂(∂σAλ)

=
∂(− 1

4µ0
FµνF

µν − gaγγ
8µ0

ϕ εµναβFµνFαβ)

∂(∂σAλ)

= − 1

4µ0

∂Fµν

∂(∂σAλ)
F µν − 1

4µ0

Fµνg
µαgνβ

∂Fαβ

∂(∂σAλ)

− gaγγ
8µ0

ϕ εµναβ
∂Fµν

∂(∂σAλ)
Fαβ −

gaγγ
8µ0

ϕ εµναβFµν
∂Fαβ

∂(∂σAλ)

= − 1

4µ0

(δσµδ
λ
ν − δσν δ

λ
µ)F

µν − 1

4µ0

Fµνg
µαgνβ(δσαδ

λ
β − δσβδ

λ
α)

− gaγγ
8µ0

ϕ εµναβ(δσµδ
λ
ν − δσν δ

λ
µ)Fαβ −

gaγγ
8µ0

ϕ εµναβFµν(δ
σ
αδ

λ
β − δσβδ

λ
α)

= − 1

4µ0

(F σλ − F λσ)− 1

4µ0

(F σλ − F λσ)

− gaγγ
8µ0

ϕ εσλαβFαβ +
gaγγ
8µ0

ϕ ελσαβFαβ −
gaγγ
8µ0

ϕ εµνσλFµν +
gaγγ
8µ0

ϕ εµνλσFµν

= − 1

µ0

F σλ − gaγγ
2µ0

ϕ εσλµνFµν

(D.21)

where in the last equality we used the antisymmetry properties of F µν and εµνρσ

tensors for changing the order of their indices. Therefore

∂σ
∂L

∂(∂σAλ)
= − 1

µ0

∂σF
σλ − gaγγ

2µ0

(∂σϕ)ε
σλµνFµν −

gaγγ
2µ0

ϕ εσλµν∂σFµν (D.22)

on the other hand

∂L
∂Aλ

=
∂

∂Aλ

(−Aµj
µ) = −∂Aµ

∂Aλ

jµ = −δλµ jµ = −jλ (D.23)
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Therefore from the Euler-Lagrange equation (D.18):

∂σF
σλ +

gaγγ
2

(∂σϕ)ε
σλµνFµν +

gaγγ
2
ϕ εσλµν∂σFµν = µ0 j

λ

∴ ∂σF
σλ + gaγγ(∂σϕ)G

σλ + gaγγϕ ∂σG
σλ = µ0 j

λ

(D.24)

where Gµν = 1
2
εµνρσFρσ is the dual tensor of F µν . Let us see what this equation gives.

For λ = 0:

∂jF
j0 + gaγγ(∂jϕ)G

j0 + gaγγϕ∂jG
j0 = 0

∂j
Ej

c
+ gaγγ(∂jϕ)Bj + gaγγϕ∂jBj = 0

1

c
∇ · E⃗ + gaγγ(∇ϕ) · B⃗ + gaγγϕ∇ · B⃗ = 0

(D.25)

we discarded vanishing terms and also assumed ρ = 0 as in our experimental setup

so that j0 = cρ = 0. In the second line we used F j0 = Ej/c and G
j0 = Bj. Now since

∇ · B⃗ = 0:

∇ · E⃗ = −gaγγc∇ϕ · B⃗ (D.26)

Now taking λ = k where k = 1, 2, 3 are the spatial coordinates:

∂0F
0k + ∂jF

jk + gaγγ(∂0ϕ)G
0k + gaγγ(∂jϕ)G

jk + gaγγϕ∂0G
0k

+ gaγγϕ∂jG
jk = µ0j

k

∴− ∂0
Ek

c
− ∂jεjkℓBℓ − gaγγ(∂0ϕ)Bk + gaγγ(∂jϕ)

εjkℓEℓ

c
− gaγγϕ ∂0Bk

+ gaγγϕ∂jεjkℓ
Eℓ

c
= µ0Jk

∴− 1

c
∂0Ek + εkjℓ∂jBℓ − gaγγ(∂0ϕ)Bk −

gaγγ
c
εkjℓ(∂jϕ)Eℓ − gaγγϕ∂0Bk

− gaγγ
c
ϕ εkjℓ∂jEℓ = µ0Jk

(D.27)

therefore:
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− 1

c2
∂E⃗

∂t
+∇× B⃗ − gaγγ

c

∂ϕ

∂t
B⃗ − gaγγ

c
∇ϕ× E⃗ − gaγγ

c
ϕ
∂B⃗

∂t
− gaγγ

c
ϕ∇× E⃗ = µ0J⃗

(D.28)

now using Maxwell’s equation ∇×E⃗ = −∂B⃗/∂t the last two terms on the LHS cancel

out, and we get

∇× B⃗ =
1

c2
∂E⃗

∂t
+ µ0J⃗ +

gaγγ
c

(
∂ϕ

∂t
B⃗ +∇ϕ× E⃗

)
(D.29)
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Appendix E

The effect of FWM phase on the

experimental sensitivity

For the simplicity of the analysis, we solved Eq. (7.29) assuming the phase-matching

case ∆kFWM = 0. Then, the sensitivity of the scheme relied solely on the sensitivity of

the intensity change measurement. Now we consider the effect of the phase mismatch

∆kFWML ̸= 0 and solve Eq. (7.29) in the general case. To reduce clutter, we will denote

∆kFWM by ∆k. Integration gives

1

iξEP

∫ E0(L)

E0(0)

dE0 =

∫ L

0

ei∆kdz (E.1)

integrating this,

E0(L)− E0(0)

iξEP

=
ei∆k z

i∆k

∣∣∣∣∣
L

0

=
ei∆k L − 1

i∆k

=
exp(i∆k L/2)(ei∆k L/2 − e−i∆k L/2)

i∆k

=
exp(i∆k L/2)

i∆k
· 2i sin(∆k L/2)

=
sin(∆k L/2)

∆k L/2
exp(i∆k L/2)L

(E.2)
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therefore,

E0(L) = E0(0)

(
1 +

iξEPL

E0(0)

sin(∆k L/2)

∆k L/2
exp(i∆k L/2)

)
(E.3)

Denote sin(∆k L/2)
∆k L/2

≡ sinc(∆k L/2). The intensity ratio is

I(L)

I(0)
=

∣∣∣∣E0(L)

E0(0)

∣∣∣∣2
=

∣∣∣∣1 + iξ(ℜ(EP ) + iℑ(EP ))L

E0(0)
sinc(∆k L/2)

∣∣∣∣2
=

[(
1− ξLℑ(EP )

E0(0)
sinc(∆k L/2)

)2

+

(
ξLℜ(EP )

E0(0)
sinc(∆k L/2)

)2
] (E.4)

and dropping terms of order ξ2:

I(L)

I(0)
≈ 1− 2ξLℑ(EP )

E0(0)
sinc(∆k L/2) (E.5)

Then

∆I

I
=

|I(L)− I(0)|
I(0)

=
2ξLℑ(EP )

E0(0)
sinc(∆k L/2) (E.6)

and relative to the “old” sensitivity in Eq. (7.44), following the same steps, we get

g2aγγ = g2aγγ(old)×
1

sinc(∆k L/2)
(E.7)

then using the fact that sinc−1/2(x) = 1 + x2/12 +O(x4):

gaγγ = gaγγ(old) +
1

12

(
∆k L

2

)2

gaγγ(old) +O(∆k L)4 (E.8)

we see that the correction to gaγγ measurement sensitivity due to the phase mismatch

is of order (∆k L/2)2/12. To experimentally detect the change in phase (in addition to a

possible change in intensity), we use a homodyne detector instead of a balanced detector,

as shown in Figure E.1
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PD

PD

50/50

BS = Beam Splitter  PD = Photo Diode

Probe beam

Modified probe

BS

Figure E.1: To measure the changes in both intensity and phase of the probe laser,
we use a homodyne detector. The probe beam acts as the local oscillator, while the
“modified probe” is the part affected by the interaction with the axions.



163

Bibliography

[1] J. T. Karpel, D. C. Gold, and D. D. Yavuz, “Prospects for continuous-wave molec-

ular modulation in raman-active microresonators”, Opt. Express 27, 34154–34168

(2019).

[2] N. Proite, B. Unks, J. Green, et al., “Refractive index enhancement with vanishing

absorption in an atomic vapor”, Phys. Rev. Lett. 101, 147401 (2008).

[3] Z. Simmons, N. Proite, J. Miles, et al., “Refractive index enhancement with van-

ishing absorption in short, high-density vapor cells”, Physical Review A 85, 053810

(2012).

[4] C. Gerry, P. Knight, and P. L. Knight, Introductory quantum optics (Cambridge

university press, 2005).

[5] U. L. Andersen, T. Gehring, C. Marquardt, et al., “30 years of squeezed light

generation”, Phys. Scr. 91, 053001 (2016).

[6] L.-A. Wu, H. Kimble, J. Hall, et al., “Generation of squeezed states by parametric

down conversion”, Phys. Rev. Lett. 57, 2520 (1986).

[7] H. Vahlbruch, M. Mehmet, K. Danzmann, et al., “Detection of 15 db squeezed

states of light and their application for the absolute calibration of photoelectric

quantum efficiency”, Phys. Rev. Lett. 117, 110801 (2016).

[8] R. Slusher, L. Hollberg, B. Yurke, et al., “Observation of squeezed states generated

by four-wave mixing in an optical cavity”, Phys. Rev. Lett. 55, 2409 (1985).

[9] C. McCormick, V. Boyer, E. Arimondo, et al., “Strong relative intensity squeezing

by four-wave mixing in rubidium vapor”, Opt. Lett. 32, 178–180 (2007).



164

[10] R. M. Shelby, M. D. Levenson, S. H. Perlmutter, et al., “Broad-band parametric

deamplification of quantum noise in an optical fiber”, Phys. Rev. Lett. 57, 691

(1986).

[11] M. Fiorentino, J. E. Sharping, P. Kumar, et al., “Soliton squeezing in microstruc-

ture fiber”, Opt. Lett. 27, 649–651 (2002).

[12] S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in

a constant-current–driven semiconductor laser”, Phys. Rev. Lett. 58, 1000 (1987).

[13] M. e. Tse, H. Yu, N. Kijbunchoo, et al., “Quantum-enhanced advanced ligo de-

tectors in the era of gravitational-wave astronomy”, Phys. Rev. Lett. 123, 231107

(2019).

[14] D. S. Schlegel, F. Minganti, and V. Savona, “Quantum error correction using

squeezed schrödinger cat states”, Phys. Rev. A 106, 022431 (2022).

[15] C. Xu, L. Zhang, S. Huang, et al., “Sensing and tracking enhanced by quantum

squeezing”, Photonics Res. 7, A14–A26 (2019).

[16] M. A. Taylor, J. Janousek, V. Daria, et al., “Subdiffraction-limited quantum imag-

ing within a living cell”, Phys. Rev. X 4, 011017 (2014).

[17] D. J. Griffiths, Introduction to electrodynamics, 2005.

[18] Z. J. Simmons, “Progress toward a negative refractive index in an atomic system:

spectroscopy and simulations of a rare-earth doped crystal”, PhD thesis (The

University of Wisconsin-Madison, 2015).

[19] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced

transparency: optics in coherent media”, Rev. Mod. Phys. 77, 633 (2005).

[20] D. Yavuz, “Refractive index enhancement in a far-off resonant atomic system”,

Phys. Rev. Lett. 95, 223601 (2005).

[21] J. Li, C. Zhu, and Y. Yang, “Squeezed light generated with hyperradiance without

nonlinearity”, Opt. Lett. 47, 3439–3442 (2022).



165

[22] D. Yavuz and N. Proite, “Noise in refractive index enhancement”, Phy. Rev. A

78, 053811 (2008).

[23] S. Weinberg, “The cosmological constant problem”, Rev. Mod. Phys. 61, 1 (1989).

[24] B. Ryden, Introduction to Cosmology (Cambridge University Press, 2017).

[25] E. Di Valentino and A. Melchiorri, “Neutrino mass bounds in the era of tension

cosmology”, Astrophys. J. Lett. 931, L18 (2022).

[26] M. Steidl, “Experiments for the absolute neutrino mass measurement”, arXiv

preprint arXiv:0906.0454 (2009).

[27] G. G. Raffelt, “Dark matter: motivation, candidates and searches”, arXiv preprint

hep-ph/9712538 (1997).

[28] T. Blaineau, M. Moniez, C. Afonso, et al., “New limits from microlensing on

galactic black holes in the mass range 10M⊙ < M < 1000M⊙”, Astron. Astrophys.

664, A106 (2022).

[29] C. Flynn, A. Gould, and J. N. Bahcall, “Hubble deep field constraint on baryonic

dark matter”, Astrophys. J. 466, L55 (1996).

[30] L. Bergström, “Dark matter candidates”, New J. Phys. 11, 105006 (2009).

[31] Y.-Z. Fan, T.-P. Tang, Y.-L. S. Tsai, et al., “Inert Higgs dark matter for CDF II

W-boson mass and detection prospects”, Phys. Rev. Lett. 129, 091802 (2022).

[32] G. Rybka, “Axions and other similar particles”,

[33] J. Pendlebury, S. Afach, N. J. Ayres, et al., “Revised experimental upper limit on

the electric dipole moment of the neutron”, Phys. Rev. D 92, 092003 (2015).

[34] R. D. Peccei and H. R. Quinn, “Cp conservation in the presence of pseudoparticles”,

Phys. Rev. Lett. 38, 1440 (1977).

[35] P. W. Graham, I. G. Irastorza, S. K. Lamoreaux, et al., “Experimental searches

for the axion and axion-like particles”, Annu. Rev. Nucl. Sci 65, 485–514 (2015).

[36] G. Rybka, A. collaboration, et al., “Direct detection searches for axion dark mat-

ter”, Phys. Dark Universe. 4, 14–16 (2014).



166

[37] P. Sikivie, “Experimental tests of the “invisible” axion”, Phys. Rev. Lett. 51, 1415

(1983).

[38] D. Heuchel, A. Lindner, and I. Oceano, “The DESY axion search program”, arXiv

preprint arXiv:2302.11934 (2023).

[39] S. J. Asztalos, R. Bradley, L. Duffy, et al., “An improved RF cavity search for halo

axions”, Phys. Rev. D 69, 011101 (2004).

[40] C. Bartram, T. Braine, E. Burns, et al., “Search for invisible axion dark matter in

the 3.3–4.2 µev mass range”, Phys. Rev. Lett. 127, 261803 (2021).

[41] J. Sloan, M. Hotz, C. Boutan, et al., “Limits on axion–photon coupling or on local

axion density: dependence on models of the milky way’s dark halo”, Phys. Dark

Universe. 14, 95–102 (2016).

[42] C. Gao, W. Halperin, Y. Kahn, et al., “Axion wind detection with the homogeneous

precession domain of superfluid helium-3”, Phys. Rev. Lett. 129, 211801 (2022).

[43] T. Wu, J. W. Blanchard, G. P. Centers, et al., “Search for axionlike dark matter

with a liquid-state nuclear spin comagnetometer”, Phys. Rev. Lett. 122, 191302

(2019).

[44] A. Garcon, J. W. Blanchard, G. P. Centers, et al., “Constraints on bosonic dark

matter from ultralow-field nuclear magnetic resonance”, Sci. Adv. 5, eaax4539

(2019).

[45] J. Berger, D. Brailsford, K. Choi, et al., “Snowmass 2021 white paper: cosmogenic

dark matter and exotic particle searches in neutrino experiments”, arXiv preprint

arXiv:2207.02882 (2022).

[46] Y. K. Semertzidis and S. Youn, “Axion dark matter: how to see it?”, Sci. Adv. 8,

eabm9928 (2022).
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