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Ei Electric field Fourier amplitude at frequency ωi
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ABSTRACT

In this thesis we present a scheme that achieves negative refraction with low absorption in far-

off resonant atomic systems. Negative refraction was predicted over 4 decades ago and recently

experimentally demonstrated. Over the last decade there has been much active research in negative

refractive index in the field of metamaterials. We seek a new approach for negative refraction using

laser driven transition resonances in atomic systems. By utilizing atomic system resonances we

hope to achieve negative refraction in short wavelength regimes inaccessible to metamaterials, such

as visible and ultra-violet, and eliminate absorption by quantum interference techniques.

This scheme is based on the recently predicted and experimentally demonstrated “refractive

index enhancement with vanishing absorption” technique, in which closely spaced absorptive and

amplifying transitions are interfered. Our scheme utilizes Raman transitions and is able to strongly

drive an atomic electric resonance while far-detuned from an electric dipole transition. This far-off

resonance feature allows our scheme to be adaptable to various atomic energy level structures, in

that it does not require the simultaneous presence of an electric dipole transition and a magnetic

dipole transition near the same wavelength. To our knowledge, this constraint for simultaneous

transitions is featured in all previous suggestions for negative refraction and the lack of a suitable

existing level structure prevents experimental implementation. We show that two interfering Ra-

man transitions coupled to a magnetic dipole transition can achieve a negative index of refraction

with low absorption through magnetoelectric cross coupling. Analytical predictions have been

made for a model atomic system and the validity of the analytical results have been confirmed with

exact numerical simulations of the density matrix. We also discuss possible experimental imple-

mentations of the scheme in rare-earth metal atomic systems, such as ultracold vapors and doped

crystals.



ix

In this thesis we also discuss how negative and enhanced refractive index can be utilized in

imaging systems and other applications. A fundamental challenge of modern imaging systems

is the diffraction limit. The diffraction limit causes spatial features of an object that are smaller

than the light wavelength to be lost in the image. Achieving negative refraction with vanishing

absorption is potentially important for near-perfect imaging systems based on Pendry’s suggestion

for a negative index material perfect lens. This perfect lens idea is able to focus the light related to

small spatial features through the unique ability of negative index materials to “amplify” evanes-

cent waves. Alternatively, techniques for enhanced refractive index improve imaging resolution by

effectively decreasing the light wavelength by a factor inversely proportional the refractive index.

Additionally we consider in this thesis proposals for all-optical devices based on refractive index

enhancement such as a low-photon conditional phase shifter and a distributed Bragg reflector.



1

Chapter 1

An overview of light matter interactions

1.1 Introduction and background

The index of refraction, n, of a material is a parameter that well describes the unique interac-

tion between the material and an electromagnetic wave. It is in general, a complex quantity that

describes how a light wave propagating through matter differs from that of a vacuum. The simplest

interpretation is that the real part describes the slowing of light in more “optically dense” matter

and the imaginary part relates to absorption of the wave’s energy by the material system.

Knowledge of the interaction of light with matter allows us to predict the propagation of light

and engineer material systems to harness the properties of light for applications such as imaging,

information processing, and photonics. More so, knowledge of the refractive indices of two differ-

ent materials provides a way of predicting the scattering of light at the interface of the materials.

Since in general, the materials will have different optical densities, light has a different speed in

each material and Fermat’s principle of least time implies that there will be a refraction of the light.

Refraction is the perceived bending of light, where the transmitted light ray’s trajectory changes to

a different angle with respect to the normal of the material interface than the incident ray’s angle.

This is quantitatively described by Snell’s Law in the familiar formula n1 sin θ1 = n2 sin θ2. The

refractive index is also a key parameter in Fresnel’s equations which quantitatively describe the

splitting of incident light on the interface into reflected and transmitted parts.

The ability of refraction to manipulate the propagation direction of light rays by placing trans-

parent materials in the light’s path gives rise to the field of traditional optics and imaging. Lenses

are a special class of such materials, which are optical devices that are typically used to focus light.
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The shape of a lens, its refractive index, and the refractive index of the medium surrounding the

lens determines how well the lens focuses scattered light from an object into a resolved image. One

of the most important problems of modern imaging systems is how to effectively image features

that are smaller than the wavelength of the light being focused. It is well known in modern optical

imaging systems that the spatial resolution is limited by the wavelength of the light scattered from

the object. The smallest spatial features that can be resolved have dimensions on the order of λ

[53]. This obstacle is the diffraction limit and overcoming this barrier to sub-wavelength imaging

has been the subject of much theoretical and experimental research [54, 64, 10, 55, 12, 25, 59, 7].

Inside a refractive medium the effective wavelength is λ = λ0/n, where λ0 is the free-space

wavelength. Therefore the diffraction limit may be expressed as λ0/n, where n is the refractive

index of the medium. Thus one possible approach to the imaging problem would be to prepare a

medium with an increased refractive index. For example, this is why oil immersion microscopes

have superior resolution because noil > nair. In part of this thesis we will consider an approach for

possibly greatly increasing the refractive index of an atomic vapor while maintaining vanishing ab-

sorption. Alternatively, it has recently been suggested that a new imaging approach using negative

refractive index materials may be used to beat the diffraction limit [104]. Negative refraction of

light has recently been demonstrated in the emerging field of metamaterials [131], but absorptive

losses limit their potential uses for imaging. In part of this thesis we will suggest a new approach

for using laser driven atomic systems to achieve negative refraction with vanishing absorption that

may be suitable for negative index lenses. We will also explore some applications of this enhanced

refractive index beyond improvement to imaging resolution such as optical switching.

1.2 Origin of refractive index

The refractive index as discussed so far is a macroscopic property of a material that describes its

interaction with light. However, the origin of the refractive index comes from taking into account

the cumulative interaction of the light’s electric and magnetic fields with the material’s microscopic

building blocks (e.g. atoms, molecules, or as we will discuss later, meta-atoms). When a light wave

propagates through a material system, as opposed to free-space, there is an interaction that occurs
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at the atomic or molecular level which uniquely modifies the wave propagation. The electric and

magnetic fields of the light cause a deformation of the microscopic electric charge distribution of

the system’s atoms or molecules. This deformation of the charge distribution causes the constituent

particles of the system to behave as microscopic dipoles, which tend to align themselves with the

propagating electric and magnetic fields. These dipoles are driven to oscillate at the frequency

of the incident light, which then radiate their own light wavefronts at this frequency. Thus the

resulting macroscopic light wave observed in the material is a linear superposition of the primary

incident light and the secondary dipole radiated light, that oscillates at the incident frequency.

Quantitatively, the interaction of the light’s electromagnetic fields with the material that induces

and aligns dipoles is described by the polarizing effect in the medium. The dipole moments of the

materials constituent particles are given by

p = αEE ,

m = αBB , [1.1]

where αE and αB are the electric and magnetic polarizability coefficients, respectively, and the

E and B are the electric and magnetic fields of the incident light. The collective behavior of the

particles is macroscopically described by the (electric) polarization, P , and magnetization, M ,

which are the electric and magnetic dipole moments per unit volume of the bulk material. If we

consider a uniform number density of particles N , then the total polarization and magnetization

are given by

P = Np = NαEE ,

M = Nm = NαBB . [1.2]

More commonly, the polarization and magnetization are expressed in terms of the electric and

magnetic susceptibilities, χE and χB, respectively, as

P = ǫ0χEE ,

M =
1

µ0

χBB . [1.3]
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The susceptibilities are dimensionless proportionality factors that relate the induced polarizations

in the medium to the applied field strengths. In terms of the polarizabilities, the susceptibilities are

given by

χE =
N

ǫ0
αE ,

χB = Nµ0αB . [1.4]

We now consider the time dependent nature of the polarizing effect occurring in the system.

The polarized dipole moments vary in time since the electromagnetic fields that induce the polar-

ization are not static but oscillate at the frequency of the incident light wave. The behavior of the

dipoles may be viewed as damped harmonic oscillators that are driven by the sinusoidal electro-

magnetic fields of the light. From a linear treatment of the driven harmonic motion, the dipole

moments will oscillate at the driving frequency, however the amplitude of the oscillation will de-

pend on the structure of the particles. The particles’ structure determines the natural resonant

frequencies and damping coefficients of the dipoles’ harmonic motion. Therefore the magnitude

of the oscillating polarization in the material will be frequency dependent as determined by the

detuning of the incident light’s frequency from the particles’ resonance frequencies.

The macroscopic polarization and magnetization responses in a material are characterized by

the constitutive parameters of the relative electric permittivity, ǫ, and relative magnetic permeabil-

ity, µ, respectively (Note: be aware of confusion distinguishing the relative and absolute param-

eters, because many other notation styles feature a subscript ‘r’ for these dimensionless relative

coefficients). These parameters are in general complex, frequency dependent quantities that de-

scribe the dispersion and absorption of light propagating through matter. The relative permittivity

and permeability are conveniently expressed in terms of the electric and magnetic susceptibilities

as

ǫ = 1 + χE ,

µ = 1 + χB . [1.5]

The susceptibilities are dimensionless numbers that describe relative change of the permittivity and

permeability from their free-space values, ǫ0 and µ0. In a sense the susceptibility is a parameter
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that relates to the tendency of the system’s matter to become polarized in response to applied

electromagnetic fields.

The physical significance of the permittivity and permeability is most readily seen in the ob-

served slowing of light when propagating through matter. One of the features derived from the

inclusion of ǫ and µ in Maxwell’s wave equations is that the square of the wave phase velocity

is given by v2 = c2

ǫµ
. This product of the permittivity and permeability, appearing in many elec-

tromagnetic expressions, is a consequence of the coupling of the electric and magnetic fields in

Maxwell’s equations. Thus the refractive index is traditionally defined as the parameter n, which

quantifies the reduced speed of light in matter and is given by

n2 = ǫµ . [1.6]

This observed change of speed results from phase differences between the primary incident light

and secondary dipole radiated light by the material’s polarized particles. These phase differences

cause the superposition of light observed in the material to have a different wavelength than the

incident light, although it oscillates at the incident light frequency. This change of the wavelength

in matter can by derived from the wave phase velocity relations. The speed of light in a free-space

is c = fλ0 and in matter it is v = c
n
= f λ0

n
. This reduction of λ → λ0/n in a refractive medium

(with n > 1) may be used to reduce diffractive effects, which cause a break down for rectilinear

propagation of the light when the spatial dimensions concerned are on the order of the wavelength.

The ability to find or create materials with large values for ǫ and µ is of much interest because

a larger refractive index improves resolution in imaging applications. This is very fundamental in

the integrated circuit industry, where the resolution of lithographic techniques creates a limitation

on how small and dense computer processing elements can be designed. A greatly enhanced

refractive index would also be of interest in biological imaging applications, where nondestructive

optical microscopy could potentially be used to image live samples at high resolution.
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1.3 Origin of diffraction limit

We now consider a brief derivation of the diffraction limit. We will denote the free space wave

vector as k20 = k2⊥ + k2z =
(

2π
λ0

)2
, where kz is the component in the propagation direction and k⊥

is the component in the transverse x-y plane. The field emanating from an object in the transverse

plane can be expressed as a superposition of plane wave modes as

E (ρ, z) =
∑

k⊥

A (k⊥) exp i(k⊥ρ+ kzz) , [1.7]

where A (k⊥) is the amplitude of the transverse mode, ρ =
√
x2 + y2 is the transverse spatial

coordinate and we have omitted the time dependent terms. Using the definition of the wave vector,

we can substitute kz = +
√

k20 − k2⊥. Here we can see that for modes that satisfy k20 > k2⊥, the

component kz will be real valued and the wave mode will propagate in the z direction as

A (k⊥) exp i(k⊥ρ+
√

k20 − k2⊥z) , [1.8]

and can be focused by a conventional lens. On the other hand for modes that have k20 < k2⊥,

the component kz will be imaginary and the wave mode will be evanescent with exponentially

decaying amplitude as the wave front advances in the z direction as

exp−(
√

k20 − k2⊥z)A (k⊥) exp i(k⊥ρ) . [1.9]

These decaying amplitudes will be negligibly small at the image plane and thus these large k⊥

Fourier components can not be focused by a conventional lens.

The inability of a lens to focus these evanescent components where k⊥ > k0 is the reason that

image resolution is limited. Similar to the Fourier relationship of time and frequency, the Fourier

transform that relates space and reciprocal k-space results in an inverse relationship between the

resolution of the wave vector components and the spatial dimensions. Small transverse spatial

details of an object are associated with a spread of wave modes possessing large k⊥ values that

exceed k0 and can not be properly focused. The Fourier uncertainty principle kmax
⊥ ∆ρ ∼ 2π,

relates the maximum transverse wave number to the smallest transverse spatial detail ∆ρ. In the
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limiting case for the mode to be propagating, +kz → 0, we have kmax
⊥ = k0 = 2π

λ0
. Thus we can

derive the diffraction limit,

∆ρ ∼ λ0 , [1.10]

on the spatial resolution allowed for a given wavelength. This implies that light corresponding

to subwavelength features will have attenuated propagation and will be eliminated from the final

image. A corollary of this is that the tightest focus that can be achieved for a laser beam is a

spot size with a diameter on the order of the laser’s wavelength [133]. Hence the diffraction limit

presents an obstacle to the limit of how much data can be recorded on optical media, how small

computer processors can be designed with lithography, or how to address individual trapped atoms

in quantum computing applications.

1.4 Outline of thesis chapters

Chapter 2 introduces the idea of refractive index enhancement with vanishing absorption in

an atomic vapor. We describe how the refractive index experienced by an incident laser beam

is related to the role of the light in quantum transitions of an atomic system. These quantum

transitions result in a modified refractive index for the laser light, but are also accompanied by

absorption or amplification of the light. Based on ideas proposed by Scully [124], we consider

a system with closely spaced absorption and amplification Raman transitions, that are interfered

to produce an enhanced refractive index with canceled absorption of the light. This suggested

interference technique is the basis for all of the proposed applications of enhanced refractive index

considered in this thesis. We also review the details of recent experimental demonstrations of this

technique.

Chapter 3 introduces the concept of negative refractive index that was proposed by Veselago

and has recently been experimentally demonstrated. Traditionally negative refractive occurs when

both the permittivity and permeability are simultaneously negative valued. Materials that possess

this property are not known to exist in nature, however the emerging field of metamaterials have
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artificially constructed media that do exhibit negative refractive index. We briefly review the his-

tory and operating principles of metamaterials. We also discuss how negative index materials may

also provide an alternative approach to the problem of the diffraction limit by considering Pendry’s

proposed perfect lens. Pendry’s lens suggests that a lens made from a negative index material can

successfully focus evanescent wave components that are traditionally cut-off by the diffraction

limit, by reversing the decay of evanescent modes.

Chapter 4 suggests a new approach to achieve negative refractive index in atomic vapors by

interfering Raman transitions and using magnetoelectric cross coupling. We suggest using laser

driven atomic systems in hopes to achieve negative refractive index at smaller wavelength regimes

than metamaterials and eliminate absorption by quantum interference. In principle negative refrac-

tion can be achieved by driving electric and magnetic transition resonances sufficiently strongly

and simultaneously at the same light frequency, however this can not be implemented practically.

Our suggestion includes a magnetoelectric cross coupling of the resonances, which revises the

conditions for negative refraction and reduces the required atomic densities by two orders of mag-

nitude. The key advantage of our approach is that it does not require the simultaneous presence of

an electric dipole and a magnetic dipole transition at the same frequency. This gives considerable

flexibility in the energy level structure and allows our technique to be implemented with a number

of different atomic species. In this chapter we present analytical results for negative refraction in

an atomic medium and verify their validity with exact numerical simulations of density-matrix of

the system.

Chapter 5 considers possible experimental systems to implement the negative refractive index

scheme discussed in Chap. 4. We consider both schemes that use rare-earth atom vapors and

rare-earth doped crystals. Ideally we wish to find a system with an existing level structure that

has strong electric and magnetic transitions with a small difference in their resonant wavelengths,

because the required laser intensities greatly increase as the wavelength difference increases. We

consider the rich level structure of the rare-earth atoms to find a suitable level structure by using the

ab initio atomic structure code by Cowan [22] to estimate the transition wavelengths and strengths.
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We have identified promising experimental systems in ultracold neutral atom vapors of Erbium and

Dysprosium and cryogenically cooled crystals doped with ions of Terbium and Praseodymium.

Chapter 6 presents a suggestion for a low photon conditional phase shifter as an application

of refractive index enhancement discussed in Chap.2. In this scheme a weak “switching” beam is

introduced to the system to modify the nature of the refractive index enhancement. The condition

of whether the switching beam is turned on or off results in a shift of the phase accumulated

by a probe beam propagating through the medium, while maintaining vanishing absorption. We

include a fidelity analysis of the feasibility of using a phase shifted probe beam pulse for optical

information applications. This analysis considers the number of spontaneously generated “noise

photons” in the mode of the probe beam, which possess random phase and lower the fidelity.

Chapter 7 presents a suggestion to achieve giant Kerr nonlinearities between two weak laser

beams by utilizing refractive index enhancement with vanishing absorption. These Kerr nonlinear-

ities differ from other approaches for significant nonlinear interactions at the single photon level

in that a strong driving laser is not required by the scheme. We also propose an application for our

scheme in which an atomic vapor can function as a distributed Bragg reflector that works at very

low light levels.
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Chapter 2

An overview of refractive index enhancement

2.1 Introduction

It is well known that according to the linear response of an atom to an electromagnetic field, the

refractive index is greatly enhanced near resonance but it is also accompanied by strong absorption.

This presents a conflict to the advantages of imaging with enhanced refractive index since the light

will be absorbed by the medium within a distance of a fraction of the wavelength. Far from

resonance the medium becomes transparent but the refractive index is almost the same as in a

vacuum. It was first suggested by Scully [124] that by establishing quantum coherence in a three-

level atom, interference effects can be exploited to obtain a large index of refraction with vanishing

absorption simultaneously. Scully’s suggestion is essentially that when an excited state is coupled

with two lower lying states that are prepared in a coherent superposition, the competing excitation

paths may be configured such that there is complete destructive interference of the imaginary

(absorptive) part and constructive interference of the real part of the susceptibility. This scheme

results in a particular frequency band where the real part of the susceptibility is greatly enhanced

and the absorption is negligible. This idea was further investigated theoretically [125, 38, 115, 95]

and has been demonstrated experimentally [171, 113].

In the simplest sense Scully’s suggestion may be understood by considering an ensemble of

multiple two-level atoms with slightly different transition frequencies as shown in Fig. 2.1. In

this system the two atoms are configured for gain and absorption transitions for a weak probe and

have resonance frequencies ω1 and ω2, respectively. The first atom is prepared with a population

inversion by an external pumping mechanism, such that stimulated emission by a resonant probe
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beam results in gain for the probe field. The second atom is initially populated in the ground

state and will absorb light from a resonant probe beam. These closely spaced gain and absorption

resonances result in interfering interactions for a propagating probe beam and modify its effective

susceptibility in the system. The interference from the superposition of these resonances can be ex-

ploited such that for some frequency ν , ω1 < ν < ω2, a probe field can experience zero absorption

and enhanced refractive index. However this scheme is problematic to implement experimentally

because there is not a practical method to pump one of the atomic species to a population inversion

while not pumping the other species that is to remain populated in the ground state.

|2 

|1 

|2 

+

|  |g |g |g 

Figure 2.1 A system of 2, two-level atoms with closely spaced transition frequencies. The first
pair of levels is prepared with population in the excited state |1〉 and the probe beam Ep

experiences gain from the transition |1〉 → |g〉. The second pair of levels is populated in the
ground state |g〉 and the probe beam experiences absorption from the transition |g〉 → |2〉. The

competing transition processes cause interference effects that significantly alter the electric
susceptibility of the probe beam.
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The refractive index enhancement schemes considered in this thesis are based on a newly sug-

gested approach in which the coherence of two lower states is prepared by a far-off resonant Raman

transition [165]. Earlier relevant work has studied and demonstrated other novel effects of coher-

ently driven atomic system such as coherent population trapping (CPT), lasing without inversion

(LWI) [126, 68], and electromagnetically induced transparency (EIT) [49, 37]. EIT is a popular

coherence effect that also results in a medium that has negligible absorption, though it is primarily

concerned with achieving a steep dispersion (slope) of the refractive index rather than enhancing

the value of the index itself.

The method that we will focus on is essentially the idea of interfering two closely spaced gain

and absorption resonances that are derived from laser driven Raman transitions in an atomic vapor.

By utilizing additional laser fields we are able create far-off resonant Raman resonances for a weak

probe beam, which may be either absorptive or amplifying. Thus we are able to create the desired

effect of Scully’s interfering two-level systems without the unwanted complications of selective

pumping. Additionally the ability to control the frequency separation of the Raman resonances

offers an advantage over a scheme that has a fixed separation. The refractive index enhancement

resulting from interference has a strong dependence on the separation of the resonances and this

separation can be optimally selected in a Raman system. This scheme also offers a technical

advantage in that the we have a larger bandwidth of potential probe frequencies since the probe

beam does not have to be near resonance with an excited state.

2.2 Refractive index in two-level system

We now consider a more quantitative treatment of the refractive index of a weak probe beam

propagating through a dilute atom vapor. Recalling results from the last chapter, we have the

refractive index given by

n =
√
ǫµ =

√

(1 + χE)(1 + χB). [2.1]

In the majority of atomic interactions the magnetic susceptibility χB is negligible and we can well

characterize the refractive index by the electric susceptibility χE alone. n and χE are both complex
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frequency dependent quantities. We denote n = n′ + in′′ where n′ is the refractive index of

the medium and n′′ is the absorption coefficient and χE = χ′
E + iχ′′

E where χ′
E and χ′′

E represent

the dispersion and loss, respectively. For a weak probe beam in a two-level system the electric

susceptibility is

χ′
E =

N |d|2
ǫ0h̄

δ

δ2 + Γ2
,

χ′′
E =

N |d|2
ǫ0h̄

Γ

δ2 + Γ2
, [2.2]

where we have assumed all atoms are populated in the ground state. N is the number density

of atoms or molecules, d is the electric dipole matrix element, δ is the detuning from resonance,

and Γ is the decay rate of the excited state. In Fig. 2.2 we see that both the susceptibility and

refractive index in frequency space have a dispersion curve centered at the resonant frequency.

Here we note that the refractive index curve qualitatively correlates with the resonant behavior

of the susceptibility and there is a correspondence of the curves extrema with the detuning from

the resonant frequency plotted along the horizontal axis. This means we can well predict the

resonance structure of the index of refraction and the absorption of the probe beam from the real

and imaginary parts of the electric susceptibility, respectively. For the two level system the largest

changes in the index of refraction occur at δ = ±Γ and we have

|χ′
E |

max
=
N |d|2
ǫ0h̄

1

2Γ
. [2.3]

However, at these detunings we also have undesirable condition that χ′′
E = χ′

E , meaning there

will be significant absorption when the index of refraction most strongly differs from unity. This

concurrent absorption with the resonant enhancement of the index of refraction is true of all sys-

tems where the polarization is linear with respect to the probe beam electric field. Thus quantum

coherence and interference techniques are required to achieve enhanced refractive index while

maintaining low absorption.
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Figure 2.2 A comparison of the line shapes of the electric susceptibility, χE , and the relative
refractive index, n− 1, for a simple two-level absorption transition. Both the real (solid blue

lines) and imaginary (red dotted lines) components of the two quantities exhibit dispersion curves
with nearly the same width and corresponding locations of maxima and minima. Therefore the

resonance behavior of the refractive index is well described by the susceptibility resonance.

2.3 Refractive index enhancement by interference

Now we will illustrate how Scully’s suggestion achieves simultaneous enhanced refractive in-

dex without absorption by the interference of multiple two-level systems. We consider a medium

that is a uniform mixture of the two atomic species that exhibit the two level transitions shown in

Fig. 2.1. For simplicity we assume that the gain transition and absorption transitions have matching

parameter values such that they will be of equal strength, however they will have distinct resonance

frequencies, ω1 and ω2, respectively. Both resonances can be related to the same functional form

of the two-level electric susceptibility given in Eq. (2.2), however both the real and imaginary parts

for the gain resonance will have the sign flipped because of the complete population inversion of

its levels. Quantitatively, interference arises in the electric susceptibility for the probe frequency,

ωp, from the superposition of the individual resonances, given by

χE =
N |d|2
ǫ0h̄

[ −1

δ1 − iΓ
+

1

δ2 − iΓ

]

, [2.4]

where the detunings from the resonances are δ1 = ω1 − ωg − ωp and δ2 = ω2 − ωg − ωp.

Ideally we wish these two resonances to be closely spaced, so that in the frequency band be-

tween the resonances there will be significant interference of their resonant features. In Fig. 2.3

we show the effect of interfering the gain and absorption resonances for different values of the
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Figure 2.3 The real part χ′
E (blue solid line) and the imaginary part χ′′

E of the susceptibility of the
probe beam for closely spaced gain and absorption transitions separated by ∆ = 10Γ in (a),
∆ = 2Γ in (b), and ∆ = 0.25Γ in (c). At the midpoint between the resonances , there is
destructive interference in the imaginary part of the susceptibility resulting in vanishing

absorption. At the same point the real part of the susceptibility is significantly increased due to
constructive interference, which simultaneously yields an enhanced refractive index.

frequency spacing of the resonances,

∆ = ω2 − ω1 , [2.5]

in terms of the resonance line width, Γ. The plotted curves are the real and imaginary parts of the

probe beam electric susceptibility which results from superimposing the resonances. The gain and



16

absorption resonant frequencies coincide with the negative and positive peaks of the imaginary

part of the susceptibility, respectively. As is seen in the region between the resonances there is

constructive interference of χ′
E and destructive interference of χ′′

E . For the case of equal strength

resonances, there will be zero absorption for a probe beam when tuned midway between the reso-

nances at ωp =
ω2+ω1

2
.

The effect of the interference depends strongly on the spacing of the resonances, ∆. When

∆ ≫ Γ there is little interference and the system behaves as two isolated resonances, as seen in

Fig. 2.3(a). When ∆ ≪ Γ the resonances overlap and there is almost complete cancellation of

any resulting resonant structure. The maximized constructive interference for χ′
E that coincidences

with χ′′
E = 0, occurs for the optimal condition that the separation of the resonances is ∆ = 2Γ, as

seen in Fig. 2.3(b). Thus we can achieve an enhanced index of the refraction for the probe beam

while maintaining perfect destructive interference of its absorption coefficient.

2.4 Refractive index in far-detuned Raman system

A more practical method to experimentally implement this desired interference of resonances

is to recreate the behavior of the ideal multiple two-level system by using Raman transitions. New

probe beam resonances may be engineered using nonlinear approaches in a three-level system by

coupling the probe beam with additional laser fields in two photon Raman transitions. By appro-

priately tuning the parameters of the additional lasers, the resonant frequency of the probe beam

may be chosen and the nature of the resonance can be chosen to be either absorptive or amplifying

for the probe field. Raman transitions are advantageous to implementing this interference scheme

because we are able to select the probe resonance frequencies for the two transitions we wish to

interfere. This way we are able to control the important dependence on the frequency separation of

the resonances and we can optimally configure the interference conditions for enhanced refractive

index with vanishing absorption.

In this scheme a weak probe beam, which has a large one photon detuning from an excited

electronic state, and a strong control beam interact in a Raman transition between two low lying

levels as seen in Fig. 2.4. In general a Raman transition is a two photon process, where the atoms
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of a populated state absorb a photon of frequency ωα and is, in a sense, “excited” to a virtual level,

and then emits a photon of frequency ωβ , effectively transitioning the atom to the other low lying

level. A two-photon resonance occurs when the energy spacing of the two lower levels matches

the difference of the laser frequencies, which is given by

δE = h̄(ωα − ωβ) . [2.6]

The lower levels are dipole forbidden from a direct one photon transition between the two, but they

each have a dipole allowed transition with a higher energy excited electronic level. The role of the

beams in the Raman transition can be configured for gain of the probe beam by selecting the probe

and control beam frequencies ωp and ωC , respectively, such that h̄(ωC − ωp) = δE. Similarly there

will be absorption of the probe beam for frequency selection satisfying h̄(ωp − ωC) = δE.

However it should be noted that it is tempting to conceptualize the Raman transition as a single

atom absorbing and emitting photons, such that it is transferred between the two states, this is an in-

accurate interpretation. Since quantum mechanics is statistical in nature and describes an ensemble

of many atoms, the Raman transition should be viewed as establishing a quantum superposition

of the atom being in either state rather than individual atoms transferring between states. With

the ensemble of atoms in a coherent superposition, the dynamics of the collective atoms are well

described by the coherence. The coherence is a quantum mechanical wave function of the time

varying mixture of the quantum states of the system averaged over the ensemble and eliminates

the need for individual atom statistics in modeling system dynamics.

In the scheme of interest, we consider a four level atomic or molecular system seen in Fig. 2.4.

A weak probe beam, Ep, is paired with two strong control beams, EC1 and EC2, to form two Raman

transitions. The frequencies of the control beams will be chosen so that the Raman transitions will

differ in which one will be amplifying and the other absorptive with respect to the probe beam.

EC1 will two-photon couple the ground state |g〉 to the excited Raman state |1〉 via a stimulated

emission of Ep and similarly EC2 will couple the excited state |2〉 via a stimulated absorption of Ep.

In the absence of the control beams the probe beams experience the usual largely detuned linear

susceptibility of the one photon transition from the ground state to the excited electronic state |e〉.
The presence of the control beams strongly modifies the susceptibility of the probe beam due to
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Figure 2.4 A scheme equivalent to Scully’s suggested interfering system of two-level gain and
absorption resonances. This more practical scheme uses Raman transitions of a far-off resonant

probe beam induced by two control lasers, EC1 and EC2. By changing the excitation path from the
ground level, a Raman resonance can effectively be a gain or absorption transition for the probe

beam, Ep

nonlinear interactions that correspond to new Raman resonances at frequencies determined by the

control beam frequencies and the level separation of the ground state from the excited Raman

states.

We proceed with an analysis of the scheme in Fig. 2.4. We follow the formalism of Harris et

al. [48, 51, 167] and the full details are given in Appendix A. The two-photon detunings of the

Raman resonances are defined as

δω1 = (ω1 − ωg)− (ωC1 − ωp) ,

δω2 = (ω2 − ωg)− (ωp − ωC2) , [2.7]
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where δω1 and δω2 correspond to the gain and absorption resonances, respectively. All of the lasers

are far-detuned from the excited electronic state such that we may approximate that the population

remains in the state |g〉 and we can adiabatically eliminate the dynamics of the excited state |e〉.
From a semiclassical treatment of the quantum dynamics of the system, we evaluate a generated

dipole moment at the probe frequency given by

Pp = 2h̄N

(

ap +
|b1|2 |EC1|2

2
[

δω1 − Re(F1−A)
2

+ i
(

γ1 +
Im(F1)

2

)]

+
|b2|2 |EC2|2

2
[

δω2 − Re(F2−A)
2

− i
(

γ2 +
Im(F2)

2

)]

)

Ep , [2.8]

where γ1 and γ2 are the Raman decay rates; Ep, EC1, EC2 are the electric field amplitudes of the

lasers; A, F1, and F2 are higher order intensity dependent shifts; ap, b1, and b2 are Raman coupling

coefficients that contain electric dipole matrix elements and one photon detunings. Using the

relation Pp = ǫ0χEEp with Eq. (2.8), we can find the susceptibility of the medium for the probe

wave

χE =
2h̄N

ǫ0



ap +
|b1|2

2
[

˜δω1 + iγ̃1
] |EC1|2 +

|b2|2

2
[

˜δω2 − iγ̃2
] |EC2|2



 . [2.9]

In the above expression we have used the notation ˜δω1, ˜δω2, γ̃1, and γ̃2 as defined in Appendix A

to suppress the stark shifts and power broadenings of the detunings and decay rates, respectively,

for convenience. The first term in the susceptibility represents the background susceptibility of

the far-detuned one photon transition of the probe beam with the excited electronic state and is

typically negligible compared to the second and third terms which represent the Raman gain and

absorption resonances, respectively.

These two Raman transitions allow us to create the interference described in Scully’s sugges-

tion by the ability to move the resonant frequency positions by appropriately choosing the control

laser frequencies, ωC1 and ωC2. Ignoring the effect of stark shifts for now, the two resonances

occur when the probe laser wavelength is chosen such that ωp = ωg + ωC1 − ω1 (δω1 = 0) or

ωp = ω2 + ωC2 − ωg (δω2 = 0). The separation of the resonances in frequency space is given by

∆ = ˜δω1 + ˜δω2 . [2.10]
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For the case of equal transition matrix elements and laser parameters such that the resonances are of

equal strength, there is perfect destructive interference of the imaginary part of the susceptibility

when the probe frequency is tuned midway between the resonances, equally detuned from each

one. This point of vanishing absorption is satisfied by the condition that ˜δω1 = ˜δω2 = ∆/2.

With this condition for vanishing absorption we may express the real part of the susceptibility

(neglecting the background contribution) as

χ′
E =

2h̄N

ǫ0





|b1|2 (∆/2)
[

(∆/2)2 + γ̃1
2
] |EC1|2



 . [2.11]

Recalling from the last section that the individual resonances have extrema for their real part when

detuning matches the linewidth, it can be shown that the constructive interference in χ′
E is opti-

mized for equal strength resonances, when the spacing between the resonances is ∆ = 2γ̃1. With

this condition the optimized susceptibility is given by

χ′
E =

2h̄N

ǫ0

(

|b1|2
[2γ̃1]

|EC1|2
)

. [2.12]

In the limit of very large intensity values of the control beam, the power broadened linewidths

of the resonances γ̃1 will saturate the susceptibility and the maximum susceptibility that can be

attained by increasing the control intensity is

χ′
E =

N

h̄ǫ0

|dge|2
2Γe

. [2.13]

Thus for sufficiently intense control beams, this far-off resonant Raman scheme can attain a χ′
E that

matches that for a near-resonant one-photon excited state transition given in Eq. (2.3), however,

while maintaining vanishing absorption. It should be noted that the susceptibility can not be made

arbitrarily large by sufficiently increasing the particle density, N , because at high densities the

susceptibility will saturate because of increased pressure broadening and other higher order effects.

This implementation of refractive index enhancement by interfering Raman transitions sug-

gested by Yavuz [165] has been initially demonstrated in a proof of principle experiment [113]

and is the topic of continuing experimental research [135]. These experiments are performed in a

magnetically shielded, temperature controlled vapor cell containing a natural isotopic abundance
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of rubidium atoms with diatomic nitrogen as a buffer gas, as shown in the schematic of Fig. 2.5.

A weak probe beam with two strong control beams are far detuned from the excited 5P3/2 (D2

line) near a wavelength of λ = 780.2nm. The Raman coupling of the hyperfine levels of the 5S1/2

ground state by the lasers induces the interfering amplifying and absorptive resonances. Opti-

cal pumping lasers are included to selectively populate the ground state hyperfine levels for the

appropriate excitation configurations.

Rb vapor cellRb vapor cell

87Rb

pump

probe

detection

85Rb

pump

pump

detection pump

F 2 F 3F 2 F 3

Figure 2.5 Simplified experimental schematic. The experiment is performed in a magnetically
shielded, natural abundance rubidium vapor cell with a length of L = 1mm. The three

experimental beams, Ep, EC1, and EC2, are obtained by appropriate frequency shifting and
amplifying the output of a single master external cavity diode laser. After the cell, the probe laser

beam is separated with a high extinction polarizer and measurements are performed. Some
experiments utilize optical pumping lasers, which propagate in the direction opposite the

experimental laser beams

In the configuration of the most recent experiment, shown in Fig. 2.6, atoms are optically

pumped to the F = 3 level of the 85Rb and Raman transitions couple this state to the F = 2

level. For a 1 mm long Rb cell with a density of N = 1.8 × 1014 cm−3, Raman linewidth γ ∼
1MHz and a one-photon resonance detuning δ ≈ 7GHz, the experimentally observed interference

of the resonances is plotted in Fig. 2.7 as the probe frequency is scanned. The imaginary part

of the refractive index is calculated by measuring the probe intensity at the end of the cell, the

relative change of the intensity, (Iout/Iin), and the cell length, L. The data for n′′ is then fit

to a model that assumes each resonance has a Lorentzian line shape and n′ is inferred from the
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Figure 2.6 Refractive index enhancement in 85Rb level structure. The system is optically pumped
to the F = 3 level and two Raman transitions are induced. The spacing between the F = 2 and

F = 3 levels is 3.035 GHz.

real part of the Lorentzian curves. A relative change in the refractive index of ∆n = 0.4 ×
10−4 with low absorption was observed in the data shown in Fig. 2.7. Future efforts are working

toward improving the change in the refractive index by resolving unexplained power broadening

and preparing ultracold 87Rb atoms in a magneto-optical trap and dipole trap.
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Figure 2.7 The real (solid blue lines) and imaginary (data points and dashed red line) parts of the
refractive index when the two Raman resonances are combined. The dashed lines are fits to the

data that assumes each Raman resonance to have a Lorentzian line shape. The solid lines are the
calculated real part of the refractive index based on these fits. A change in the refractive index of

∆n ≈ 0.4× 10−4 with low absorption is observed.

2.5 Summary

This novel nonlinear optic technique provides an effective way to modify the susceptibility and

hence the refractive index of a weak probe beam and greatly reduce absorption. This scheme offers

straightforward ways to manipulate the susceptibility by tuning laser frequencies and varying the

control beam intensities. The far-detuned characteristic of the scheme presents an advantage over

other schemes in that it can be applied to a potential range of probe beam frequencies since the

probe frequency is not required to be near resonance with the level structure that is available. The

configurable nature of the Raman resonances also allows us to create a system of closely spaced

gain and absorption transitions without requiring selective pumping complications. This scheme
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also provides a practical alternative from EIT based techniques to eliminate resonant absorption.

Its ability to modify the refractive index may potentially be useful in schemes to achieve negative

refraction in non-metamaterial systems.
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Chapter 3

An overview of negative refractive index

3.1 Veselago’s thought experiment

The concept of negative refractive index is a topic that has generated much interest over the last

decade. The idea was published over four decades ago by Veselago, where in a thought experiment

he considered a physical system that corresponds to taking the negative branch cut of the square

root of the expression, n2 = ǫµ, that results from Maxwell’s equations. It was found that in order

for a system to have n < 0, it required the condition that simultaneously the system must have

ǫ < 0 and µ < 0. When these conditions are met and used as parameters in Maxwell’s equations,

there result some novel changes from traditional behavior of electromagnetic radiation. Among

these changes is a “left-handed” triad of the vectors ~E, ~B, and ~k, inverted Snell’s law, reversed

Doppler effect, and reversed Cherenkov effect [152]. The left-handed triad represents a system

where the wave vector ~k is antiparallel to the Poynting vector, ~S = 1
µ0

~E × ~B, which implies

the propagation directions of the phase velocity and group velocity are oppositely oriented. This

backward wave motion has been colloquially compared to the popularized dance called “Moon

Walking” because of the paradoxical backward motion that accompanies forward stepping. These

unusual properties and the requirement for negative permittivity and permeability have manifested

in the many names that have been used for negative index materials (NIM) such as left-handed,

backward wave, and double negative materials. Currently there is much intense research effort in

developing NIMs [137, 39, 131, 56, 101, 23, 24, 168, 36, 128, 17, 160, 170, 28, 29, 118, 75] and

developing applications for the unique electromagnetic properties of such materials [139, 91, 36,

90, 57], in particular, a NIM lens with perfect resolution [104].
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The refractive index is related to the product of ǫ and µ and since the product of two negatives

is positive valued, it is unclear why n should be negative when this is the case. To examine

the logic behind the appropriate choice of branch cuts in the refractive index for the cases n =

±
√

(+ǫ)(+µ) ⇒ +
√
ǫµ and n = ±

√

(−ǫ)(−µ) ⇒ −√
ǫµ, we consider the role of ǫ and µ in

Maxwell’s equations. From the constitutive relations and equations

~D = ǫǫ0 ~E , ~B = µµ0
~H , [3.1]

∇× ~E = −∂
~B

∂t
, ∇× ~H =

∂ ~D

∂t
, [3.2]

if we consider a monochromatic plane wave that propagates in space-time as ei(~k·~r−ωt), we can

derive the expressions

~k × ~E = ωµµ0
~H , ~k × ~H = −ωǫǫ0 ~E , [3.3]

that show how the orientation of the vectors ~E, ~B, and ~k depend on the signs of ǫ and µ. For ǫ > 0

and µ > 0 there is a right-handed triad ~E× ~B = ~k and for ǫ < 0 and µ < 0 the triad is left-handed

~E × ~B = −~k. This sign dependent orientation relationship can also be inferred by considering the

boundary conditions of a light ray being refracted while traveling through two media with opposite

signed ǫ and µ values as seen in Fig. 3.1. The medium on the incident side has ǫ1 = 1 and µ1 = 1

and the transmitted side has ǫ2 = −1 and µ2 = −1. The continuity of the transverse and normal

field components required by the interface boundary conditions

Et1 = Et2 , Ht1 = Ht2 , [3.4]

ǫ1En1 = ǫ2En2 , µ1Hn1 = µ2Hn2 , [3.5]

results in a sign flip of the normal component of the field vectors in the negative medium. This sign

flip of vector components combined with the fact that the energy flux moves in the direction of the

Poynting vector, determined by ~E × ~B, results in the ray being refracted at a negative angle with

respect to the interface normal. Thus ǫ < 0 and µ < 0 lead to a geometry with negative refraction

and the appropriate branch cut is n = −√
ǫµ, which is consistent with Snell’s law.

Since Veselago’s initial contemplation of the implications of negative refractive index, the idea

remained an academic curiosity due to the fact that there are no known systems in nature that
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Figure 3.1 The simplest interpretation of a material possessing a negative refractive index is the
demonstration of refraction of an incident beam with a negative angle for the transmitted beam, as

determined by utilizing Snell’s law with n < 0. Materials possessing negative refractive index
were considered by Veselago in 1968 and negative refraction was experimentally demonstrated in

2001 using metamaterials.

simultaneously have ǫ < 0 and µ < 0. It is well known that in both nature and the laboratory there

exist plasmas of electric charges that exhibit negative permittivity for certain ranges of frequencies.

In a cold plasma of electrons with no magnetic field, the permittivity is given by

ǫ(ω) = 1− ω2
ep

ω2
, [3.6]

where ω2
ep =

Ne2

meǫ0
is the square of the electron plasma frequency, with number density, N , electron

charge, e, and electron mass, me [44]. Clearly, the permittivity will be negative for frequencies
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below the plasma frequency and the refractive index will be imaginary. Veselago proposed a hy-

pothetical material that consisted of a plasma of magnetic “charges” with an effective magnetic

plasma frequency that could analogously provide a route to negative permeability. However, since

magnetic monopole “charges” are not known to exist, the challenge of realizing a negative refrac-

tive index persisted for many years. In the late 1990’s John Pendry discovered a new approach to

achieving negative permeability in the developing field of metamaterials.

3.2 Metamaterials

Metamaterials, named after the Greek word “meta” meaning “beyond”, are artificial materials

that have properties that result from macroscopic structures, termed “meta-atoms”, that interact

with propagating electromagnetic fields in analogy to the atoms or molecules of natural materials

as described in Chap. 1. The meta-atoms are conducting structures with practical dimensions that

are designed for particular resonant frequencies. These resonant structures behave like electric or

magnetic dipoles and may become polarized through their interaction with light and establish a

net dipole moment in the material. A metamaterial is a structure with an ordered lattice of meta-

atoms such that the lattice spacing is much smaller than the wavelength of the propagating light.

This subwavelength periodicity allows the material to be considered by an effective medium model

and a homogeneous permittivity and permeability well describe its macroscopic electromagnetic

properties. The resulting homogeneous interaction with light distinguishes metamaterials from

other periodic structured materials, such as photonic crystals, where the periodicity is on the order

of the wavelength and diffractive effects cause inhomogeneous polarization.

The advantage offered by metamaterials is the ability to directly engineer the electromagnetic

properties of the material for qualities that are superior or not found in nature. In order to ma-

nipulate the electromagnetic interactions of a system it requires access to the resonant scatterer

(i.e. the atom or molecule) and the ability to modify its resonant behavior. One approach to this

was considered in the last chapter, where nonlinear optics techniques were used to manipulate the

quantum interactions of the atom that determine the permittivity. Metamaterials use an alternative

approach to the problem in which the light scattering meta-atoms are custom fabricated for the
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desired resonant behaviors. The meta-atom structures are fabricated macroscopically with con-

ducting elements arranged in various geometries that resemble antenna configurations (such as

straight wires and loops). The materials and geometries are designed to have resonant frequencies

that can differ greatly from the natural resonances of bulk samples of the constituent materials.

Ideally these resonant frequencies correspond to a wavelength that is much larger than the physical

dimensions of the meta-atom itself. In this long wavelength regime, the metamaterial exhibits an

artificial homogeneous polarizability that is derived from the structured dipole characteristics of

the meta-atoms rather than the constituent atoms or molecules. When the resonant wavelength ap-

proaches the unit cell dimensions of the lattice there is a break down of the collective polarization

due to Bragg effects occurring similar to x-ray diffraction in solids. This presents a difficulty for

metamaterials to operate at higher frequencies because of the reduced practicality in fabricating

smaller resonant structures.

The forerunner of metamaterials was in the creation of artificial dielectrics by Kock in 1948,

who by analogy with the oscillating molecular dipoles of dielectric materials in response to light,

reasoned that the dipoles that result from the flow of electrons in metal under an alternating elec-

tric field could change the phase velocity of an incident radio wave. He used the effective medium

model to design a radio wave lens from a three dimensional array of metallic elements with sub-

wavelength spacing [69]. Later in 1962, Rotman constructed an artificial dielectric material from

an array of conducting metal rods with a dielectric response similar to that of electric plasmas, with

a characteristic plasma frequency, to simulate the electrodynamics of plasmas [119]. This rodded

structure was modified by Pendry et. al. in the mid 1990s by using thin metal wires as array

elements and experimentally verified that the permittivity was negative at frequencies below the

plasma frequency [106]. Expanding upon this idea in 1999, Pendry was also able to create a meta-

material with a diamagnetic response from nonmagnetic materials by using meta-atom structures

called split ring resonators [109]. The diamagnetic properties of this array of split ring resonators

possessed an effective magnetic plasma frequency and successfully simulated an artificial magnetic

plasma, which could achieve the previously unattainable negative permeability. Soon after this in

2000, Smith and Schultz et. al, in collaboration with Pendry, developed a composite metamaterial
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of straight wires and split ring resonators that possessed both negative permittivity and permeabil-

ity in the same microwave frequency band at 10.5 GHz [138] and were able to experimentally

verify Veselago’s prediction of negative refraction [131, 137].

Since this demonstration of negative refraction, the field of metamaterials has grown rapidly,

investigating new physics owing to the ability to synthesize resonance characteristics not found

in natural materials. The first metamaterials were designed in the RF and microwave regime and

there is much active research in developing for the optical regime. Metamaterials have been con-

sidered for new nonlinear optical components, where the meta-atom lattices are designed to mimic

the characteristics of photonic crystals. One particularly interesting topic emerging from metama-

terials is that of transform optics [155, 107, 74, 123] and its potential for electromagnetic cloaking

[122, 73, 148].

3.3 Pendry’s lens

The concept of negative refractive index and its experimental demonstration were important

new advances in science that opened up new areas of electromagnetic theory, but the rapid interest

in this subject over the last decade is attributed to Pendry’s proposed perfect lens as a practical

application of this new physics. This perfect lens made from a negative index material would not

only improve the resolution beyond the diffraction limit, but would, in principle, allow infinite

resolution and perfect imaging. Perfect imaging means that every single detail of the object is

reproduced in the image, including both propagating and evanescent wave components.

In Veselago’s original paper he explored one of the unique variations from traditional electro-

magnetic theory when he postulated a flat lens created from a NIM with n = −1. Veselago noted

that the geometry associated with the negative angle of refraction from Snell’s law would allow

light from a point source to be focused by a planar lens as seen in Fig. 3.2. In a geometrical optics

treatment, rays from a point object are negatively refracted at the lens, brought to a focus inside the

(sufficiently thick) lens, and then negatively refracted outside the lens into a focused point image.

Initially this flat planar lens was of interest because the lens did not possess an optical axis and was

free from spherical aberrations that affect non-paraxial rays in a conventional lens.
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Figure 3.2 A flat slab lens made of a negative index material. For a planar lens with thickness d
and n = −1, the object should be a distance d/2 in front of the lens and image will be formed a
distance d/2 behind the lens. The negative refractive index bends light to a negative angle such

that light initially diverging from a point source is focused to a point inside the lens, then diverges
and is focused to a point again upon refraction when exiting the lens.

In Pendry’s formative 2000 paper [104], he performed a Fourier optic analysis of a planar NIM

lens beyond the geometric optics consideration by Veselago. Pendry considered a similar setup of

a planar lens of material possessing ǫ′ = µ′ = −1 and ǫ′′ = µ′′ = 0 with thickness d placed a

distance d/2 from a point source object. The wavefront is traveling in the +z direction and the

lens in the transverse plane. For this setup the dispersion relation,

k20 = k2⊥ + k2z = n2
(

ω

c

)2

, [3.7]
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is the same both inside and outside the lens since n2
freespace = n2

lens = 1. For the case of propagat-

ing wave components, where k20 > k2⊥, we have the components

kz,freespace = +
√

k20 − k2⊥ , [3.8]

kz,lens = −
√

k20 − k2⊥ , [3.9]

where the choice of sign for the square-root is determined by the +z directed transport of energy

and the relationship of the wave vector with the Poynting vector. In free space the wave vector and

Poynting vector are parallel and we have the expected result that the wave accumulates phase as it

propagates in the +z direction. However, inside the NIM lens, the wave vector is anti-parallel and

there is an unusual phase reversal of the wave as it travels through the lens. For wave components

that are propagating, the negative phase reversal enables the medium to focus light by canceling

the phase acquired by the light as it travels through free space. In the geometry shown in Fig. 3.2,

the phase accumulation follows as

φ (z = 2d) = φ (z = 0) +
√

k20 − k2⊥
d

2
−
√

k20 − k2⊥d+
√

k20 − k2⊥
d

2
= φ (z = 0) . [3.10]

In imaging with a conventional lens the task is to correct the phase of propagating wave compo-

nents emitted from an object but there is no way to prevent the decay in amplitude of the evanescent

components. However, in a NIM lens the evanescent waves experience an “amplifying” enhance-

ment of the amplitudes that distinguish negative index imaging systems from conventional positive

index lenses. For the case of evanescent wave components, where k20 < k2⊥, we have the z compo-

nents

kz,freespace = kz,lens = +i
√

k2⊥ − k20 , [3.11]

where in both cases the value is positive and imaginary. The transmission coefficients solved from

a wave scattering analysis of the system [104, 140] shows that

Tfreespace = exp (ikz,freespacez) , [3.12]

Tlens = exp (−ikz,lensz) , [3.13]
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and then plugging in the values of the wave vector components we have

Tfreespace = exp
(

−
√

k2⊥ − k20z
)

, [3.14]

Tlens = exp
(

+
√

k2⊥ − k20z
)

. [3.15]

These transmission coefficients correspond to the expected exponential decay of Fourier amplitude

for waves progressing in free space but there is a unique exponential growth of the amplitude in

the negative index material. For perfect imaging with a negative index lens the amplitude growth

inside the NIM should cancel out the decay in free space, thus the amplitude values resolved at the

image perfectly match the initial values emitted from the object. Looking at the geometry shown

in Fig. 3.3, the total Fourier transfer function for evanescent components of the system follows as

A (z = 2d) = A (z = 0) exp

(

−
√

k2⊥ − k20
d

2

)

exp
(

+
√

k2⊥ − k20d
)

exp

(

−
√

k2⊥ − k20
d

2

)

= A (z = 0) [3.16]

which reproduces the original value.

The apparent “amplification” of the evanescent Fourier component amplitudes does not violate

conservation of energy because evanescent waves do not transport energy in a lossless material.

The physical mechanism for this amplification is related to excitations of surface waves by the in-

cident light at the rear boundary of the NIM. These excitations are similar to surface plasmons that

occur at dielectric interfaces of metals such as gold and silver, where incident light induces col-

lective surface charge or current oscillations that propagate along the interface [108, 140]. These

surface wave excitations at the NIM interface result for evanescent wave components that expe-

rience a sign change in the permittivity (permeability) when a TM (TE) wave crosses over the

boundary. The fact that surface plasmons only require a single parameter to be negative (ǫ or µ)

and not both, has inspired near-perfect lens designed from thin films of gold and silver [104, 36],

which naturally have negative permittivity at optical frequencies. Studies of these thin metal layer

lens have shown experimental verification of evanescent amplification [77]. These kinds of surface

wave excitations are the topic of much active research in the field of plasmonics which is closely
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Figure 3.3 The amplitude decay and amplification for nonpropagating wave components passing
through a negative index material. Evanescent wave fronts, with k20 < k2⊥, experience exponential
decay in positive index materials and are unable to be focused by traditional lenses. A planar lens
constructed of negative index material, with a thickness that matches the optical path length in the
positive index material, experiences an exponential growth that counteracts the loss and is able to

restore the evanescent amplitude to its original value.

related to the developing field of metamaterials. It is important to note that metal lenses with ex-

clusively negative ǫ or µ would only be able to focus evanescent Fourier components, whereas a

NIM with both ǫ and µ negative would focus both propagating and evanescent waves.

The ability of the lens to counter both the phase accumulation and amplitude decay of propa-

gating and evanescent waves, respectively, allows all spatial features of the object to be resolved in

the image. This design is termed a perfect lens because there is no wavelength dependent obstacle

to perfect imaging of the object beyond practical limitations of apertures, perfection of the lens

surface, and homogeneity of the lens material. However, these practical limitations are not trivial.



35

The physical possibility of a perfect lens using negative refractive index still remains as a

widely considered question. One of the idealized necessary conditions for a perfect lens is that

it has no losses, where ǫ′′ and µ′′ are both zero. As a consequence of this there would be an

unbounded growth of the evanescent amplitudes for a sufficiently thick negative index lens, which

is physically unreasonable. The presence of losses in the material would also imply frequency

dispersion by Kramers-Kronig relations and other effects that would complicate imaging, such

as plasmon resonance frequency cut-offs. In a sense, the concept of a negative index perfect

lenses is similar to other conceptual idealizations of physical systems, such as a Carnot engine.

A Carnot engine is a hypothetical construct of a perfectly reversible mechanical thermodynamic

system that operates at the maximum theoretical limit of efficiency and requires an ideal condition

that there is zero change in the entropy of the system. It may be that it is indeed impossible to truly

create a perfect lens, but like the Carnot engine, research efforts concerning perfect lenses provide

important insights that can be applied to advances in practical near-perfect imaging [139, 91, 36,

90, 57].
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Chapter 4

Raman approach for negative refractive index in atomic systems

4.1 Introduction and background

Since the publication of Pendry’s suggestion for a perfect lens using negative refractive in-

dex materials and the experimental verification of negative refraction there has been continually

growing interest in the topic over the last decade. In particular there have been a large number

of novel theoretical developments and experimental advances demonstrated in negative refraction

using metamaterials [137, 39, 131, 56, 101, 23, 24, 168, 36, 128, 17, 160, 170, 28, 29, 118, 75].

As we mentioned in the last chapter metamaterials are artificially constructed with periodic metal-

dielectric structures with appropriate electric and magnetic resonances to engineer the polarization

and magnetization responses beyond those of the constituent materials. These structures typically

have a characteristic periodicity scale smaller than the wavelength, so that according to effective

medium theory, a nearly uniform electromagnetic response is obtained. Initial experiments have

demonstrated negative refraction in the microwave region of the spectrum using metamaterials

constructed from metal wires and split-ring resonators [131, 56, 101, 23, 24]. The requirement

that the resonant structure unit cell dimensions remain much smaller than the wavelength presents

a practical challenge to designing metamaterials that can achieve negative refraction in the optical

region of the spectrum. Recently, utilizing advances in nanolithography techniques, several groups

have reported a negative index of refraction at optical frequencies in metal-dielectric nanostruc-

tures and photonic crystals [168, 36, 128, 17, 160, 170, 28, 29, 118, 75]. A key difficulty of these

experiments that is particularly pronounced in the optical domain is the large absorption that ac-

companies negative refraction. For all experiments that have been performed in the optical region
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of the spectrum, the imaginary part of the refractive index is almost as large as the real part. This

is a key limitation for many potential applications since light is largely absorbed within a few

wavelengths of propagation inside the material.

In this chapter, we focus on atomic systems that are driven with lasers in their internal states

so that negative refraction for a weak probe wave is achieved. The key advantages of using driven

atomic systems as opposed to metamaterials are: (i) using interference principles, one can obtain

a negative index of refraction with negligible absorption, (ii) atomic systems are uniquely suited

for achieving negative refraction at shorter and shorter wavelengths, particularly in the visible and

ultraviolet regions of the spectrum, (iii) since negative refraction is achieved through manipulation

of internal states, the properties of the material can be dynamically modified, (iv) unlike metama-

terials, which have anisotropic negative refraction due to orientation of the resonator structures,

negative refraction by an atomic vapor is naturally isotropic.

Despite these advantages, achieving negative refraction in atomic systems is a very challenging

problem that has not yet been experimentally demonstrated due to several difficulties. According

to Veselago, achieving negative refraction for light of a particular frequency requires that both

ǫ and µ have negative values at that frequency. Revisiting the resonant interaction of light with

atoms discussed in Chap. 2, we consider an idealized atomic system to achieve negative refraction

in Fig. 4.1. In this atom a probe beam interacts with a three-level system where there is a ground

state, |g〉, and two excited states, |e〉 and |m〉. There exists an electric dipole matrix element dge

corresponding to a resonant electric dipole transition between states |g〉 and |e〉 by the electric field

of the probe beam and similarly a magnetic dipole matrix element µgm for the transition between

states |g〉 and |m〉 for the magnetic field of the probe. In this system the states |e〉 and |m〉 are

degenerate such that the same probe beam may be concurrently resonant with both states and the

electric and magnetic transitions overlap at the same resonant frequency. Thus for a probe beam

tuned near this resonance frequency, the electric and magnetic fields of the probe beam simultane-

ously interact with the atom to significantly alter the values of the permittivity and permeability.

The degeneracy of the levels is ideal because in order to satisfy Veselago’s condition for negative

refraction, there must be an overlap of the frequency bands where ǫ and µ are both negative. All
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recent proposals include this constraint that requires a strong electric dipole and a strong magnetic

dipole transition at almost exactly the same wavelength, which is difficult to satisfy in real atomic

systems.

|m |e 

|g |g 

Figure 4.1 An idealized scheme to achieve negative refractive index in an atomic system. In this
three level system there are strong electric dipole and magnetic dipole transitions at exactly the
same wavelength, between the ground state |g〉 and the excited states |e〉 and |m〉, respectively.
The light of a probe beam simultaneously interacts with the system in the electric and magnetic

resonances, via the fields EP and BP . Thus for sufficiently strong interactions, both ǫ and µ of the
system will be negative at the probe frequency, resulting in negative refractive index.

Another challenging difficulty is the magnetic interaction in the atom is much weaker than

the electric interaction. Fundamentally the electric response is stronger because how the differ-

ent fields interact with matter. The interactions differ in that the electric field is able to directly

influence the motion of electric charges in matter, whereas there are no known magnetic charges

that the magnetic field interacts with. The electric dipole of an atom comes from the separation

of the oppositely charged electrons and nuclei. The magnetic dipoles of an atom originate from

the motion of electric charges that are present in the angular momentum of orbital electrons and

intrinsic spin of electrons and nuclei. Hence, typical electric dipole moments are characterized
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by the electron charge and the Bohr radius, d ∼ ea0, and the magnetic dipole moments are char-

acterized by the Bohr magneton, µ ∼ µB = eh̄
2mec

= 1
2
αea0 [22], where α ≈ 1/137 is the fine

structure constant. The fact that magnetic dipole moments are typically two orders of magnitude

smaller than electric dipole moments is related to the weak magnetic response observed in most

materials. Furthermore, achieving negative permittivity and permeability simultaneously requires

atomic densities greater than 1018 cm−3, which is impractical.

4.2 Previous atomic system approaches

As mentioned above, Veselago’s original proposal for achieving a negative index of refraction

requires ǫ < 0 and µ < 0 simultaneously. Using this idea, Oktel and Müstecaplioğlu [98] were the

first to study the possibility of negative refraction in driven atomic systems. They proposed a model

three-level system that induces a magnetic resonance between two levels with a non-zero magnetic

dipole matrix element by using laser driven quantum coherent techniques to establish a coherence

between the levels. Simultaneously the probe beam acts in an on resonant electric dipole transition

as part of the process forming the magnetic resonance coherence. A similar technique for negative

refraction in atomic vapors was independently proposed by Shen shortly after [132]. The ideas of

Oktel and Müstecaplioğlu were built upon by Thommen and Mandel [145] in a proposed four-level

system that does not require a common ground state for the electric and magnetic transitions.

As mentioned above, in the optical region of the spectrum the chief difficulty of this approach

is the weakness of the magnetic response. Since typical magnetic dipole moments are weaker than

electric dipole moments, achieving negative permeability requires impractically large atomic den-

sities. To alleviate this problem, a chiral route to negative refraction has recently been suggested

[105, 92]. Here, the key idea is to use a magnetoelectric cross coupling where the medium’s elec-

tric polarization is coupled to the magnetic field of the wave, and the medium’s magnetization is

coupled to the electric field. As we will discuss below, under such conditions, negative refrac-

tion can be achieved without requiring a negative permeability. Building on this idea, Walsworth

and colleagues have recently suggested a promising scheme that achieves negative refraction with
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low absorption using quantum interference [62, 63]. Their scheme utilizes the dark state of Elec-

tromagnetically Induced Transparency (EIT) to reduce absorption while enhancing the chiral re-

sponse. This scheme appears to be the most promising of the previously suggested approaches and

achieves negative refraction with low absorptive loss at a density of about 5× 1016 cm−3.

All of the recent suggestions mentioned above require a strong magnetic dipole and a strong

electric dipole transition at almost exactly the same wavelength. This requirement puts a stringent

constraint on the energy level structure of systems in which negative refraction can be achieved.

The approach [134] we consider overcomes this constraint and furthermore achieves negative re-

fraction with more conservative atomic system parameters (including atomic density and linewidth)

compared to previous suggestions. We achieve these benefits at the expense of requiring two in-

tense control lasers. Together with the probe laser, these control lasers induce two Raman tran-

sitions: one absorptive and one amplifying in nature. The interference of these two transitions

results in a strong enhancement of the permittivity while minimizing absorption. We then coher-

ently couple to a magnetic dipole transition to obtain a chiral response and to achieve a negative

index of refraction through magnetoelectric cross coupling.

Before proceeding with a detailed description of our suggestion, we summarize the chiral ap-

proach to negative refraction. Consider a probe beam with electric field and magnetic field com-

ponents Ep and Bp, respectively. In a material with magnetoelectric cross coupling, the medium

polarization, Pp, and the magnetization, Mp are given by [62, 63]:

Pp = ǫ0χEEp +
ξEB
cµ0

Bp ,

Mp =
ξBE
cµ0

Ep +
χB

µ0

Bp , [4.1]

where χE , χB are the electric and magnetic susceptibilities, and ξEB, ξBE are the complex magne-

toelectric coupling (chirality) coefficients, respectively. The index of refraction of the medium for

a plane wave of a particular circular polarization can be found by using Eqs. (4.1) and Maxwell’s

equations (see Appendix B for details):

n =

√

ǫµ− (ξEB + ξBE)2

4
+
i

2
(ξEB − ξBE) . [4.2]
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Here, ǫ = 1 + χE and µ = 1 + χB are the relative permittivity and permeability of the medium.

As shown in Eq. (4.2), the chirality coefficients result in additional contributions to the index of

refraction. The key idea behind the chiral approach is that, in the optical region, one typically has

the scaling χB ∼ α2χE and (ξEB, ξBE) ∼ αχE . Since the value of the chirality coefficients are

smaller only by a factor of α instead of α2, negative refraction can be achieved without the need

for negative permeability and at much smaller atomic densities compared to non-chiral schemes.

Negative refraction with chirality requires appropriate phase control of the chirality coefficients

which can be achieved through coherent magnetoelectric coupling. One typically chooses the

phase such that the chirality coefficients are imaginary, ξEB = −ξBE = iξ, and Eq. (4.2) reads

n =
√
ǫµ−ξ. Achieving n < 0 then requires a sufficiently large chiral response such that ξ >

√
ǫµ.

Furthermore, to reduce absorption, it is critical to keep the imaginary part of the refractive index

to be as low as possible. The performance of negative index materials is typically characterized by

the figure of merit, FoM=-Re(n)/|Im(n)|.

4.3 Negative refraction using Raman transitions with cross coupling

We proceed with a detailed description of our suggestion. Noting Fig. 4.2, we consider a six-

level system interacting with four laser beams. We wish to achieve a negative index of refraction

for the probe laser beam with field components Ep and Bp, respectively. We take the atomic system

to have a strong magnetic transition with dipole moment µgm near the frequency of the probe

laser beam. As mentioned above, the system does not have a strong electric dipole transition near

the probe laser frequency. The electric dipole response is obtained by using two-photon Raman

transitions through the excited states |a〉 and |b〉. At the heart of the scheme is the “refractive

index enhancement with vanishing absorption” technique [165, 4, 113, 166], described in Chap. 2.

Starting with the ground state |g〉, we induce two Raman transitions using the probe laser and two

intense control lasers with electric field amplitudes EC1 and EC2. Since the order at which the probe

laser beam is involved in each Raman transition is different, this scheme achieves two resonances:

one amplifying and one absorptive in nature. The strength and position of these two resonances

can be controlled by varying the intensities and frequencies of the control laser beams. It is the
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interference of these two resonances that results in the control of the index of refraction while

maintaining small absorption. The magnetoelectric cross coupling is achieved through coherent

coupling of states |2〉 and |m〉 with a separate laser beam of Rabi frequency Ω2m. States |g〉, |1〉,
|2〉 and |m〉 have the same parity, which is opposite to the parity of states |a〉 and |b〉. Since states

|2〉 and |m〉 have the same parity, the coherent coupling Ω2m cannot be electric dipole, but instead

can be achieved through the magnetic field of a strong laser or through a separate two-photon

transition (not shown). The two-photon detunings from the two Raman transitions are defined as:

δω1 = (ω1−ωg)−(ωC1−ωp) and δω2 = (ω2−ωg)−(ωp−ωC2). The quantity δωB = (ωm−ωg)−ωp

is the detuning of the probe laser beam from the |g〉 → |m〉 magnetic transition.

Without loss of generality, we have chosen the probe fields Ep and Bp to have σ+ polarization

while the coupling fields Ω2m, EC1, and EC2 have σ− polarization. These circular polarized fields

interact within the Zeeman sublevel structure of the atom. For a system where the particular fields

are oppositely circular polarized, we would expect the terms in Eq. (4.2) to interfere differently,

which could lead to an enhanced positive index of refraction. For a linear polarization of the fields

we would expect the medium to exhibit unusually high optical rotation of the probe beam.

We start by expanding the total wave function for the atomic system, |ψ〉, in the interaction

picture:

|ψ〉 = cg exp(−iωgt)|g〉+ c1 exp(−iω1t)|1〉+ c2 exp(−iω2t)|2〉

+ cm exp(−iωmt)|m〉+ ca exp(−iωat)|a〉+ cb exp(−iωbt)|b〉 , [4.3]

where the quantities ci are the complex probability amplitudes of the respective levels. The total

Hamiltonian of the system can be written as Ĥtotal = Ĥ0 + Ĥint where Ĥ0 is the unperturbed

Hamiltonian and Ĥint is the interaction Hamiltonian that includes the interactions of the atom with

the electric field and magnetic field components of the incident waves:

Ĥ0 = h̄ωg|g〉〈g|+ h̄ω1|1〉〈1|+ h̄ω2|2〉〈2|+ h̄ωm|m〉〈m|+ h̄ωa|a〉〈a|+ h̄ωb|b〉〈b| ,

Ĥint = −dgaE|g〉〈a| − dgbE|g〉〈b| − d1aE|1〉〈a| − d2bE|2〉〈b|

− µgmB|g〉〈m| − µ2mB|2〉〈m|+ h.c. . [4.4]
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Figure 4.2 Schematic of the proposed scheme. Ep and Bp are the electric field and magnetic field
components of a weak far-off resonant probe beam (blue). |g〉 → |m〉 is a magnetic dipole

transition induced by the probe magnetic field Bp. Two strong control lasers (green), EC1 and EC2,
induce two electric dipole Raman transitions for the probe beam. The Raman transitions can be

far-detuned from the excited states |a〉 and |b〉. Therefore, the system does not require the
magnetic (|g〉 → |m〉) and electric (|g〉 → |a〉 and |g〉 → |b〉) transitions to be near the same

frequency. Ω2m (red dashed) induces magnetoelectric cross coupling (chirality).

Here, the quantities dij and µij are the electric dipole and magnetic dipole transition matrix ele-

ments between respective levels, E and B are the total electric and magnetic fields, and h.c. refers

to Hermitian conjugate. The electric and magnetic fields include contributions from all relevant

laser beams and they are:

E = Re {Ep exp(−iωpt) + EC1 exp(−iωC1t) + EC2 exp(−iωC2t)} ,

B = Re {Bp exp(−iωpt) + B2m exp(−iω2mt)} . [4.5]

In the above, for concreteness, we have taken the magnetoelectric cross coupling to be induced by

a third intense laser beam with magnetic field B2m. Using Eqs. (4.3) and (4.4) and ignoring the
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dissipative processes for the moment, we write the Schrödinger’s equation for the time evolution

of the probability amplitudes:

ċg =
i

h̄
[dgaEca exp(i(ωg − ωa)t) + dgbEcb exp(i(ωg − ωb)t) + µgmBcm exp(i(ωg − ωm)t)] ,

ċ1 =
i

h̄
[d1aEca exp(i(ω1 − ωa)t)] ,

ċ2 =
i

h̄
[d2bEcb exp(i(ω2 − ωb)t) + µ2mBcm exp(i(ω2 − ωm)t)] ,

ċm =
i

h̄

[

µ∗
gmBcg exp(i(ωm − ωg)t) + µ∗

2mBc2 exp(i(ωm − ω2)t)
]

,

ċa =
i

h̄

[

d∗1aEc1 exp(i(ωa − ω1)t) + d∗gaEcg exp(i(ωa − ωg)t)
]

,

ċb =
i

h̄

[

d∗2bEc2 exp(i(ωb − ω2)t) + d∗gbEcg exp(i(ωb − ωg)t)
]

. [4.6]

We will focus on the case where the single-photon detunings from the excited electronic states are

much larger than the coupling rates. This allows adiabatic elimination of the probability amplitudes

of the excited electronic levels |a〉 and |b〉. This is an important simplification for the analytical

results since it reduces the problem to an effective four-level system. We note, however, that we

do not make this simplification in the numerical results of the next section and solve the density-

matrix for the full six levels. As we will discuss, the numerical results for the full system are in

reasonable agreement with the analytical solutions. We take all the relevant detunings to be small

compared to the absolute laser frequencies and make the rotating wave approximation. Integrating

out the differential equations for ca and cb we obtain:

ca =
d∗1a
2h̄
c1

∑

q=p,C1,C2

Eq exp(i(ωa − ω1 − ωq)t)

ωa − ω1 − ωq

+
d∗ga
2h̄
cg

∑

q=p,C1,C2

Eq exp(i(ωa − ωg − ωq)t)

ωa − ωg − ωq

,

cb =
d∗2b
2h̄
c2

∑

q=p,C1,C2

Eq exp(i(ωb − ω2 − ωq)t)

ωb − ω2 − ωq

+
d∗gb
2h̄
cg

∑

q=p,C1,C2

Eq exp(i(ωb − ωg − ωq)t)

ωb − ωg − ωq

.[4.7]

By using the algebraic expressions for the probability amplitudes of Eq. (4.7) and after transform-

ing to a rotating frame (details in Appendix A), the Schrödinger’s equation for the simplified four

level system is:

ċg +
Im(A)

2
cg = i

B1

2
c1 + i

B2

2
c2 + i

Ωgm

2
cm ,
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ċ1 + i

[

δω1 −
Re(F1 − A)

2

]

c1 +

[

γ1 +
Im(F1)

2

]

c1 = i
B∗

1

2
cg ,

ċ2 + i

[

δω2 −
Re(F2 − A)

2

]

c2 +

[

γ2 +
Im(F2)

2

]

c2 = i
B∗

2

2
cg + i

Ω2m

2
cm ,

˙cm + i

[

δωB +
Re(A)

2

]

cm + γmcm = i
Ω∗

gm

2
cg + i

Ω∗
2m

2
c2 . [4.8]

Here, we have added the decay rates of the levels, γ1, γ2, and γm, phenomenologically. At this

stage of the formalism, since we are not using the density matrix, the decay processes are assumed

to be to states outside the system. Ωgm = µgmB∗
p/h̄ is the Rabi frequency due to magnetic field

of the probe laser beam that couples states |g〉 and |m〉. Ω2m = µ2mB∗
2m/h̄ is the magnetoelectric

cross coupling rate. The quantities that appear in Eq. (4.8), within the rotating wave approximation,

are given by

A = ap |Ep|2 + aC1 |EC1|2 , B1 = b1EpE∗
C1 , B2 = b2E∗

pEC2 ,

F1 = f1,p |Ep|2 , F2 = f2,C2 |EC2|2 ,

ap =
1

2h̄2

[

|dgb|2
ωb − ωg − ωp − iΓb

]

,

aC1 =
1

2h̄2

[

|dga|2
ωa − ωg − ωC1 − iΓa

]

,

b1 =
1

2h̄2

[

dgad
∗
1a

ωa − ωg − ωC1 − iΓa

]

,

b2 =
1

2h̄2

[

dgbd
∗
2b

ωb − ωg − ωp − iΓb

]

,

f1,p =
1

2h̄2

[

|d1a|2
ωa − ω1 − ωp − iΓa

]

,

f2,C2 =
1

2h̄2

[

|d2b|2
ωb − ω2 − ωC2 − iΓb

]

. [4.9]

Here, the quantities Γa and Γb are the decay rates of the excited levels |a〉 and |b〉, respectively.

4.4 Analytical steady-state solutions

We proceed with a perturbative, steady-state analytical solution for the system. For this purpose,

we take the laser intensities to be sufficiently weak such that most of the population stays in the
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ground atomic state, cg ≈ 1. For time-scales long when compared with the inverse of the decay

rates, the steady-state solutions for the probability amplitudes of the relevant levels are:

c1 ≈ B∗
1

2
[

δω1 − Re(F1−A)
2

− i
(

γ1 +
Im(F1)

2

)] ,

c2 ≈
2B∗

2

[

δωB + Re(A)
2

− iγm
]

+ Ω2mΩ
∗
gm

4



δω2 −
Re(F2−A)−i

(

γ2+
Im(F2)

2

)

2





[

δωB + Re(A)
2

− iγm
]

− |Ω2m|2
,

cm ≈ Ω∗
gm

2
[

δωB + Re(A)
2

− iγm
]

+
B∗

2Ω
∗
2m

4
[

δωB + Re(A)
2

− iγm
]

[

δω2 − Re(F2−A)
2

− |Ω2m|2

4(δωB+
Re(A)

2
−iγm)

− i
(

γ2 +
Im(F2)

2

)

]

+
|Ω2m|2 Ω∗

gm

8
[

δωB + Re(A)
2

− iγm
]2
[

δω2 − Re(F2−A)
2

− |Ω2m|2

4(δωB+
Re(A)

2
−iγm)

− i
(

γ2 +
Im(F2)

2

)

] .[4.10]

As we will discuss in the next section, we verify the validity of this steady-state solution by using

full numerical simulations of the density matrix. With the analytical solutions for the probability

amplitudes, we form coherences and calculate the medium’s response at the probe laser frequency.

The polarization and the magnetization of the medium are:

Pp = 2h̄N
(

ap |cg|2 Ep + b∗1cgc
∗
1EC1 + b2c

∗
gc2EC2

)

≡ N (αEEEp + αEBBp) ,

Mp = 2Nc∗gcmµgm ≡ N (αBEEp + αBBBp) , [4.11]

where N is the number of atoms per unit volume. In the expressions above, the quantities αEE ,

αBB, αEB, and αBE are the electric, magnetic, and cross coupling polarizabilities and they are given

by:

αEE = 2h̄ap +
h̄ |b1|2 |EC1|2

[

˜δω1 + i
(

γ1 +
Im(F1)

2

)] +
h̄ |b2|2 |EC2|2

[

˜δω2 − |Ω2m|2

4( ˜δωB−iγm)
− i

(

γ2 +
Im(F2)

2

)

] ,

αBB =
|µgm|2

h̄





(

˜δωB − iγm
)

− |Ω2m|2

4

(

˜δω2−i

(

γ2+
Im(F2)

2

))





,
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αEB =
b2µ

∗
gmEC2Ω2m

2
(

˜δωB +−iγm
)

[

˜δω2 − |Ω2m|2

4( ˜δωB−iγm)
− i

(

γ2 +
Im(F2)

2

)

] ,

αBE =
b∗2µgmE∗

C2Ω
∗
2m

2
(

˜δωB − iγm
)

[

˜δω2 − |Ω2m|2

4( ˜δωB−iγm)
− i

(

γ2 +
Im(F2)

2

)

] , [4.12]

where we have introduced a simplified notation for the detunings that includes the AC Stark shifts,

˜δωB = δωB +
Re(A)

2
,

˜δω1 = δω1 −
Re(F1 − A)

2
,

˜δω2 = δω2 −
Re(F2 − A)

2
. [4.13]

It is well-known that when the refractive index is strongly modified, the microscopic local fields can

be substantially different than the averaged macroscopic fields. To calculate the susceptibilities,

chirality coefficients, and the refractive index, we include both electric and magnetic Clausius-

Mossotti-type local field effects [21, 61]. For electric and magnetic fields, the relationships be-

tween microscopic local fields and macroscopic quantities are:

Emicro
p = Ep +

1

3ǫ0
Pp ,

Bmicro
p = Bp +

µ0

3
Mp . [4.14]

Solving Eq. (4.11) together with the local field corrections of Eq. (4.14), we get the following

expressions for the electric and magnetic susceptibilities and the chirality coefficients:

χE = N
1

κǫ0

[

αEE +N
µ0

3
(αEBαBE − αEEαBB)

]

,

χB = N
µ0

κ

[

αBB +N
1

3ǫ0
(αEBαBE − αEEαBB)

]

,

ξEB = N
µ0c

κ
αEB ,

ξBE = N
µ0c

κ
αBE , [4.15]

where the quantity κ largely determines the density-dependent local field enhancement and is:

κ = 1−N
1

3ǫ0
αEE −N

µ0

3
αBB −N2 µ0

9ǫ0
[αEBαBE − αEEαBB] . [4.16]
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Eqs. (4.11-4.16) represent the final results of this section. Given a certain set of parameters for our

system such as matrix elements, laser intensities, and the atomic density, we use these equations

to calculate the susceptibilities and the chirality coefficients. It is important to note that these

equations are valid in the perturbative limit which will break down for sufficiently intense control

laser beams. With the susceptibilities and chirality coefficients known, we then use Eq. (4.2) to

calculate the real and imaginary parts of the refractive index.

4.5 Results for a model atomic system

In this section we present results for a model atomic system. For this purpose, we consider

a probe beam at a wavelength of λp = 500 nm. We assume the ideal case of pure radiative

broadening for the excited electronic levels |a〉 and b〉 and take the radiative decay rates of these

states to be Γa = Γb = 2π × 14.3 MHz. The dipole matrix elements, dia and dib are calculated

using the Wigner-Weisskopf result and assuming equal branching ratios, dia =
√

πǫ0Γah̄c3/ω3
p ,

dib =
√

πǫ0Γbh̄c3/ω3
p . We apply a similar procedure and assume a radiative decay rate of α2Γa

for the magnetic level |m〉 and calculate the corresponding magnetic dipole matrix element, µgm.

To simulate a realistic system, we assume an additional broadening mechanism (collisions for

example) with a rate γc = 2π × 1 MHz and add this broadening to the linewidths of states |1〉,
|2〉, and |m〉. We take the wavelengths of electric dipole (|g〉 → |a〉, |b〉) and magnetic dipole

(|g〉 → |m〉) transitions to be different by ∆λ = 0.1 nm. As we will discuss below, this difference

can be larger at the expense of an increase in the required control laser intensities. We take the

magnetoelectric coupling laser beam to be resonant with the |2〉 → |m〉 transition and therefore

take ˜δωB = ˜δω2.

Figure 4.3 shows the susceptibilities and the chirality coefficients, χE , χB, ξEB, and ξBE , without

the local-field corrections as the frequency of the probe laser beam is varied for an atomic density of

N = 5× 1016 cm−3. Here, we assume that the control laser frequencies are appropriately adjusted

such that the two Raman resonance frequencies coincide as the probe laser frequency is scanned,

˜δω1 = − ˜δω2. We take the intensities of the two control laser beams to be IC1 = 0.27 MW/cm2

and IC2 = 1.00 MW/cm2 and assume Ω2m = i2π × 1.36 MHz. The intensities of the control
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Figure 4.3 The real (solid blue line) and imaginary (dotted red line) parts of the susceptibilities
and the chirality coefficients without the local-field corrections. See text for parameters. Since the
electric dipole response is due to Raman transitions, its strength is controlled by the intensity of

the control laser beams. As a result, compared to earlier suggested schemes, the magnitude of χE

is more comparable to the chirality coefficients in our approach.

lasers are adjusted to these values to have near cancellation of absorption. As shown in Fig. 4.3,

the magnetoelectric coupling causes an EIT-like level splitting for χE . The imaginary part of

χE becomes small near ˜δωB = 0 due to the interference of the two Raman resonances. One

of the key differences of our approach compared to the scheme of Fleischhauer [62, 63] is that

since the electric dipole response is due to Raman transitions, its strength is controlled by the

intensity of the control laser beams. As a result, we do not have the usual scaling χB ∼ α2χE

and (ξEB, ξBE) ∼ αχE , and the magnitude of χE can be made more comparable to the chirality

coefficients.
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Figure 4.4 The real (solid blue) and imaginary (dotted red) parts of the index of refraction for an
atomic density of N = 5× 1016 cm−3. The top plot shows a wide frequency scan of the resonant
behavior and shows that far-off resonance the medium returns to n = 1. The bottom plot shows
the detailed features that occur at the Raman and magnetic resonances. The index of refraction

becomes negative and reaches a value of n = −1 with a figure of merit FoM> 20.

Noting Eqs. (4.15) and (4.16) there is a strong density dependent enhancement of both the elec-

tric and magnetic susceptibilities and the chirality coefficients. For sufficiently high densities, the

local field effects cause an enhancement of a susceptibility resonance and a shift of its frequency

position [61]. Figure 4.4 shows the real and imaginary parts of the refractive index as the probe

frequency is scanned for the parameters of Fig. 4.3. In this figure we observe a very large off

resonant peak which has a density dependent position arising from the local field effects. This

large off resonant peak is a characteristic of the enhanced electric susceptibility, which overshad-

ows the contributions of the other susceptibilities when seen in this broad frequency scan of the

refractive index. At the densities of interest, the magnetic susceptibility and chirality coefficients

are amplified but have negligible frequency shifts since the quantity κ is dominated by the electric
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polarizability. The inset in Fig. 3 shows a zoomed in view of the refractive index at the original Ra-

man and magnetic resonance frequency. The enhancement of the chirality terms in Eq.(4.2) within

this region causes the refractive index of the medium to sharply decrease, becoming negative and

this is accompanied by a flattening of the absorption approaching zero. For these parameters the

refractive index reaches n = −1 with FoM> 20. It should be noted that in our technique it is

necessary to have very low absorption in the electric susceptibility such that the local field effects

can optimally enhance the negative refraction of the medium.

To show the critical dependence on atomic density, Fig. 4.5 shows the refractive index for

N = 2 × 1016 cm−3 and N = 1 × 1017 cm−3 with parameters otherwise identical to those of

Fig. 4.4. For N = 1 × 1017 cm−3, we obtain an index of refraction of n = −2.77 with low

absorption. For n = −1 the figure of merit is FoM≈ 40.
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Figure 4.5 The real (solid blue) and imaginary (dotted red) parts of the index of refraction for an
atomic density of N = 2× 1016 cm−3 (left) and N = 1× 1017 cm−3 (right). The other parameters
are identical to those used in Fig. 4.4. For N = 1× 1017 cm−3, we obtain an index of refraction of

n = −1 with a FoM ≈ 40.

Figure 4.6 shows the FoM achieved at the point Re(n) = −1 and the maximum FoM of the

medium as the atomic density is varied with parameters otherwise identical to Figs. 4.3-4.5. For

these parameters, the threshold density for a negative refractive index is N = 6× 1015 cm−3.

As mentioned above, for Figs. 4.3-4.6, the wavelengths for the electric dipole (|g〉 → |a〉, |b〉)
and magnetic dipole (|g〉 → |m〉) transitions are assumed to be different by ∆λ = 0.1 nm. This
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Figure 4.6 The figure of merit, FoM=-Re(n)/|Im(n)| characterizes the performance of a negative
index material. The solid blue line plots the FoM at the frequency position where Re(n) = −1 as
the density of atoms is varied. The dashed red line plots the FoM at the frequency position where

FoM is maximized. The maximum FoM increases with increasing atomic density, however at
higher densities the maximum FoM occurs at frequencies where Re(n) < −1.

wavelength separation can be larger at the expense of an increase in the required control laser inten-

sities. Figure 4.7 demonstrates this result. Here we plot the control laser intensity that is required to

obtain results comparable to those of Figs. 4.3-4.6 as the wavelength separation between the tran-

sitions, ∆λ, is varied. The transition wavelengths may be different by as much as ∆λ = 10 nm and

the scheme will still work with intensities that can be achieved with continuous-wave (CW) lasers

(10 watt laser beam focused down to about one micron). This increases the flexibility on the energy

level structure and, as we discuss in the next chapter, may allow experimental implementation in a

real atomic system.

We next discuss the sensitivity of our technique to various system parameters. As mentioned

before, in our technique, it is critical to have vanishing absorption by appropriately interfering the

two Raman transitions. We have varied parameters of the first control laser, which takes part in

the gain Raman transition, to simulate fluctuations that would lead to imperfect interference of the

Raman resonances. The solid lines in Fig. 4.8 show the real and imaginary parts of the refractive

index for parameters identical to those of Fig. 4.4 (N = 5× 1016 cm−3). For the dashed lines, the

intensity of the first control laser is decreased by 1 % , whereas for the dotted lines it is decreased

by 2 % of the optimized value (Ic1 = 0.27 MW/cm2). We still observe n ≈ −1 with a reasonably
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Figure 4.7 The control laser intensity, IC2, required to obtain results comparable to Figs. 4.3-4.6
as a function of the wavelength separation between the transitions, ∆λ. The control laser

intensity, IC1, follows a similar behavior (not shown).

good FoM. Similarly, to address frequency jitter sensitivity, the solid lines in Fig. 4.9 show the

real and imaginary parts of the refractive index for parameters identical to those of Fig. 4.4. For

the the dashed lines, the frequency of the first control laser is shifted off resonance by 0.25 MHz,

whereas for the dotted lines it is shifted by −0.25 MHz. We observe qualitatively similar behavior

of negative refraction with reduced absorption.
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Figure 4.8 The real (left) and imaginary (right) parts of the index of refraction where the intensity
of laser field EC1 is at 100% (solid blue), 99 % (red dotted) and 98 % (green dash-dotted) of the

optimized value of IC1 = 0.27MW/cm2 used in Figs. 4.3-4.5). The laser field EC1 interacts in the
gain Raman resonance, which leads to reduced absorption.
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Figure 4.9 The real (left) and imaginary (right) parts of the index of refraction where the
frequency of laser field EC1 is tuned on resonance (solid blue) and off resonance by 0.25 MHz (red

dotted) and by −0.25 MHz (green dash-dotted). As expected when the laser field is tuned off
resonance the performance of the system as a negative index material decreases, but the features

of negative refraction and reduced absorption remain qualitatively unchanged.

4.6 Numerical simulations

In this section, we present exact numerical simulations to verify the predictions of the analytical

results. For this purpose, we use the density matrix formalism and numerically solve the evolution

of the density matrix elements, ρij ≡ cic
∗
j , for the full six-level system. The equations that describe

the evolution of the 6 × 6 density matrix are shown in Appendix C. For a given set of system

parameters, we numerically integrate these equations with the initial condition that the atoms start

in the ground state, ρgg = 1, and the laser fields are off and gradually turned on to full power in

≈ 400 ns. We use fourth-order Runge-Kutta as our numerical integration algorithm with a typical

time grid spacing of ≈ 1 ps.

For the intensity values used in Figs. 4.3-4.6, using Eq. (4.13), the AC stark shifts calculated in

our analytical formalism are on the order of 1 GHz, which is significantly higher than the linewidth

of the resonances. Since the magnetic and two Raman resonances each experience a different AC

Stark shift, we include adjustments to the tunings of the control lasers to ensure that all three

resonances are aligned at the same frequency position. Initially we applied these analytical shift

offsets in our numerical simulations, but we observed that frequency positions of the resonances
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could be misaligned by as much as 30 MHz. This is because of the break down of the perturbative

approximation and therefore the analytical estimates of the Stark shifts are underestimated. To

compensate for this effect, we empirically applied additional shifts to the control laser frequencies

such that all the resonances were aligned at the same frequency.
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Figure 4.10 The numerically solved values (solid blue lines) of the coherences ρg1, ρg2, and ρgm
(in arbitrary units) as they evolve in time with the intensity of the laser beams gradually applied.

The coherences approach a steady state value in a little under 2 µs. The analytical formalism
steady state solutions (red dotted lines) of the coherences are shown for comparison. The

frequency of the probe beam is taken to be on the Raman and magnetic resonances.

Figure 4.10 shows the numerically calculated coherences, ρg1, ρg2, and ρgm for the parame-

ters of Figs 4.3-4.6. For comparison, the coherences calculated through the analytical steady-state

solutions of Eq. (4.10) are also plotted. As expected, the system quickly reaches steady state on
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time scales on the order of 1/γ1 ≈ 100 ns. Once the system reaches steady-state, there is reason-

able agreement between the numerical calculations and the analytical solutions. The discrepancy

between the numerical and analytical solutions is due to effects that are related to the high inten-

sity of the lasers, such as depopulation of the ground state and the break down of the perturbative

approximation. We have checked that in the case of low intensity laser fields there is very close

agreement between the numerically and analytically calculated coherences. However these lower

intensity values are not sufficient to attain negative refraction.

Using the equations of the density matrix we numerically integrated the coherences as a func-

tion of time for a given frequency position until they reached a steady state value. We then repeated

this integration procedure for each frequency value in an array of equally spaced points to see the

frequency dependence of the coherences as the probe beam is scanned across the resonance. The

agreement between the numerical and analytical solutions can also be seen in Fig. 4.11, which

plots the numerically solved values of the coherences and the analytical solutions as the probe

frequency is scanned across the resonance.

There remained a discrepancy between the resulting coherences of our numerical simulation

and our analytical results with the same parameters seen in Figs. 4.3-4.6 The strengths of the

two Raman resonances were not properly balanced so as to lead to vanishing absorption. As was

mentioned earlier in Section 4, the local field effects that result in negative refraction with minimal

absorption are correlated to the vanishing absorption of the Raman resonances. To resolve this, we

adjusted the strength of the gain Raman resonance from IC1 = 0.27 MW/cm2 to 0.485 MW/cm2 in

our numerical simulations. Using this adjusted intensity, we were able to numerically calculate a

refractive index that closely resembled our analytical results as seen in Fig. 4.12.

To gain insight to the discrepancies between numerical and analytical results we considered

the break down of the perturbative approximation in our analytical approach. Figure 4.13 shows

the evolution of the population of the ground state, ρgg. Although the system initially starts in the

ground state (ρgg = 1), the population of this state drops to ρgg = 0.814 as the laser fields are

applied. The system, therefore, remains reasonably within the perturbative approximation since

only about 18.6 % of the population is moved from the ground state.
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Figure 4.11 The real (solid blue) and imaginary (solid red) parts of the numerically solved steady
state values of the coherences ρg1, ρg2, and ρgm (in arbitrary units) as they are scanned across

resonance. These are compared to the real (dotted green) and imaginary (dotted magenta) parts of
the coherences calculated using the analytical steady state solutions with the same parameters.

4.7 Conclusions

To summarize, we have outlined a Raman based approach for achieving negative index of re-

fraction with low absorption in the optical region of the spectrum. Differing from the meta-material

approach, our technique utilizes atomic systems that are driven with lasers in their internal states.

The key advantage of our approach is that our technique does not require the simultaneous pres-

ence of an electric dipole and a magnetic dipole transition near the same wavelength. This gives
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Figure 4.13 The ground state population of the system in our numerical simulation initially starts
at 100 % and decreases in time as the laser fields are gradually turned on, eventually reaching a

steady state value of 81.4 %.

large flexibility in the requirements for the energy level structure, which allows for the possibility

of experimental implementations using the rich structure of rare-earth atoms.

There are many open questions that yet need to be addressed. One future direction would be

to perform detailed theoretical modeling to identify the most suitable atomic species and experi-

mental system for observing negative refraction. As discussed above a careful evaluation of the
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achievable atomic densities and the linewidths is needed. A first step in this direction will be dis-

cussed in the next chapter. If achieved, negative refraction in atomic systems may have significant

implications for a number of research areas. As mentioned above, one key practical application is

in optical imaging science. As the frontiers of science and engineering approach the nanoscale, it

becomes ever more important to devise optical imaging techniques with nanometer resolution. In

recent years, overcoming the diffraction barrier has been the subject of intense theoretical and ex-

perimental research [54, 64, 10, 55, 12, 25, 59, 7]. Perfect lenses constructed from negative index

materials may provide a unique approach for resolving nanoscale objects and may therefore have

far reaching practical implications. These devices may also be used to reduce the smallest feature

size of a lithographic mask. This is particularly important since lithographic resolution currently

determines the size and the processing power of every semiconductor integrated circuit.
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Chapter 5

Implementations of negative index approach using rare-earth atoms

5.1 Introduction and background

Rare earths of the lanthanide series have some of the most complex electronic spectra of known

elements due to the rich structure of the open f -shell. Although the first spectra of rare-earths were

obtained as early as the 1930s, detailed investigation and understanding of their electronic structure

had to wait until the 1960s when tunable laser sources were developed and computers became

powerful enough to enable reasonably accurate calculations [83, 159, 143, 157]. The interest in

rare-earths has been continually growing over the last two decades due to applications in diverse

research areas including quantum information storage and precision measurement of the electron

electric dipole moment.

In this chapter we investigate the possibility of experimental implementations of our technique

for negative refraction by considering systems of rare-earth atoms. The technique for negative

refraction that we have discussed is flexible in that it doesn’t require a strong magnetic and a strong

electric dipole transition at almost exactly the same wavelength, however the trade-off is that the

greater the difference between the transition wavelengths, the greater the required intensity of the

Raman coupling lasers. We consider the rich level structure of the rare-earth atoms, where ideally

we can find systems that have strong optical electric and magnetic dipole transitions with closely

spaced wavelengths and suitable hyperfine structure that can be used to induce Raman transitions

with the probe and coupling lasers. In our investigation of rare-earth atom transitions we use

Cowan’s atomic structure code [22] to calculate theoretical estimates for transition wavelengths
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and dipole matrix elements by using ab initio relativistic Hartree-Fock methods. We will consider

both systems of neutral atom vapors and crystal solids doped with rare-earth ions.

5.2 Neutral rare-earth atom vapors

In this section, we discuss possible experimental implementations of our technique in two rare-

earth atomic species: Erbium (Er) and Dysprosium (Dy). By using Cowan’s atomic structure code

[22], we have found suitable transitions from the ground level in both of these atomic species.

Further research may identify different atomic species and transitions that are better suited to our

technique. However, we feel the two schemes in Er and Dy serve as a good starting point and also

demonstrate the flexibility of our scheme. Figure 5.1 details the transitions in Er where we consider

the 4f 12(3H6)6s
2 3H6(J = 6) → 4f 12(1I6)6s

2 1I6(J
′ = 6) magnetic dipole transition and the

4f 12(3H6)6s
2 3H6(J = 6) → 4f 12(1G4)6s6p(

1P o
1 )

1Ho
5(J

′ = 5) electric dipole transition. The

wavelengths of these two transitions are in the ultraviolet, and they differ by only 2.2 nm (335.3 nm

for the magnetic dipole and 337.5 nm for the electric dipole). The 167Er isotope has a nuclear spin

of I = 7/2 and occurs with a natural abundance of 23%. The resulting hyperfine levels [19, 58]

can be used to induce Raman transitions with the probe and the control lasers. By using Cowan’s

code we have calculated the magnetic dipole reduced matrix element to be 〈J ||µ̂||J ′〉 = 0.1µB

(µB: Bohr magneton) and the electric dipole reduced matrix element to be 〈J ||d̂||J ′〉 = 0.2ea0 (e:

electron charge, a0: Bohr radius), both of which are reasonably strong.

For Dysprosium, we consider the 161Dy isotope (natural abundance of 19%, nuclear spin of I =

5/2) with a level structure similar to that of Fig. 5.1. We have identified the 4f 10(5I8)6s
2 5I8(J =

8)→ 4f 10(3K7)6s
2 3K7(J

′ = 7) and the 4f 10(5I8)6s
2 5I8(J = 8)→ 4f 9(2M o

17/2)5d3/26s
2 5Ko

7(J
′ =

7) magnetic and electric dipole transitions as suitable candidates for our technique. The wave-

lengths of these two transitions are 484 nm for the magnetic dipole and 484.8 nm for the electric

dipole. The calculated reduced matrix elements for the two transitions are 〈J ||µ̂||J ′〉 = 0.06µB

and 〈J ||d̂||J ′〉 = 0.19ea0, respectively. Although these matrix elements are slightly weaker than

those of Erbium, 161Dy has the key advantage that the electric and magnetic transition wavelengths

are closer. The hyperfine splitting of the ground level for 161Dy is about 1 GHz [18].
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Figure 5.1 The proposed experimental scheme in atomic 167Er. The hyperfine structure of the
ground level is used to induce Raman transitions with the probe beam and the control lasers. For
simplicity, the hyperfine structure of the excited levels is not shown. A similar level scheme can

also be found for atomic 161Dy (see text for details). The central wavelength for 161Dy is
484.8 nm and the difference of the two transition wavelengths is ∆λ = 0.8 nm.

Obtaining negative refraction with the parameters of Chap. 4 (densities exceeding 1016 cm−3

with optical transition linewidths at the MHz level) will undoubtedly be a very challenging ex-

periment, and there are many open questions. For experimental implementation of our approach

with rare-earth atom vapors, we consider laser-cooled and trapped high-density ultracold atomic

clouds [88, 9, 8, 81] and magnetically trapped atom clouds cooled through buffer gas cooling [47].

A detailed theoretical modeling to investigate negative refraction with these three different atomic

systems will be among our future investigations. The modeling will need to go beyond what we

have discussed in the previous chapter and will include effects such as the collisional broadening

of the magnetic transition, dipole-dipole interactions, and various inelastic and elastic collision

processes. The collisional broadening and dipole-dipole interactions will determine the magnetic
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transition and Raman linewidths and will have a direct effect on the magnitude of the refractive

index that can be achieved. We note that, since the laser beams are far-detuned from the electric

dipole transition, our scheme is less sensitive to the broadening of the excited electronic states. The

inelastic and elastic collision processes will determine the largest achievable densities in the trap.

The cross sections for most of these processes are not known, but some progress has been made

experimentally [161]. Furthermore, it may be possible to calculate some of these cross sections

using ab-initio methods [22].

Both Er and Dy have been laser cooled and trapped recently with trapped atom numbers as

high as half a billion and atomic temperatures at the microKelvin level [88, 9, 8, 81]. Although the

structure of these atoms is highly complex, laser cooling is possible because of the large magnetic

moment of these atoms. The metastable states are trapped in a quadrupole magnetic field and laser

cooling is achieved without any repumping lasers, the so-called “repumperless” MOT (magneto-

optical trap).

It is well-known that MOTs are not suitable for achieving very high atomic densities due to ef-

fects such as radiation trapping. To obtain high density atomic clouds, one approach is to construct

an optical dipole trap. Such dipole traps can be formed by focusing an intense very-far-detuned

laser beam overlapping with the MOT cloud. Recently, ultracold atomic densities approaching

1015 cm−3 have been demonstrated in atomic Ytterbium (Yb) [142]. By using evaporative cooling

in the optical trap, such clouds can be cooled to quantum degeneracy and of particular importance,

degenerate gases of ultracold erbium, dysprosium, and ytterbium have recently been demonstrated

[42, 80, 1]. These are very exciting developments, and we feel that high density clouds in optical

dipole traps show considerable promise for studies of negative refraction. In addition to studies

of negative refraction, such traps will likely have significant implications for other research areas

including precision spectroscopy and dipolar physics [81].

An alternative approach to laser cooling is buffer gas cooling and magnetic trapping [47]. Al-

though buffer gas cooling only achieves milliKelvin level temperatures, the trapped atom numbers

are significantly higher. Using this approach, Doyle and colleagues have demonstrated trapping

of about 1012 atoms in many of the rare-earth species, including Er and Dy [47]. Due to the large
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initial trapped atom number, buffer gas cooling and magnetic trapping may serve as an excellent

starting point for producing high-density clouds. By using evaporative cooling in the magnetic

trap, or by transferring atoms to a dipole trap and then performing evaporative cooling, it may be

possible to achieve densities exceeding 1015 cm−3 using this approach.

5.3 Rare-earth doped crystals

Rare-earth doped crystals at cryogenic temperatures show considerable promise for the exper-

imental demonstration of our technique. We noted in the above section that a number of neutral

rare-earth species have been laser cooled and trapped recently, however, these ultracold clouds cur-

rently do not have the necessary densities for achieving negative refraction. The highest demon-

strated density in these systems is ≈ 1014 /cm3, which is more than two orders of magnitude smaller

than the densities required for negative refraction. Rare-earth ions in doped crystals at cryogenic

temperatures offer a more promising alternative route for negative refraction because of the high

densities available. The quantum description of rare-earth doped crystals has a discrete level struc-

ture that resembles a free ion for the 4f levels rather than the band structure of a solid-state system

and many quantum coherence effects such as EIT and quantum memories have recently been ob-

served in these systems [45, 46, 147, 65, 66, 67, 72]. Below we discuss negative refraction in two

types of crystals, Tb+3:CaF2 and Pr+3:LaF3.

We first would like to summarize a number of defining features of these systems [83]:

(i) Rare-earths typically form trivalent ions in crystals with only 4f electrons remaining in the

outer shell in the ground configuration, for example [Xe]4f 8 for Tb+3, and [Xe]4f 2 for Pr+3. The

4f shell is tightly bound to the nucleus and the 4f electronic configuration interacts weakly with

the crystal environment. As a result, the intra-configurational 4f → 4f transitions are sharp, and

they are very much like free-ion transitions that are only weakly perturbed by the crystal field.

At cryogenic temperatures, homogeneous linewidths well-below 1 MHz are routinely observed for

the 4f → 4f transitions [83, 84, 35]. Optically excited fluorescence level lifetimes exceeding 1 ms

have also been demonstrated in these systems. Furthermore, due to the absence of atomic motion,
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there is no Doppler broadening nor atomic diffusion. Because of these properties, rare-earth doped

crystals more closely resemble ultracold clouds than warm vapors.

(ii) These systems routinely use doping fractions exceeding 0.1%, which corresponds to rare-

earth ion densities of about 1020 /cm3. These densities are much higher than what can be achieved

in neutral ultracold clouds or atomic vapors. The rare-earth ion-ion interactions do not significantly

affect the 4f configuration at these densities.

(iii) Because of the interaction with the crystal field, there is an inhomogeneous broadening of

the intra-configurational 4f → 4f lines [83, 84]. This broadening depends on the crystal host and

the specific levels, but is typically a few GHz in crystals such as CaF2 and LaF3. This broadening

is unusually small for a solid state system, which is again a result of the 4f configuration being

relatively well shielded from the crystalline environment. Although a quantitative understanding

of this broadening has not yet been developed, it is known to be a result of crystal strains and local

variations in the crystal field.

(iv) The inhomogeneous broadening can be overcome at the expense of a reduction in effective

atomic density using spectral hole burning techniques [71, 87, 70]. These techniques lie at the heart

of the recent EIT and quantum memory demonstrations in these systems. The idea is to selectively

optically pump a subset of the atoms whose resonance frequencies are within about 1 MHz of

each other, using an appropriate optical pumping laser. One essentially burns a 1 MHz wide hole

under the broad GHz inhomogeneous profile, and only uses atoms whose resonance frequencies lie

within the hole. This reduces the usable atomic density to 1020 /cm3× (1 MHz/1 GHz) = 1017 /cm3,

which is still quite large compared to what can be achieved using other approaches. One therefore

obtains an “ultra-cold” atomic system with a density of about 1017 /cm3 with 4f → 4f transition

linewidths of about 1 MHz.

(v) Other electronic configurations such as 4f5d extend significantly beyond the 4f shell, and

strongly interact with the crystal field [158, 149, 151]. Free-ion levels are split through the crys-

tal field and form a band of levels. Some of these levels may be lifetime broadened and the

corresponding 4fx → 4fx−15d inter-configurational transitions to these levels may have narrow
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linewidths [150]. However, some levels of the 4f5d configuration are strongly coupled to the

crystal conduction band, and the corresponding excitations may exhibit broad features.

(vi) The hyperfine levels of the ground level are stable and long-lived, and they can be used to

induce Raman transitions for the probe laser beam.

In a free ion, intra-configurational 4fx → 4fx transitions are electric dipole forbidden since

both lower and upper states have the same parity. In a crystal, these transitions become weakly elec-

tric dipole allowed due to mixing with the crystal field. However, this mixing is typically small,

and intra-configurational transitions remain strongly magnetic dipole in nature. For implementa-

tion of our approach in rare-earth doped crystals, we plan to use magnetic dipole 4fx → 4fx intra-

configurational transitions and detuned electric dipole excitation using the inter-configurational

4fx → 4fx−15d transitions. We next present an evaluation of this approach in two different rare-

earth doped systems.

5.3.1 Negative refraction in Tb+3:CaF2

Our current understanding indicates that Tb+3:CaF2 is one of the most promising systems for

studies of negative refraction [102, 97, 96, 27]. Tb+3 is the rare-earth ion with the smallest energy

spacing between the 4f and 4f5d configurations. As a result, the electric dipole response can

be obtained using detuned excitation from the ground level to the 4f5d configuration. CaF2 host

crystal has excellent mechanical and optical properties with good transmission through much of

the optical region all the way down to 130 nm. The detailed energy level diagram is shown in

Fig. 5.2. The ground level of Tb+3 is 4f 8 7F6 and has been established both experimentally and

also through Hartree-Fock calculations [97, 16, 144]. By using Cowan’s atomic structure code [22],

we have identified a strong intra-configurational 4f 8 7F6 → 4f 8 5F5 magnetic dipole transition at

a wavelength of 282 nm, with a transition strength of 〈J ||µ̂||J ′〉 = 0.2µB . Although this transition

has not been observed experimentally, we have found two publications that calculate this transition

wavelength to within a few nm of the predictions of the Cowan’s code [97, 16]. The lowest level

of the 4f 75d configuration is the so-called high-spin (HS) band which has recently been observed

experimentally in Tb+3:CaF2 using synchrotron light from DESY [149]. In CaF2 crystal, this band
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starts at a wavelength of 265 nm with the levels split through the crystal field to a total width

of about 5 nm. As shown in Fig. 5.2, the predicted wavelength difference between the magnetic

dipole transition and the HS band is ∆λ = 17 nm.

4f7 5d

(HS)

electric dipole

 5 nm

 !=17 nm
4f8 5F5

(HS)  5 nm

magnetic dipole
4f F5

!=265 nm
159Tb+3

-3/2

4f8 7F6

1/2

-1/2
ground level

3/2

Hyperfine structure

Figure 5.2 The proposed scheme for achieving negative refraction in 159Tb+3. We plan to use
intra-configurational 4f 8 7F6 → 4f 8 5F5 magnetic dipole transition at a wavelength of 284 nm.
The electric dipole response is obtained by Raman excitation through the 4f 75d configuration.

The laser beams are detuned by ∆λ = 17 nm from the bottom of the 4f 75d configuration (the HS
band). The hyperfine structure of the ground level in the presence of an external magnetic field is

also shown.

Hyperfine structure: The hyperfine structure of Tb+3 has been studied in detail in a number of

publications [76, 103]. The crystal electric field lifts the degeneracy of the MJ levels and the

ground level is a MJ = ±6 doublet. The stable isotope of terbium is 159Tb with a nuclear spin

of I = 3/2. In atomic physics literature, hyperfine coupling is typically characterized by total

angular momentum F = I + J where the states are represented using quantum numbers JIFMF .
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In the presence of external fields for which the interaction with the fields is large compared to the

interaction between I and J , it is physically more meaningful to work in the decoupled basis with

quantum numbers JMJIMI . Without any applied external magnetic field, the hyperfine interaction

results in a pair of degenerate doublets, MI = ±1/2 and MI = ±3/2, that are split by about

10 MHz due to the crystal electric field. The degeneracy can be lifted through the Zeeman effect by

applying an external DC magnetic field, producing the hyperfine structure shown in Fig. 5.2. The

Zeeman shift of the levels is about 0.1 MHz/Gauss, and as a result it is easy to achieve frequency

splittings between the hyperfine levels of about 100 MHz. Due to the relatively small spread in

frequency, the probe, control, and magnetoelectric cross coupling lasers can be obtained from the

same laser system using, for example, acousto-optic modulators.

Spectral hole burning: The experiment will start with optically pumping the atoms to a selected

hyperfine level such as MI = 3/2 as shown in Fig. 5.3. As experimentally demonstrated in a

number of papers [76, 103], this can be achieved using frequency-selective excitation through the

hyperfine structure of the 4f 8 5D4 level near an excitation wavelength of 488 nm. Although the

4f 8 7F6 → 4f 8 5D4 transition is electric dipole and magnetic dipole forbidden in a free-ion, it

becomes slightly dipole allowed due to mixing with the crystal field. Optical pumping is accom-

plished using three laser beams, Eh1, Eh2, and Eh3, that excite the atoms from levels MI=1/2, -1/2,

and -3/2, respectively. By choosing the intensity of these lasers appropriately, one can burn a spec-

tral hole of about 1 MHz wide in the absorption spectrum from these three levels. This essentially

means that only atoms whose resonant frequencies lie within 1 MHz of each other are continually

excited to 4f 8 5D4 and are optically pumped to the MI=3/2 ground hyperfine level, which is not

addressed by the laser beams (producing an “anti-hole” in the absorption spectrum from this level).

At cryogenic temperatures, spectral hole and anti-hole lifetimes (i.e., the duration that the atoms

stay pumped after optical pumping lasers are turned-off) can be very long. For example, spectral

hole lifetimes exceeding 10 minutes have been reported in Tb+3:LiYF4 [76].

Numerical calculations in Tb+3: We next present preliminary numerical calculations for evaluat-

ing our approach in Tb+3:CaF2. The principle approximations that we make in these calculations

are: (i) We ignore the mixing of the 4f configuration with 4f5d due to the presence of the crystal
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Figure 5.3 Spectral hole burning in 159Tb+3. Three optical pumping lasers, Eh1, Eh2, and Eh3,
address atoms that are in ground hyperfine levels MI=1/2, -1/2, and -3/2, burning a spectral hole

with a width of about 1 MHz in the absorption spectrum from these levels. The atoms whose
resonance frequencies lie within the spectral hole are pumped to the MI=3/2 ground level.

field. As a result of this mixing, the 4f 8 7F6 → 4f 8 5F5 magnetic dipole transition acquires a slight

electric dipole character. Such mixing would not necessarily be detrimental; in fact it may result

in additional useful contributions to the refractive index. (ii) For the magnetic dipole and Raman

transitions we assume a homogeneous linewidth of 1 MHz, which is common for rare-earth doped

crystals at cryogenic temperatures. Typically lifetime broadening and coupling to crystal phonon

modes are the dominant contributions to the homogeneous linewidth [156]. (iii) We assume an in-

homogeneous broadening of 1 GHz for the intra-configurational 4f → 4f transitions (i.e. for the

spectral hole burning and magnetic dipole transitions), which is again common for these systems.

(iv) The intense control laser beams can, in principle, couple the 4f 8 5F5 level to the high-lying

levels of the 4f5d configuration. We ignore this coupling, since the data of Ref. [149] show that

there aren’t any levels at the correct energy in the 4f5d configuration (i.e. at the 282/2=141 nm
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excitation wavelength from the ground level). (v) Meijerink and colleagues have recently observed

lifetime broadened sharp inter-configurational 4f → 4f5d transitions from the ground level in

Tb+3:CaF2, including transitions to the HS band [149, 150]. However, in our scheme, one would

expect a shorter lifetime of these levels due to interaction with the intense control laser beams

that would couple the HS band to higher levels in the 4f5d configuration. To take into account

this coupling, we perform a back-of-the-envelope calculation of the Fermi’s golden rule transition

rate. This gives a lifetime of ≈ 1 ns for the levels in the HS band, which is much shorter than the

radiative lifetime. Although in our scheme the lasers are very far detuned from the HS band levels,

the linewidth of these levels is important since it determines the power broadening of the Raman

lines due to the control laser beams.
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Figure 5.4 The real and the imaginary parts of the refractive index in 0.2% doped Tb+3:CaF2

with (solid lines) and without (dashed lines) magnetoelectric cross coupling. This simulation is
performed using relatively conservative parameters.

Figure 5.4 shows the real (solid blue line) and the imaginary (solid red line) parts of the re-

fractive index in Tb+3:CaF2 for relatively conservative parameters. We assume a doping density

of 0.2%, and assume spectral hole burning with a width of 1 MHz under the broad inhomogeneous

profile. This produces an effective Tb+3 density of 4.9× 1016 /cm3. We take the intensities of the

two control lasers to be about 100 MW/cm2, which is significantly lower than the optical damage

threshold of the crystal host. These type of intensities are accessible even in the continuous-wave
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domain; a 1 W beam focused to an area of 1 µm × 1 µm using a microscope objective lens yields

this required intensity. We take the magnetoelectric cross coupling rate to be Ω2m = i2π×3.3 MHz.

Although negative refraction is not achieved for these parameters, there are large variations in the

refractive index, and the interference profile is such that absorption cancels at the line center. For

comparison, the real and imaginary parts of the refractive index without cross-coupling (Ω = 0) are

also shown (dashed lines). As the figure illustrates, the lineshapes for the refractive index depend

critically on the cross coupling. Experimentally, a first goal would be to observe these lineshapes

and also the dependence of the refractive index on the magnetoelectric cross coupling rate. If

demonstrated, to our knowledge, this would be the first observation of magnetoelectric response in

a rare-earth doped crystal system.
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Figure 5.5 The real (solid blue lines) and the imaginary (dashed red lines) parts of the refractive
index in (a) 0.5% doped and (b) 3% doped Tb+3:CaF2. For part (b) we achieve a refractive index

of n = −0.35 with a figure of merit of F = 14.

Figure 5.5 shows speculative results for more stringent parameters. We assume a doping den-

sity of 0.5% for part (a) and 3% for part (b). We again assume hole burning with a width of 1 MHz,

producing effective densities of 1.2× 1017 /cm3 and 7.3× 1017 /cm3 for parts (a) and (b), respec-

tively. We take the intensities of the control beams to be pushed to the optical damage threshold

of the crystal host, to about 10 GW/cm2. For the numerical simulation of part (b), we achieve a

refractive index of n = −0.35 with a figure of merit of F = 14. The long term goal of experi-

mental efforts will be to demonstrate results similar to those shown in Fig. 5.5. To our knowledge,
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these simulations are the first time that the possibility of observing negative refraction in a real

atomic system is discussed. Although observing the results of Fig. 5.5 will undoubtedly be a chal-

lenging experiment, the assumed experimental parameters appear to be within reach. Furthermore,

further research into rare-earth doped crystals may identify a system in which negative refraction

is achieved with more easily accessible parameters compared to Tb+3:CaF2. In particular, more

closely spaced electric dipole and magnetic dipole transitions with stronger matrix elements would

significantly lower the intensity requirement on the control laser beams.

5.3.2 Negative refraction in Pr+3:LaF3

We have also identified Pr+3:LaF3 as another promising candidate for studies of negative refrac-

tion. Pr+3 doped systems have been studied extensively in quantum coherence experiments such as

EIT [147, 65]. We have chosen lanthanum fluoride as the host crystal because the level positions of

Pr+3:LaF3 have been experimentally measured in Ref. [34]. Much of the above discussion applies

to this system [11, 79, 78, 89]. Figure 5.6 shows the detailed energy level structure. The ground

state of Pr+3 is 4f 2 3H4. We propose to use the excited level 4f 2 3P1 as our starting level for this

experiment. The atoms are transferred from the ground level to 4f 2 3P1 using the spectral hole

burning laser Eh near a wavelength of 455 nm. At cryogenic temperatures, the lifetime of level

4f 2 3P1 can be as long as 100 µs [83]. As a result, once the atoms are optically pumped to this

level, they will have sufficient time to interact with the probe and control laser beams.

We plan to use the 4f 2 3P1 → 4f 2 1S0 intra-configurational magnetic dipole transition near

a wavelength of 392 nm. Cowan’s code gives the strength of this transition to be 〈J ||µ̂||J ′〉 =

0.35µB . The transitions from the 4f 2 3P1 level to the 4f5d configuration are strongly electric

dipole and start at a wavelength of 360 nm. The stable isotope of praseodymium is 141Pr with

a nuclear spin of I = 5/2. The resulting hyperfine structure in the absence of a magnetic field

is shown in Fig. 5.6. The ground level 4f 2 3H4 has a similar hyperfine structure (not shown in

Fig. 5.6), and by choosing Eh appropriately, the atoms can initially be pumped to MI = ±5/2.

With the atoms pumped, the probe and the control lasers will induce Raman transitions between
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Figure 5.6 The proposed scheme for achieving negative refraction in 141Pr+3. The atoms are first
optically pumped to 4f 2 3P1. We plan to use the 4f 2 3P1 → 4f 2 1S0 intra-configurational

magnetic dipole transition near a wavelength of 392 nm. The electric dipole response is obtained
using detuned Raman excitation through the 4f5d configuration. The hyperfine structure of

4f 2 3P1 in the absence of an external magnetic field is shown. For clarity, the hyperfine structure
of the other levels are not shown.

the hyperfine levels. The scheme in Pr+3 has the key drawback that the probe, control, and cross-

coupling laser beams address the excited 4f 2 3P1 level, and not the ground level of the system.

5.4 Conclusions and future work

To summarize, we have proposed several atomic systems that potentially may be implemented

to experimentally obtain a negative index of refraction with low absorption in the optical region

of the spectrum. In contrast to other approaches that rely on metamaterials, we will use lasers to
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drive internal states of atomic systems. Our technique does not require the simultaneous presence

of an electric dipole and a magnetic dipole transition near the same wavelength, so we are able to

consider implementations in existing appropriate level structures. We have evaluated our technique

in rare-earth doped crystals and neutral atom vapors and identified Tb+3:CaF2 and Pr+3:LaF3 and

ultracold Er and Dy as possible systems for experimentally demonstrating our approach. To our

knowledge, this is the first time where a real atomic system has been identified and discussed for

observing negative refraction.

In future proposed work, we plan to extend our preliminary calculations and perform detailed

simulations for these systems of rare-earth atoms. In particular, for the rare-earth doped crystals

improved models will need to take into account the mixing of the levels due to the presence of

the crystal field and coupling of the magnetic dipole excited level to the 4f5d configuration due to

the intense control laser beams. One of the challenges is how to accurately model the high energy

levels of the 4f5d configuration, which are significantly perturbed by the crystal field, and may also

be strongly coupled to the crystal conduction band. Recently, there have been a number of papers

that calculate the discrete levels of the free-ion 4f5d configuration using relativistic Hartree-Fock

methods [32, 31]. One approach would be to take these results as a starting point and assume a

large broadening with a width of about 10 nm for each level due to coupling to the conduction

band. Such calculations typically reveal more than 100 levels, although the strongest of the levels

may be utilized as a first approximation.

We also plan to perform preliminary experiments in these systems in hot atom vapors or room

temperature doped crystals, to study the spectroscopy of the electric and magnetic dipole lines. To

our knowledge, the specific transition lines that we plan to study have never before been investi-

gated in detail. Spectroscopy of the transitions is necessary to verify the transition wavelengths

and magnetic and electric dipole transition strengths, line broadenings, hyperfine structure, and

demonstrate spectral hole burning and optical pumping. The goal of these early experiments is to

set the stage for future, more challenging negative refraction experiments at cryogenic or ultracold

temperatures. Additionally, we expect these results will be of considerable interest to the broader

EIT, quantum computing, and rare-earth physics communities.
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The next goal would be to demonstrate magnetoelectric (chiral) response. Chiral response may

be achieved at low densities and a basic form of chirality has already been demonstrated in Rb

vapor [120]. As discussed in previous sections, the magnetoelectric coupling results in significant

contributions to the refractive index. One approach would be to study the real and imaginary parts

of the refractive index (absorption and phase shift) for the probe wave, as the strength or the phase

of the cross coupling rate, Ω2m, is varied. With Ω2m = 0 (no cross coupling), the system reduces to

three resonances (two electric dipole Raman resonances and a magnetic resonance). As a starting

point, these three resonances can be studied independently. As Ω2m increases, the interference and

the cross-coupling of these resonances will be observable.
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Chapter 6

Conditional phase shifter via refractive index enhancement

6.1 Introduction and background

Traditionally photons have been considered to be noninteracting particles, but advances in non-

linear and quantum optics have shown that significant light-light interactions can occur in highly

polarizable media [127, 13]. An important such interaction is cross phase modulation because of

its potential applications to optical information processing. Cross phase modulation is a nonlinear

interaction where the phase of a light field is modified by an amount determined by the intensity of

another light field. The key challenge is to develop a technique to achieve a cross phase modulation

phase shift of π radians between two weak light fields with minimal dissipation of the fields. Re-

alization of this phase shift with single photon pulses could lead to development of quantum logic

via a quantum phase gate [146]. In this chapter we suggest an implementation of a phase shifter

where a conditional switch beam induces a cross phase modulation on a probe beam propagating

in a refractive index enhanced medium.

Before proceeding further, we would like to discuss some important results in the nonlinear

interaction of weak light beams in atomic media exhibiting electromagnetically induced trans-

parency (EIT) [49]. EIT schemes with cold atoms are a popular choice to implement cross phase

modulation of weak light pulses because of the resonantly enhanced giant Kerr nonlinearity and the

suppression of the absorption of the beam [121, 50]. The double-EIT suggestion for cross phase

modulation by Lukin and Imamoğlu [82], where two light pulses with matched slow group veloc-

ities interact strongly, has generated much interest over the last decade [110, 100, 86, 2, 154]. The

fidelity of the double-EIT scheme as a phase shifter has been investigated as well [99, 116]. Also
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of interest in weak light interaction is the photonic switching achieved by the absorptive analog of

the giant Kerr nonlinearity [52], which has shown much experimental progress [163, 14, 60, 5, 26].

Further related work is listed in Refs. [85, 111, 117, 41, 40, 114, 15].

We propose a cross phase modulation scheme in a refractive index enhanced atomic medium.

The phase shifter described here is built around the refractive index enhancement scheme in a

far-off resonant atomic system [165, 4], that was discussed in chapter 2. We use a four level

system as shown in Fig. 6.1. The system consists of a ground state |g〉, two excited Raman states

|1〉 and |2〉, and an excited upper state |e〉. For simplicity, we take the two Raman states to be

degenerate. The system is initially prepared with all atoms pumped into the ground state. We

choose the states and the polarization of the laser beams appropriately such that there is no cross

coupling, due to angular momentum selection rules. We achieve refractive index enhancement with

vanishing absorption by interfering the two Raman resonances. The frequency separation between

the two Raman resonance line-centers can be precisely tuned by choosing the frequencies of the

two control lasers. The two photon detuning δω1 (δω2) corresponds to the amplifying (absorptive)

resonance on the probe beam. The degree of interference between the resonances is characterized

by how much the resonance curves overlap, which is quantified as ∆ = δω1 + δω2, the size of the

separation between the two resonances when scanning the probe frequency.

6.2 Conditional phase shifter via interference

In this chapter, we propose using this refractive index enhancement scheme as a conditional

phase shifter simply by adding a switch beam, Es, to the system. The switch beam is weak and

couples the states |1〉 and |2〉 to |e〉 with a one photon detuning of δωs as shown in Fig. 6.1. The

switch beam interacts with the probe beam by ac stark shifting the energy level of states |1〉 and

|2〉. This shift of the energy levels effectively changes the two photon detunings, δω1 and δω2, of

the Raman transitions and affects how strongly the Raman resonances of the probe beam interfere.

For the ideal case of equal dipole matrix elements, d1e = d2e, the change in the detunings equally

shifts the frequency positions of the resonances relative to the probe beam frequency. Therefore,

for a probe beam tuned midway between the resonances(i.e. the point of vanishing absorption) the
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Figure 6.1 The schematic of the proposed scheme. A weak far-off resonant probe beam Ep, and
two strong control lasers, EC1 and EC2, two photon couple the ground state |g〉 to the excited
Raman states |1〉 and |2〉. A weak switch beam Es one photon couples the degenerate excited

Raman states |1〉 and |2〉 to the excited upper state |e〉. Activation of the switch beam induces a
conditional ac stark shift on |1〉 and |2〉 which alters the two-photon detunings δω1 and δω2 and

modifies the propagation of the probe beam.

degree of the interference is modified by the switch beam but probe beam remains tuned midway

between the resonances. The key idea behind this suggestion is that when the switch beam is

applied, the modified interference of the resonances results in an altered phase accumulation for

the probe beam while maintaining vanishing absorption.

We proceed with a detailed discussion of the scheme. When the single photon detunings from

the excited state are large, the probability amplitude of the excited state can be adiabatically elim-

inated. In the perturbative limit where most of the population stays in the the ground state and

neglecting power broadening, the steady state nonlinear susceptibility of the probe beam is given

by [165]

χE =
h̄N

ǫ0

(

|κ1|2
δω1 + iγ1

+
|κ2|2

δω2 − iγ2

)

. [6.1]

The strength of the Raman coupling of the states |1〉 and |2〉 by the probe and control beams is

related to the coupling coefficients

κ1 =
dged1eEC1

2h̄2 (ωe − ω1 − ωp)
,
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κ2 =
dged2eEC2

2h̄2 (ωe − ωg − ωp)
, [6.2]

where the quantities dij are the relevant dipole matrix elements and γ1 and γ2 are the respective

(amplitude) decay rates of the excited Raman states |1〉 and |2〉. For simplicity, we assume balanced

parameters for both the amplifying and absorptive resonances such that κ1 = κ2 and γ1 = γ2,

which we hereby refer to as κ and γ. Fig. 6.2 plots the susceptibility, χE , of the probe beam as its

frequency, ωp, is scanned across the Raman resonances. The real part χ′
E is related to the index

of refraction by n =
√

1 + χ′
E and the imaginary part χ′′

E corresponds to the gain/absorption. The

nonlinear phase accumulation of the probe and power absorption coefficient are given by

φ =
ωp

c

χ′
E

2
l ,

α =
ωp

c
χ′′
E l , [6.3]

where l is the medium length. With the condition that

δω1 = δω2 = ∆/2 , [6.4]

the probe beam is tuned at the midpoint between the resonances and constructive interference in χ′
E

gives enhanced index of refraction while destructive interference of χ′′
E gives vanishing absorption

[165]. Also we note that the group velocity of the probe beam when tuned to vanishing absorption

is vg ≈ c because a local extremum of χ′
E , i.e. zero slope, coincides with χ′′

E = 0 as seen in

Fig. 6.2. As a result, there will not be a group velocity mismatch between the probe beam and an

off-resonant switch beam.

The key idea of our phase shifter is to induce a conditional change in the separation of the

Raman resonances, ∆, which results in a significant shift in the nonlinear phase accumulated by

the probe beam. Comparison of the plots in Fig. 6.2, where ∆ = 10γ, 5γ, γ,−γ respectively, shows

there is a strong dependence of the refractive index on ∆. When the probe beam is tuned at the

point for vanishing absorption, we apply the condition of Eq. (6.4) to Eq. (6.1) and use Eqs. (6.3)

to express the phase accumulation as a function of the separation of the resonances, given by

φ =
h̄ωp |κ|2Nl

cǫ0

∆
2

γ2 +
(

∆
2

)2 , [6.5]
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Figure 6.2 The real part χ′
E (blue solid line) and the imaginary part χ′′

E (red dashed line) of the
nonlinear susceptibility as a function of the probe beam frequency. Between the plots the

separation of the resonances is varied to the respective values ∆ = 10γ, 5γ, γ,−γ. Note that the
sign of χ′

E changes accordingly when the sign of ∆ changes.

and is plotted in Fig. 6.3. The largest phase accumulation occurs at ∆ = ±2γ and has the value

φmax = h̄ωp|κ|
2Nl

2γcǫ0
. The largest variation of φ with respect to ∆ occurs at ∆ = 0 where the slope is

steepest. However in this region, where |∆| ≪ γ, the values of φ are small because the resonances

are closely overlapping causing near complete cancellation of the nonlinear interaction. The most

efficient phase shift is achieved by varying ∆ around the point ∆ = 0, where the steep slope

optimally changes the phase accumulation. In the region |∆| ≫ γ the system becomes two isolated

resonances and φ drops as 1/∆ and the slope approaches zero.

Before we proceed with an analysis of the role of the switch beam, we first discuss how the

fidelity of the phase shifter is affected by spontaneously emitted photons. A Heisenberg-Langevin

analysis of the refractive index enhancement scheme has been conducted in Ref. [166] and this

quantum treatment of the probe beam is consistent with the semiclassical derivation of Eqs. (6.1-

6.3). The key result of this analysis is that due to the presence of the amplifying resonance there

are spontaneously emitted photons into the probe beam, which we refer to as noise photons. The
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Figure 6.3 The nonlinear phase accumulation φ (blue solid line) and the number of spontaneous
noise photons ζ (red dashed line) of the probe beam as a function of the separation between the
resonances ∆. The peak of the noise curve coincides with the point of steepest variation in the

phase accumulation, thus there is a trade-off between the efficiency of the phase shifter and noise
emission. The plot is given for the case φmax = 1 radian by choosing the prefactor h̄ωp|κ|

2Nl
cǫ0

= 2γ.

number of noise photons added to the probe beam depends on the gain of the amplifying resonance

and is given by

ζ =
h̄ωp |κ|2Nl

cǫ0

γ

γ2 +
(

∆
2

)2 , [6.6]

and is plotted as a function of the separation between the resonances ∆ in Fig. 6.3. Note that

the number of noise photons emitted into the probe beam is greatest when the amplifying and

absorptive resonances are closest, in the region |∆| ≪ γ. This result is unfortunate because it

is ideal to operate the phase shifter in this region, where the slope of the phase accumulation is

greatest but the noise added to the probe beam is unacceptably high. Therefore, there is a trade-off

in the efficiency of the phase shifter and the noise added to the probe beam.

Next we examine how the presence of a weak switch beam in the scheme effectively shifts the

phase of the probe beam. The switch beam ac stark shifts the excited Raman states |1〉 and |2〉. For

simplicity, we assume equal dipole matrix elements, d1e = d2e, and therefore assume equal shift of

both states. We define the size of this stark shift in frequency space as ∆s/2. The energy level shift

of the Raman levels modifies the two photon detunings such that δω1(2) → δω1(2) + ∆s/2. Thus
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the switch beam is the conditional mechanism to change the separation of the Raman resonances

such that ∆ = ∆0 → ∆ = ∆0 + ∆s. Using these two conditional values for ∆, Eqs. (6.5) and

(6.6) give the conditional phase shift, δφ, and the effective noise photon number, ζeff :

δφ =
h̄ωp |κ|2Nl

cǫ0







∆0+∆s

2

γ2 +
(

∆0+∆s

2

)2 −
∆0

2

γ2 +
(

∆0

2

)2





 , [6.7]

ζeff =
h̄ωp |κ|2Nl

cǫ0

γ

γ2 +
(

∆min

2

)2 , [6.8]

where ∆min = min {|∆0| , |∆0 +∆s|} is the value when the resonances are closest together,

giving an upper bound on the noise photon number.

6.3 Performance of phase shifter

To consider the performance of our scheme we define a figure of merit for the effectiveness

of the phase shifter: signal-to-noise ratio, SNR = δφ/ζeff . For ideal use of the phase shifter in

information applications we desire a large phase change with as few noise photons as possible. For

quantum information operations, an effective phase shifter requires a lower bound of SNR = π,

where there is a π radian phase shift and a single noise photon. The efficiency of the phase shifter

is also described in terms of the switch beam intensity, which we desire to minimize. In the ideal

limit that a single switch beam photon could achieve a phase shift with SNR = π, the scheme

could potentially be used to implement a quantum phase gate.

The SNR depends critically on the initial choice for the separation of the Raman resonances

and the intensity of the switch beam because both δφ and ζeff are functions of the variables ∆0

and ∆s. The value ∆0 can be set by appropriately choosing the frequencies of the control lasers.

The shift in the separation of the resonances due to the switch beam, ∆s, in the limit that δωs ≫ Γe

(where Γe is the (amplitude) decay rate of the the excited upper state |e〉), is given by

∆s =
Ω2

s

2δωs

, [6.9]

where Ωs = d1eEs/h̄ is the Rabi frequency of the switch beam. We note that if we considered the

complex detuning of the switch beam, δωs → δωs − iΓe, the presence of the switch beam would
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cause nonlinear absorption due to power broadening of the Raman states, γ → γ+ Ω2
sΓe

4δω2
s

. However,

the equally modified resonances will continue to destructively interfere, just as the original reso-

nances did before, resulting in complete cancellation of nonlinear absorption of the probe beam.

Power broadening will modify Eqs. (6.7) and (6.8) through the modified decay rate, γ. In this

paper, for simplicity, we will focus our attention to the limit δωs ≫ Γe such that power broadening

is negligible. Using the Wigner-Weisskopf result [162], d21e =
3πǫ0h̄c3Γe

ω3
1e

, the conditional change in

the separation of the resonances can be reduced to

∆s = ns

(

3

4π

)

(

λ2s
A

)

(

Γe

δωs

)(

1

τ

)

, [6.10]

where ns is the number of switch beam photons, τ is the switch pulse duration and A is the cross

sectional area of the switch beam. In the remainder of this paper, we will take ideal quantities for

these parameters, A = λ2
s

2π
(atomic cross section) and τ = 1/γ and assume δωs = 10Γe. With these

assumptions, Eq. (6.10) reduces to

∆s = ξγns , [6.11]

where we have the numerical factor ξ = 0.15.

As was mentioned before, the SNR depends critically on the initial choice for the separation

of the two resonances. As we will show later, for a given number of switch photons, the SNR is

optimized with respect to ∆0 under the condition

∆0 = −1

2
ξγns . [6.12]

Using Eqs. (6.11) and (6.12), the Eqs. (6.7) and (6.8) reduce to:

δφ =
h̄ωp |κ|2Nl

2γcǫ0

ξns

1 +
(

ξns

4

)2 , [6.13]

ζeff =
h̄ωp |κ|2Nl

2γcǫ0

2

1 +
(

ξns

4

)2 , [6.14]

SNR =
ξns

2
. [6.15]

The SNR depends linearly on the size of the stark shift as seen in Fig. 6.4. For an effective phase

shifter the lower bound is SNR = π, where there is a π radian phase shift and a single noise
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Figure 6.4 The phase shift δφ (green solid line), the effective noise ζeff (cyan dashed line), and
the absolute value of the Signal-to-Noise ratio |SNR| (blue dotted line) as functions of the

number of photons in the switch beam, ns, with the initial separation of the resonance optimally
set to ∆0 = −1

2
ξγns. The numerical factor is ξ = 0.15 for the switch beam parameters

δωs = 10Γe, A = λ2/2π, and τ = 1/γ. The plot is given for the case δφ = π radians when

|SNR| = π by choosing the prefactor h̄ωp|κ|
2Nl

2γcǫ0
= 0.55π .

photon. The value of SNR can be increased beyond this lower bound by sufficiently increasing

the value of the stark shift. For a single switch beam photon, ns = 1, SNR = 0.075. A SNR = π

is obtained for ns = 42 photons in the switch beam. Unfortunately, these results show that our

scheme can not be used as an effective phase shifter at the single photon level in free space.

Finally, we show how we derived the optimization condition on the initial separation of the res-

onances ∆0, given by Eq. (6.12), to maximize the SNR for a given set of switch beam parameters.

We analytically optimized the SNR with respect to ∆0, treating ∆s as a constant. This resulted

in the condition ∆0 + ∆s = −∆0 to maximize the SNR. This condition physically corresponds

to a configuration where the noise of the shifted case equals the noise of the unshifted case. This

dependence of the optimal value of ∆0 on ∆s can also be seen in the plots in Fig. 6.5, which

show the phase shift, effective noise, and |SNR| as functions of the initial separation between

the resonances ∆0 for various values of ∆s = 1.5γ, 6γ, 12γ. The top axis of each of the plots is

normalized to its respective value of ∆s. The general result seen is that for a given value ∆s the



85

3

3.5
-10 -5 0 5 10

3

3.5
 s =1.5 !

 0/ s

0.5

1

1.5

2

2.5

0.5

1

1.5

2

2.5

-20 -10 0 10 20
-0.5

0

-0.5

0

3

-3 -2 -1 0 1 2 3

3

 s =6 !

|SNR|

11 1

0

1

2

1

0

1

2

"#

$eff

11

33

-20 -10 0 10 20
-1-1

4

6

-1.5 -1 -0.5 0 0.5 1 1.5

4

6

 s =12 !

33

 0/!
-20 -10 0 10 20
-2

0

2

-2

0

2

 0/! 0/!  0/!

Figure 6.5 The phase shift δφ (green solid line), the effective noise ζeff (cyan dashed line), and
the absolute value of the Signal-to-Noise ratio |SNR| (blue dotted line) as functions of the initial

separation of the resonances ∆0. Between the plots the value of the conditional change in the
separation of the resonances ∆s is varied to 1.5γ, 6γ, and 12γ respectively. The bottom axis

expresses ∆0 in terms of system constant γ, the Raman transition linewidth. The top axis
expresses ∆0 in terms of system variable ∆s. The key result seen here is that |SNR| is optimized

when ∆0 = −∆s/2.
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maximum |SNR| occurs at ∆0 = −∆s/2. Also in the limit that ∆0 = ±∞ the |SNR| asymp-

totically approaches this maximum value. In the regime that ∆0 = ±∞ the nonlinear response of

the atomic medium is greatly reduced and would require greater resources for achieving the phase

shift. Thus, the key result of Fig. 6.5 is that the initial system configuration of ∆0 = −∆s/2 yields

the highest signal-to-noise ratio. However, we do note that when the condition δωs ≫ Γe is not

satisfied, power broadening of Raman linewidth γ in the shifted case must be included and a more

general expression for the optimal value of ∆0 will depend on ∆s and the ratio of the excited state

linewidth and the switch beam detuning Γe/δωs.

6.4 Results for a model atomic system

0.6

0.4

Switch ON
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0 /!
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0 0.1 0.2 0.3 0.4 0.5
-0.6

Switch OFF
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Figure 6.6 The phase accumulation φ for the probe beam of the unshifted case (blue solid line)
and the shifted case (red dashed line) as a function of the propagation length of the probe beam in

the medium.

The plot in Fig. 6.6 shows a numerical example of our phase shifter in a real system based

on the analytical steady states solutions of Ref. [165] for the enhanced refractive index at van-

ishing absorption. We simulate the four level system in a medium of ultra-cold 87Rb atoms with

density N = 2 × 1014/cm3 and length l = 0.5 mm based on techniques using either cold atom

traps (e.g. magneto-optical or dipole traps) or hollow-core optical fibers [93, 136]. The excited

electronic state 5P1/2 (D1 line) is used for the state |e〉 and |F = 2,mF = −2〉, |F = 2,mF = 2〉,



87

and |F = 2,mF = 0〉 hyperfine states of the electronic ground state 5S1/2 are used for states |1〉,
|2〉, and |g〉 respectively [141]. The excited state decay rate is Γe = 2π×5.75 MHz and we assume

a Raman line width of γ = 2π× 10 kHz. The probe, switch, and control beams have polarizations

σ+, π, and σ− respectively and wavelengths ≈795 nm. The probe beam is red-detuned from the

excited state by 10 GHz. The power of the control beams are ≈75 mW and are focused to a beam

diameter ≈1 mm. To satisfy the condition that SNR = π, we set ns = 42 photons per atomic

cross section based on the results of Fig. 6.4. The plots in Fig. 6.6 show the accumulated phase

of the probe beam as a function of the propagation length for both cases when the switch beam is

present and absent. Note that the phase accumulation of the two cases are symmetric about φ = 0

which follows from Eqs. (6.12) and (6.13) that ∆ = 1
2
ξγns and ∆ = −1

2
ξγns when the switch

beam is present or absent respectively. These opposite sign phase accumulations achieve a net

phase difference of ≈ π radians at a propagation length of 0.5 mm.

In summary we have developed a scheme for a low intensity phase shifter and estimated its

fidelity. The lower bound energy cost for a π radian phase shift with acceptable fidelity is on

the order of tens of photons. There is an inherent trade-off where fidelity can be increased at the

expense of energy cost of the switch beam. We believe our phase shifter is ideally suited for use

in high fidelity optical information processing of weak beams of 102 − 103 photons corresponding

to an energy of ≈ 0.01− 0.1 fJ, where the constraints on beam focusing and pulse duration can be

relaxed to more practical values.
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Chapter 7

Giant Kerr nonlinearities using refractive index enhancement

7.1 Introduction and background

Over the last decade, there has been a growing interest in techniques that achieve significant

nonlinear interactions at the single photon level [20]. These schemes are exciting and important

because of both practical and fundamental reasons. Key practical applications include all-optical

switches that can operate at an energy cost of a single photon [26] and two-qubit quantum gates

between two single photons [94]. Some of the most promising approaches for achieving signifi-

cant nonlinear interactions at the single photon level utilize the technique of Electromagnetically

Induced Transparency (EIT). Various schemes for single photon switches and gates using EIT have

been proposed [52, 82, 153] and demonstrated in low-photon regimes [169, 5]. Recently, single

photon nonlinearities have been considered in ultra cold gases of Rydberg atoms [112, 30].

In this chapter, we suggest an alternative approach to achieve significant nonlinear interactions

between single photons. Our approach uses refractive index enhancement with vanishing absorp-

tion to achieve a giant Kerr nonlinearity between two weak laser beams. Before proceeding with a

detailed description we would like to summarize the key achievement of this chapter. For simplic-

ity in this chapter, we assume the medium is non-magnetic(µ = 1) and drop the subscript E from

the electric susceptibility terms. Let’s first consider a laser beam interacting with an ensemble of

two level atoms. For this simple case, the third order nonlinear susceptibility of the medium is

proportional to χ(3) ∼ 1
|δ−jΓ|2(δ−jΓ)

where Γ is the (amplitude) decay rate of the excited state and δ

is the detuning of the laser beam from the transition [13]. This third order susceptibility is respon-

sible for well-known effects such as intensity-dependent refractive index and optical self-focusing.



89

Now consider two off-resonant beams that are very largely detuned from the excited electronic

state interacting with a three level atomic system in a Λ configuration. If frequency difference of

the two beams is close to the frequency of the Raman transition, the third order susceptibility is

enhanced and is proportional to χ(3) ∼ 1
|δ−jΓ|2(δω−jγ)

. Here γ is the decay rate of the Raman tran-

sition and δω is the two photon detuning. Typically, to reduce nonlinear absorption, one chooses

δω >> γ such that the imaginary part of the susceptibility is much smaller than the real part

Im(χ(3)) << Re(χ(3)). The key achievement of our scheme is to obtain a purely real third order

nonlinear susceptibility of χ(3) ∼ 1
|δ−jΓ|2γ

due to destructive interference in the imaginary part.

With the decay rate of the Raman transition to be negligible, γ ≈ 0, one can therefore obtain an

arbitrarily large value for χ(3) and obtain significant nonlinear interactions between weak beams.

The key advantage of our scheme over EIT is that it does not require a strong coupling laser beam.

The key disadvantage is that single-photon linear absorption of the beams is not eliminated. As

we will see, this drawback will limit the minimum energy required to be on the order of tens of

photons per atomic cross section.

7.2 Giant Kerr effect via interference

Figure 7.1 shows the energy level diagram of our suggestion. The scheme relies on recently-

suggested refractive index enhancement with vanishing absorption that utilizes the interference of

two Raman transitions [165, 113]. Although the scheme is general, for concreteness, we will focus

on a real system and consider 87Rb D1 line transition with the level structure shown in Fig. 7.1.

We choose the ground state of the system to be |g〉 → |F = 2,mF = 0〉 and the two excited

Raman states to be |1〉 → |F = 2,mF = −2〉, and |2〉 → |F = 2,mF = 2〉. Two off-resonant

beams, termed the probe and control beams, couple the ground state |g〉 to excited Raman states

|1〉 and |2〉. The two beams have opposite circular polarizations (σ+ for Ep and σ− for EC). The

quantities δω1 and δω2 are two photon detunings of the laser beams from each Raman transition

respectively and they are defined as δω1 = (ω1−ωg)−(ωp−ωC), δω2 = (ω2−ωg)−(ωC−ωp). The

refractive index enhancement scheme as originally suggested requires two separate control laser

beams whose frequencies can be tuned to control the position of the two resonances independently.
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In the scheme of Fig. 7.1, however, there is only one control laser. The position of the Raman

resonances can be controlled by shifting the hyperfine levels through a combination of a Stark

shift and Zeeman shift. The Zeeman shift can simply be provided with a magnetic field pointing

along the propagation direction of the laser beams. The Stark shift can either be provided with

a DC electric field or a separate detuned laser beam. We define the quantity ∆ ≡ δω1 + δω2 to

represent the separation of the two Raman resonances as the probe (or the control) laser frequency

is scanned.

F =1
! !

F=2 "#
1 "#

2

1 2

87Rb, D1 Line

1 2
g

Figure 7.1 The proposed scheme. For concreteness, we focus on a real atomic system and
consider two off-resonant laser beams, Ep and EC interacting with 87Rb atoms through the D1 line.

The two laser beams are opposite circularly polarized and couple the ground state
|F = 2,mF = 0〉 to two excited Raman states |F = 2,mF = −2〉 and |F = 2,mF = 2〉. The

quantities δω1 and δω2 are two photon detunings of the laser beams from each Raman transition
respectively. The positions of the Raman resonances as the probe laser frequency is scanned can
be independently controlled by a combination of Zeeman and Stark shift of the hyperfine states.

We proceed with an analysis of the scheme of Fig. 7.1. With δ to be much larger than the decay

width Γ, we can adiabatically eliminate the probability amplitudes of the excited states. We also

take the two beams to be weak enough such that the power broadening of the Raman transitions can

be ignored. With these assumptions, the polarization of the medium at the two laser frequencies



91

can be written as [165]:

Pp = ǫ0χ
(1)Ep + ǫ0χ

(3)|EC|2Ep ,

PC = ǫ0χ
(1)EC + ǫ0χ

(3)∗ |Ep|2EC , [7.1]

where χ(1) and χ(3) are the linear and the nonlinear third-order susceptibilities of the medium

respectively. These quantities are [165]:

χ(1) =
N

ǫ0h̄

|dij|2
δ − jΓ

,

χ(3) =
N

4ǫ0h̄
3

1

|δ − jΓ|2
(

|dij|2|djk|2
δω1 − jγ1

+
|dil|2|dlm|2
δω2 + jγ2

)

. [7.2]

Here, N is the atomic density, dij are the dipole matrix elements between relevant states, Γ is

the decay rate of the excited state, and γ1 and γ2 are dephasing rates of the Raman transitions

respectively. As expected, the third order nonlinear susceptibility is a sum of two terms due to

two Raman transitions. It is the interference of these two terms that result in the enhancement

of the real part while resulting in the vanishing imaginary part. Figure 7.2 shows the real (solid

line) and the imaginary (dashed line) parts of χ(3) as the probe laser frequency is scanned for three

different values of the separation of Raman resonances, ∆ = 10γ, 5γ, and γ respectively. Here, for

simplicity, we assume the two Raman transitions to have the same parameters including an identical

Raman linewidth of γ1 = γ2 ≡ γ. At the mid-point between the two resonances, δω1 = δω2, the

imaginary part vanishes while the real part is enhanced due to constructive interference.

At the point of vanishing imaginary part, the third order nonlinear susceptibility is purely real

and is given by:

χ(3) =
N

2ǫ0h̄
3

|dij|2|djk|2
|δ − jΓ|2

∆/2

(∆/2)2 + γ2
. [7.3]

While deriving Eq. (7.3), for simplicity, we have again assumed the two Raman resonances to have

identical parameters. From Eq. (7.3), we note that the value of the nonlinear susceptibility strongly

depends on the separation of the two Raman resonances, ∆. The maximum nonlinear susceptibility

is obtained when ∆ = 2γ and is given by,

χ(3)
max =

N

4ǫ0h̄
3

|dij|2|djk|2
|δ − jΓ|2

1

γ
. [7.4]
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Figure 7.2 The real (solid line) and imaginary (dashed line) parts of the nonlinear susceptibility
as a function of probe laser frequency for three different values of the separation of two Raman
resonances, ∆ = 10γ, 5γ, and γ. At the mid-point between the two resonances, the real part is

enhanced due to constructive interference whereas the imaginary part vanishes due to destructive
interference.

Eq. (7.4) is the central result of this chapter. The nonlinear susceptibility is purely real and in

the limit of very long dephasing and decay time of the Raman transitions (γ ≈ 0), it can become

arbitrarily large.

From the nonlinear susceptibility of Eq. (7.4), we can also find the expression for the intensity

dependent refractive index, n2 = ηχ(3) where η =
√

µ0/ǫ0. Before proceeding further, we evaluate

the intensity dependent refractive index for experimentally achievable parameters. We consider

an ultracold 87Rb atomic cloud with N = 1014 atoms/cm3. We take δ = 10Γ where Γ is the

decay rate of 5P1/2, 2Γ = 2π × 5.74 MHz. We assume a Raman transition linewidth of γ =

2π × 10 kHz. With these modest parameters, we calculate an intensity dependent refractive index

of n2 = 75.8 cm2/Watt, which is comparable to what has been achieved in recent EIT experiments.

We proceed with the evaluation of the nonlinear phase shift of the probe laser due to few-photon

control laser pulses. For this purpose, we consider a control laser beam pulse of Gaussian temporal

shape that contains nC photons. By using Eqs. (7.1-7.4) it can be derived that the nonlinear phase

accumulation of the probe laser beam and the corresponding linear power absorption coefficient
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are (for the specific scheme of Fig. 7.1):

φnon−linear =
3

32
√
π
nC(NσL)

Γ2

δ2 + Γ2

σ

A

1

γτ
,

αlinear =
1

4
(NσL)

Γ2

δ2 + Γ2
. [7.5]

Here σ = λ2/2π is the atomic cross section, A is the transverse area of the beam and τ is the

temporal Gaussian width of the pulse. While deriving Eq. (7.5), we have assumed that the excited

states are purely lifetime broadened and neglected non-radiative broadening effects such as colli-

sions. As expected, Eq. (7.5) shows that the nonlinear phase accumulation is intrinsically related

to the linear loss. If we assume the ideal case of τ ≈ 1/γ and consider tightly focused beams,

A ≈ σ, Eq. (7.5) reduces to:

φnon−linear =
3

8
√
π
nCαlinear . [7.6]

From Eq. (7.6), if we limit the linear power loss to 50 % (αlinear = 0.7), a single control photon

(nC = 1) per atomic cross-section causes a nonlinear phase shift of 0.15 radians. A nonlinear phase

shift of π radians would therefore require about 21 control laser photons per atomic cross section.

n(x)
refractive index 

pattern

 

p

atomic cloud

 

Figure 7.3 The setup for constructing an all-optical mirror. The counter-propagating control
lasers form a standing wave pattern which results in a periodic variation of the refractive index.

As a result, a photonic band-gap is formed for the probe laser beam and the probe wave is
reflected off the medium.
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7.3 All-optical mirror

We next discuss a type of optically-controlled optical device using our scheme [33]. Due to

the intensity dependent refractive index, an intensity pattern on the control laser will produce a

refractive index pattern for the probe laser beam. By using an appropriate intensity pattern, one

can, therefore, engineer an all-optical device. Figure 7.3 shows a simple scheme where we consider

an ultracold atomic cloud interacting with a probe and a counter-propagating pair of control laser

beams. Due to the standing wave intensity pattern of the control laser, the probe wave experiences

a periodic variation of the refractive index. Under these conditions, within a certain frequency

range, a photonic band-gap is produced and the propagation of the probe wave is forbidden inside

the medium. Within the photonic band-gap, the incident probe laser can not penetrate the medium

and is reflected. The idea of utilizing a periodic variation of the refractive index was motivated by

the recent work of Lukin and colleagues who proposed and experimentally demonstrated optically

induced photonic band-gaps using EIT and slow light [3, 6].

To calculate the reflectivity of such a medium, we use the coupled mode theory of Yariv and Yeh

[164]. Figure 7.4 shows the results of a calculation for an ultracold 87Rb cloud. Here, we choose

the medium parameters and the control laser intensity such that the nonlinear index enhancement

is n2I
max
C =10−3. Due to the standing wave pattern, the refractive index varies between n = 1 and

n = 1 + 10−3 with a period of λC/2 ≈ 397 nm. We take the atomic cloud to be sufficiently cold

(temperature of about 1 µK) such that two-photon Doppler broadening of the Raman transitions

can be ignored. This assumption simplifies the problem considerably since probe beam interacts

with both control lasers in the same way. Figure 7.4(a) shows the power reflection coefficient, R,

for the probe wave as a function of the length of the medium, L. Here, we take the probe wave

propagation direction to coincide with one of the control lasers (θ = 0). For L = 1.5 mm, the

reflection coefficient exceeds 99 %. Figure 7.4(b) shows the reflection coefficient as a function of

the angle of incidence, θ, for a medium length ofL = 1 mm. The angle of incidence, θ, is defined as

the angle between the probe beam and one of the control lasers as shown in Fig. 7.3. The reflection

coefficient remains high for about 1.5 degrees and then drops sharply. For L = 1 mm, if we set
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the medium parameters such that there is 50 % power loss due to linear absorption (αlinear = 0.7),

then the results of Fig. 7.4 require about nC = 13 control laser photons (in each beam) per atomic

cross section.
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Figure 7.4 (a) The reflection coefficient for the probe wave, R, as a function of the length of the
index-enhanced medium, L, for n2IC=10−3 and θ = 0. The reflection coefficient exceeds 99% for
L = 1.5 mm. (b) The reflection coefficient as a function of the angle of incidence, θ. The angle of

incidence, θ, is defined as the angle between the probe beam and one of the control lasers as
shown in Fig. 7.3. For L = 1 mm, if we set the medium parameters such that there is 50 % power
loss due to linear absorption (αlinear = 0.7), then these results require about nC = 13 control laser

photons (in each beam) per atomic cross section.

Before concluding, we would like to draw attention to the recent work of Shapiro and col-

leagues [129, 130] and Gea-Banacloche [43]. By using a multi-mode quantum mechanical treat-

ment, these authors argue the impossibility of achieving large nonlinear phase shifts using single

photon wavepackets. The key reason is the loss of fidelity due to spontaneous emission. Their

results suggest that achieving large nonlinear phase shifts with reliable fidelity will require beam

energies at least at the tens of photons level, independent of the specific scheme that is used.

7.4 Conclusions

In conclusion, we have suggested a new approach for achieving a large nonlinear Kerr effect

between two weak laser beams while maintaining vanishing nonlinear absorption. Differing from
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EIT, the linear absorption of the beams is not eliminated and as a result, high nonlinear phase shifts

require beam energies at the level of tens of photons per atomic cross section. The key advantage

over EIT is that there is no strong coupling laser and as a result the total energy requirement is at

the tens of photons level. We have also suggested a new type of an all optical distributed Bragg

reflector that utilizes periodic variation of the refractive index due to a standing wave pattern.
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Chapter 8

Conclusions

In this thesis we have described how the index of refraction relates to the interaction of light

and matter and how it may be altered in an atomic system by using lasers to manipulate those inter-

actions. Schemes that combine energy level structures with appropriately tuned lasers have been

suggested that achieve both negative refractive index and enhanced refraction with vanishing ab-

sorption for an incident probe beam. A new approach for a medium with negative refractive index

and vanishing absorption is highly desired because it can be utilized in efforts toward near perfect

imaging systems, which have the ability to focus evanescent wave components. On the other hand,

methods to enhance the refractive index while canceling absorption are also of interest in improv-

ing the resolution of conventional imaging systems and for the control of phase accumulation in

all-optical information applications.

We have suggested a new scheme for negative refraction that results from laser driven atomic

transition resonances rather than the antenna like resonances of metamaterials. We believe an

atomic based approach for negative index offers the possibility of achieving negative refraction at

optical wavelengths and a way to eliminate absorption by quantum interference techniques. In our

suggestion a magnetoelectric cross coupling laser is present in the system and resolves the difficulty

of achieving a negative valued permeability by introducing chiral interactions that contribute to the

refractive index. An analytical calculation of our scheme predicts negative refraction for a probe

beam at a wavelength of λp = 500nm in a model atomic system with a density on the order of

1016 cm−3 and decay rates on the order of 10 MHz while maintaining low absorption. The results

of the analytical predictions are verified by similar results obtained by numerically solving the

density-matrix equations of the system.
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To our knowledge the negative refraction scheme we have suggested is the most promising in its

experimental feasibility. Unlike other suggestions that require an energy level structure possessing

electric and magnetic transitions at the same wavelength, our Raman-based approach is flexible, in

that we may be far-off resonant from the electric transition. After investigating the structure of the

rare-earth atoms we have identified possible candidates for experimental implementation in vapors

of Erbium and Dysprosium and crystals doped with ions of Terbium and Praseodymium. Initial

experimental goals toward negative refraction will include:

(i) A study of the specific rare-earth spectral lines of interest to the scheme. To our knowledge

these have not be investigated in detail before.

(ii) Demonstration of significant magnetoelectric cross coupling interactions that alter the refrac-

tive index. A basic form of chirality has already been demonstrated in Rb vapor [120] and chiral

interactions should be signification at feasible densities that are lower than the experimentally

challenging high densities necessary for negative refraction. By varying the intensity, phase, and

detuning of the coupling beam the effects of chiral interactions can be investigated.

(iii) Further studies and improvements of experimental techniques related to the creation of ultra-

cold vapors of rare-earth atomic vapors at high densities and spectral hole burning in cryogenically

cooled rare-earth doped crystals. These results will be of considerable interest to the broader EIT,

quantum computing, and rare-earth physics communities.

We have also suggested two applications for our refractive index enhancement scheme. These

applications make use of the Kerr nonlinearities of the refractive index enhancement to modify

the nonlinear phase accumulation of weak probe beam in the medium. A phase shifter can be

implemented by the cross phase modulation of two weak light pulses. In this scheme a conditional,

weak switching beam alters the interference of the Raman resonances and causes the phase of

the probe beam to shift. We predict that a minimum of 42 switch beam photons are required to

induce a π radian phase shift on a probe pulse with a fidelity sufficient for all-optical information

processing. We have also suggested another phase shift scheme using refractive index enhancement

that examines the dependence of the nonlinear phase accumulation on the number of control beam

photons and the linear absorption present in the system. In the ideal case of a temporally short
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control beam pulse and tight beam focusing, a π radian nonlinear phase shift with 50% linear

power loss can be obtained with about 21 control laser photons. Additionally we have suggested

how the intensity dependent refractive index can be utilized for an atomic vapor all-optical mirror

based on distributed Bragg reflection. For a medium 1 mm thick, a power reflection coefficient

exceeding 92% with 50% linear power loss can be achieved by interfering two control beams with

13 photons each, into a standing wave pattern.

These schemes suggested in this thesis provide new insights to approaches to improve imaging

systems and optically controling the phase of light. One of the common characteristics of these

schemes is that they are based on far-off resonant Raman transitions. The ability of these schemes

to operate in a far-off resonant regime suggests that they may be more broadly implemented in a

variety of experimental systems that may not suitable for near resonant techniques such as EIT.

These off resonant techniques allow the schemes to function over a tunable band of probe light

frequencies. In particular the off resonant feature allows us to consider actual atomic species for

proposing negative refraction experiments.
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Appendix A: Analytical dynamics of far-detuned Raman system

A.1 Four level system for refractive index enhancement

We begin by expanding the total wave function for the atomic system, |ψ〉, in the interaction

picture

|ψ〉 = cge
−iωgt|g〉+ c1e

−iω1t|1〉+ c2e
−iω2t|2〉+ cee

−iωet|e〉 , [A.1]

where for the respective level, |i〉, ci is the complex probability amplitude and ωi = Ei

h̄
is the

frequency corresponding to the level’s energy. The quantum dynamics of the system are solved for

by using the Schrödinger equation,

ih̄
∂|ψ〉
∂t

=
(

Ĥ0 + Ĥint

)

|ψ〉 . [A.2]

The operator Ĥ0 is the unperturbed Hamiltonian and Ĥint is the interaction Hamiltonian that in-

cludes the interactions of the atom with the electric field components of the incident light waves.

These operators are given by,

Ĥ0 = h̄ωg|g〉〈g|+ h̄ω1|1〉〈1|+ h̄ω2|2〉〈2|+ h̄ωe|e〉〈e| ,

Ĥint = −E d̂ = −E (dge|g〉〈e|+ d1e|1〉〈e|+ d2e|2〉〈e|+ h.c.) , [A.3]

The quantities dij are the electric dipole transition matrix elements between the respective levels

and h.c. refers to the hermitian conjugate. E refers to the total electric field which includes fre-

quency contributions from all of the relevant lasers. The total electric field can be found by taking

the real part of the Fourier expansion of relevant frequencies,

E (t) = Re

[

∑

n

Ene−iωnt

]

=
∑

n

1

2

(

Ene−iωnt + E∗
ne

iωnt
)

=
1

2

(

Epe−iωpt + EC1e−iωC1t + EC2e−iωC2t + h.c.
)

, [A.4]

where En is the electric field amplitude of the Fourier component oscillating at frequency ωn.



101

We proceed by using Schrödinger’s equation, Eq. (A.2), with Hamiltonian of Eq. (A.3) to solve

for the time evolution of the probability amplitudes:

ċg =
i

h̄

[

dgeEceei(ωg−ωe)t
]

,

ċ1 =
i

h̄

[

d1eEceei(ω1−ωe)t
]

− γ1c1 ,

ċ2 =
i

h̄

[

d2eEceei(ω2−ωe)t
]

− γ2c2 ,

ċe =
i

h̄

[

d∗geEcgei(ωe−ωg)t + d∗1eEc1ei(ωe−ω1)t + d∗2eEc2ei(ωe−ω2)t
]

− Γece . [A.5]

We assume a weak probe beam such that the coupling rates of the probe beam are sufficiently

smaller than the single-photon detunings from the excited electronic state. With this assumption,

the lasers are far-off resonance with the excited electronic state and this allows us to adiabatically

eliminate its probability amplitude, which simplifies our analysis by reducing the scheme to an

effective three level system. Adiabatic elimination of the excited electronic state dynamics is

implemented by integrating the rate equation for ċe in time but we assume that the time dependent

probability amplitudes of the other states cg, c1, and c2 can be treated as constants in the integration.

This treatment of the other probability amplitudes as quasi-static constants is valid because the

large single-photon detunings from the excited state cause ce to vary much more rapidly compared

to the other probability amplitudes. Before performing the integration of ċe, we factor in the Fourier

expansion of the electric field:

ċe =
i

2h̄

{

d∗gecg

[

Epei(ωe−ωg−ωp)t + EC1ei(ωe−ωg−ωC1)t + EC2ei(ωe−ωg−ωC2)t

+ E∗
pe

i(ωe−ωg+ωp)t + E∗
C1e

i(ωe−ωg+ωC1)t + E∗
C2e

i(ωe−ωg+ωC2)t
]

+d∗1ec1

[

Epei(ωe−ω1−ωp)t + EC1ei(ωe−ω1−ωC1)t + EC2ei(ωe−ω1−ωC2)t

+ E∗
pe

i(ωe−ω1+ωp)t + E∗
C1e

i(ωe−ω1+ωC1)t + E∗
C2e

i(ωe−ω1+ωC2)t
]

+d∗2ec2

[

Epei(ωe−ω2−ωp)t + EC1ei(ωe−ω2−ωC1)t + EC2ei(ωe−ω2−ωC2)t

+ E∗
pe

i(ωe−ω2+ωp)t + E∗
C1e

i(ωe−ω2+ωC1)t + E∗
C2e

i(ωe−ω2+ωC2)t
]

}

− Γece.[A.6]
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Then integrating this expression with respect to time we solve for the probability amplitude of the

excited electronic state:

ce =
1

2h̄

{

d∗gecg

[

Epei(ωe−ωg−ωp)t

(ωe − ωg − ωp)− iΓe

+
E∗
pe

i(ωe−ωg+ωp)t

(ωe − ωg + ωp)− iΓe

EC1ei(ωe−ωg−ωC1)t

(ωe − ωg − ωC1)− iΓe

+
E∗
C1e

i(ωe−ωg+ωC1)t

(ωe − ωg + ωC1)− iΓe

EC2ei(ωe−ωg−ωC2)t

(ωe − ωg − ωC2)− iΓe

+
E∗
C2e

i(ωe−ωg+ωC2)t

(ωe − ωg + ωC2)− iΓe

]

+d∗1ec1

[

Epei(ωe−ω1−ωp)t

(ωe − ω1 − ωp)− iΓe

+
E∗
pe

i(ωe−ω1+ωp)t

(ωe − ω1 + ωp)− iΓe

EC1ei(ωe−ω1−ωC1)t

(ωe − ω1 − ωC1)− iΓe

+
E∗
C1e

i(ωe−ω1+ωC1)t

(ωe − ω1 + ωC1)− iΓe

EC2ei(ωe−ω1−ωC2)t

(ωe − ω1 − ωC2)− iΓe

+
E∗
C2e

i(ωe−ω1+ωC2)t

(ωe − ω1 + ωC2)− iΓe

]

+d∗2ec2

[

Epei(ωe−ω2−ωp)t

(ωe − ω2 − ωp)− iΓe

+
E∗
pe

i(ωe−ω2+ωp)t

(ωe − ω2 + ωp)− iΓe

EC1ei(ωe−ω2−ωC1)t

(ωe − ω2 − ωC1)− iΓe

+
E∗
C1e

i(ωe−ω2+ωC1)t

(ωe − ω2 + ωC1)− iΓe

EC2ei(ωe−ω2−ωC2)t

(ωe − ω2 − ωC2)− iΓe

+
E∗
C2e

i(ωe−ω2+ωC2)t

(ωe − ω2 + ωC2)− iΓe

]}

[A.7]

This adiabatic elimination is an important simplification because it reduces the number of un-

knowns in the coupled system of rate equations given in Eqs. (A.5) and allows us to algebraically

solve for a closed form of the rate equations.

We then plug in this slowly varying probability amplitude, ce, into the rate equations for cg, c1,

and c2 and also expand the electric field E(t) into its Fourier components. The resulting expressions

are very long with many terms. We use the rotating wave approximation to eliminate the off-

resonant oscillating terms to derive truncated expressions for the rate equations containing only

the slowly oscillating terms:

ċg =
i

4h̄2

{

|dge|2 cg
[

|Ep|2
(

1

(ωe − ωg − ωp)− iΓe

+
1

(ωe − ωg + ωp)− iΓe

)

+ |EC1|2
(

1

(ωe − ωg − ωC1)− iΓe

+
1

(ωe − ωg + ωC1)− iΓe

)
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+ |EC2|2
(

1

(ωe − ωg − ωC2)− iΓe

+
1

(ωe − ωg + ωC2)− iΓe

)]

+dged
∗
1ec1EpE∗

C1e
−iδω1t

(

1

(ωe − ω1 − ωp)− iΓe

+
1

(ωe − ω1 + ωC1)− iΓe

)

+dged
∗
2ec2EC2E∗

pe
−iδω2t

(

1

(ωe − ω2 − ωC2)− iΓe

+
1

(ωe − ω2 + ωp)− iΓe

)}

,

ċ1 + γ1c1 =
i

4h̄2

{

d1ed
∗
gecgEC1E∗

pe
iδω1t

(

1

(ωe − ωg − ωC1)− iΓe

+
1

(ωe − ωg + ωp)− iΓe

)

+ |d1e|2 c1
[

|Ep|2
(

1

(ωe − ω1 − ωp)− iΓe

+
1

(ωe − ω1 + ωp)− iΓe

)

+ |EC1|2
(

1

(ωe − ω1 − ωC1)− iΓe

+
1

(ωe − ω1 + ωC1)− iΓe

)

+ |EC2|2
(

1

(ωe − ω1 − ωC2)− iΓe

+
1

(ωe − ω1 + ωC2)− iΓe

)]}

,

ċ2 + γ2c2 =
i

4h̄2

{

d2ed
∗
gecgEpE∗

C2e
iδω2t

(

1

(ωe − ωg − ωp)− iΓe

+
1

(ωe − ωg + ωC2)− iΓe

)

+ |d2e|2 c2
[

|Ep|2
(

1

(ωe − ω2 − ωp)− iΓe

+
1

(ωe − ω2 + ωp)− iΓe

)

+ |EC1|2
(

1

(ωe − ω2 − ωC1)− iΓe

+
1

(ωe − ω2 + ωC1)− iΓe

)

+ |EC2|2
(

1

(ωe − ω2 − ωC2)− iΓe

+
1

(ωe − ω2 + ωC2)− iΓe

)]}

,

[A.8]

where we have denoted the slowly oscillating terms with the two-photon detunings given by,

δω1 = (ω1 − ωg)− (ωC1 − ωp) ,

δω2 = (ω2 − ωg)− (ωp − ωC2) . [A.9]

Following the formalism of Harris et al. [48, 51, 167], we define the Raman coupling coeffi-

cients:

aq =
|dge|2

2h̄2

[

1

ωe − ωg − ωq − iΓe

+
1

ωe − ωg + ωq − iΓe

]

,
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b1 =
dged

∗
1e

2h̄2

[

1

ωe − ωg − ωC1 − iΓe

+
1

ωe − ωg + ωp − iΓe

]

,

b2 =
dged

∗
2e

2h̄2

[

1

ωe − ωg − ωp − iΓe

+
1

ωe − ωg + ωC2 − iΓe

]

,

f1,q =
|d1e|2

2h̄2

[

1

ωe − ω1 − ωq − iΓe

+
1

ωe − ω1 + ωq − iΓe

]

,

f2,q =
|d2e|2

2h̄2

[

1

ωe − ω2 − ωq − iΓe

+
1

ωe − ω2 + ωq − iΓe

]

, [A.10]

where we differ in the notation of Harris et al. in that we use the letters f and F instead of d and

D to avoid confusion with our choice of d to denote the electric dipole moments. For convenience,

we have used approximate forms for some of the denominator terms in Eqs. (A.8), such that a

common definition of b1 or b2 may be substituted. Specifically, by examining the energy level

diagram, the denominators of the cross terms in rate equation of cg can be expressed in a from that

resembles the cross terms in the rate equations of c1 and c2 as follows:

ωe − ω1 + ωC1 = ωe − ωg + ωp − δω1 ⇒ ωe − ω1 + ωC1 ≈ ωe − ωg + ωp ,

ωe − ω1 − ωp = ωe − ωg − ωC1 − δω1 ⇒ ωe − ω1 − ωp ≈ ωe − ωg − ωC1 ,

ωe − ω2 − ωC2 = ωe − ωg − ωp − δω2 ⇒ ωe − ω2 − ωC2 ≈ ωe − ωg − ωp ,

ωe − ω2 + ωp = ωe − ωg + ωC2 − δω2 ⇒ ωe − ω2 + ωp ≈ ωe − ωg + ωC2 . [A.11]

This approximation is valid because when the lasers are far-detuned from the electronic state the

two-photon detunings are negligible compared to the single photon detunings. With the Raman

coupling coefficients we define the quantities:

A = ap |Ep|2 + aC1 |EC1|2 + aC2 |EC2|2 ,

B1 = b1EpE∗
C1 ,

B2 = b2E∗
pEC2 ,

F1 = f1,p |Ep|2 ++f1,C1 |EC1|2 + f1,C2 |EC2|2 ,

F2 = f2,p |Ep|2 ++f2,C1 |EC1|2 + f2,C2 |EC2|2 . [A.12]
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Now we may express the rate equations of the system in a compact form:

ċg =
i

2
Acg +

i

2
B1e

−iδω1tc1 +
i

2
B2e

−iδω2tc2 ,

ċ1 =
i

2
B∗

1e
iδω1tcg +

i

2
F1c1 − γ1c1 ,

ċ2 =
i

2
B∗

2e
iδω2tcg +

i

2
F2c2 − γ2c2 . [A.13]

To suppress the oscillating terms of these equations, we apply a unitary transform to a rotating

frame by the substitution:

cg = c̃ge
i(

Re(A)
2

)t ,

c1 = c̃1e
i(δω1+

Re(A)
2

)t ,

c2 = c̃2e
i(δω2+

Re(A)
2

)t , [A.14]

which transforms the equations to:

˙̃cg +
Im(A)

2
c̃g =

i

2
B1c̃1 +

i

2
B2c̃2 ,

˙̃c1 + i

[

δω1 −
Re(F1 − A)

2

]

c̃1 +

[

γ1 +
Im(F1)

2

]

c̃1 =
i

2
B∗

1 c̃g ,

˙̃c2 + i

[

δω2 −
Re(F2 − A)

2

]

c̃2 +

[

γ2 +
Im(F2)

2

]

c̃2 =
i

2
B∗

2 c̃g . [A.15]

We solve for steady state solutions for the probability amplitudes c̃1 and c̃2 in terms of c̃g by

setting the derivatives ˙̃c1 and ˙̃c2 equal to zero:

c̃1 =
B∗

1 c̃g

2[δω1 − Re(F1−A)
2

− i(γ1 +
Im(F1)

2
)]

,

c̃2 =
B∗

2 c̃g

2[δω2 − Re(F2−A)
2

− i(γ2 +
Im(F2)

2
)]

. [A.16]

The steady state solutions for the probability amplitudes complete our analysis of the time

dynamics of the system and we can now begin to solve for the electric susceptibility of the system

at the frequency of the probe beam. To begin, we consider the polarization of the system:

P (t) = N
〈

ψ|d̂|ψ
〉

= N
(

dgecec
∗
ge

−i(ωe−ωg)t + d1ecec
∗
1e

−i(ωe−ω1)t + d2ecec
∗
2e

−i(ωe−ω2)t + h.c.
)

. [A.17]
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A complete expression for the polarization of the system can be found in terms of cg, c1, and c2

by plugging in Eq. (A.7) for ce, however it is tediously long. Our analysis can be simplified by

considering a Fourier expansion of the polarization,

P (t) = Re

[

∑

n

Pne
−iωnt

]

=
∑

n

1

2

(

Pne
−iωnt + P ∗

ne
iωnt

)

, [A.18]

since we are only interested in the polarization at the probe beam frequency, Pp. By noting that

2P (t) =
∑

n

Pne
−iωnt + P ∗

ne
iωnt , [A.19]

we can solve for Pp by extracting all the terms of 2P (t) that include the oscillation e−iωpt. Thus

we plug Eq. (A.7) into Eq. (A.17) and truncate the nonrelevant terms:

P (t) =
N

2h̄

[

|dge|2 |cg|2 Epe−iωpt

(

1

(ωe − ωg − ωp)− iΓe

+
1

(ωe − ωg + ωp)− iΓe

)

+ d1ed
∗
gecgc

∗
1EC1ei(ω1−ωg−ωC1)t

(

1

(ωe − ωg − ωC1)− iΓe

+
1

(ωe − ω1 + ωC1)− iΓe

)

+ dged
∗
2ec2c

∗
gEC2ei(ωg−ω2−ωC2)t

(

1

(ωe − ω2 − ωC2)− iΓe

+
1

(ωe − ωg + ωC2)− iΓe

)

+ |d1e|2 |c1|2 Epe−iωpt

(

1

(ωe − ω1 − ωp)− iΓe

+
1

(ωe − ω1 + ωp)− iΓe

)

+ |d2e|2 |c2|2 Epe−iωpt

(

1

(ωe − ω2 − ωp)− iΓe

+
1

(ωe − ω2 + ωp)− iΓe

)

+ ...+ h.c.
]

. [A.20]

Using the Raman coupling coefficients and noting,

ωg − ω1 + ωC1 = ωp − δω1 ,

ω2 − ωg + ωC2 = ωp + δω2 , [A.21]

we can rewrite the polarization as:

P (t) = Nh̄
[

|dge|2 |cg|2 apEpe−iωpt + d1ed
∗
gecgc

∗
1b

∗
1EC1e−i(ωp−δω1)t + dged

∗
2ec2c

∗
gb2EC2e−i(ωp+δω2)t

+ |d1e|2 |c1|2 Epe−iωpt + |d2e|2 |c2|2 Epe−iωpt + ...+ h.c.
]

. [A.22]
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After extracting out the terms oscillating at the probe frequency we find the Fourier component of

the polarization,

Pp = 2Nh̄
[

|cg|2 apEp + cgc
∗
1b

∗
1EC1eiδω1t + c2c

∗
gb

∗
2EC1e−iδω2t

+ |c1|2 f1,pEp + |c2|2 f2,pEp
]

. [A.23]

Applying the rotating frame introduced in Eq. (A.14), we eliminate the slowly oscillating terms in

the probe polarization

Pp = 2Nh̄
[

|c̃g|2 apEp + c̃g c̃
∗
1b

∗
1EC1 + c̃2c̃

∗
gb2EC2 + |c̃1|2 f1,pEp + |c̃2|2 f2,pEp

]

. [A.24]

One of the key assumptions we make is that the majority of the population remains in the

ground state and there is negligible population in the Raman states because the system is far-off

resonant and the probe beam is weak. The last two terms in Eq. (A.24) may be neglected under the

assumption,

cgc
∗
g ≈ 1 ,

c1c
∗
1 ≪ 1 ,

c2c
∗
2 ≪ 1 . [A.25]

After plugging in the steady state probability amplitudes c̃1 and c̃2 from Eq. (A.16) into Eq. (A.24)

we have

Pp = 2h̄N

(

ap +
|b1|2 |EC1|2

2
[

δω1 − Re(F1−A)
2

+ i
(

γ1 +
Im(F1)

2

)]

+
|b2|2 |EC2|2

2
[

δω2 − Re(F2−A)
2

− i
(

γ2 +
Im(F2)

2

)]

)

Ep . [A.26]

To compact the notation and rewrite the polarization expression in a format resembling a com-

plex Lorentzian, we define the quantities

˜δω1 = δω1 −
Re(F1 − A)

2
,

˜δω2 = δω2 −
Re(F2 − A)

2
,
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γ̃1 = γ1 +
Im(F1)

2
,

γ̃2 = γ2 +
Im(F2)

2
. [A.27]

The terms Re(F1−A)
2

and Re(F2−A)
2

physically correspond to ac stark shifts of the system’s levels that

are proportional the intensity of the laser fields. Similarly the terms Im(F1)
2

and Im(F2)
2

correspond

to power broadening of the level line widths.

Using the relation Pp = ǫ0χEEp with Eq. (A.26), we can find the susceptibility of the medium

for the probe wave,

χE =
2h̄N

ǫ0



ap +
|b1|2

2
[

˜δω1 + iγ̃1
] |EC1|2 +

|b2|2

2
[

˜δω2 − iγ̃2
] |EC2|2



 . [A.28]

A.2 Six level system for negative refractive index

The derivation of the refractive index in the Raman cross-coupled scheme follows very simi-

larly to the derivation of the far-off resonant Raman system above, however there are additional

magnetic resonance terms. We begin by expanding the wave function of the 6 level system in the

interaction picture:

|ψ〉 = cg exp(−iωgt)|g〉+ c1 exp(−iω1t)|1〉+ c2 exp(−iω2t)|2〉

+ cm exp(−iωmt)|m〉+ ca exp(−iωat)|a〉+ cb exp(−iωbt)|b〉 . [A.29]

The total Hamiltonian of the system is the addition of the unperturbed Hamiltonian and the inter-

action Hamiltonian, given by:

Ĥ0 = h̄ωg|g〉〈g|+ h̄ω1|1〉〈1|+ h̄ω2|2〉〈2|+ h̄ωm|m〉〈m|+ h̄ωa|a〉〈a|+ h̄ωb|b〉〈b| ,

Ĥint = −d̂E − µ̂B = −dgaE|g〉〈a| − dgbE|g〉〈b| − d1aE|1〉〈a| − d2bE|2〉〈b|

−µgmB|g〉〈m| − µ2mB|2〉〈m|+ h.c. , [A.30]

where d and µ are the electric and magnetic dipole transition matrix elements, respectively. The

electric and magnetic fields, E and B are expanded in Fourier components,

E = Re
{

Epe−iωpt + EC1e−iωC1t + EC2e−iωC2t
}

,
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B = Re
{

Bpe
−iωpt + B2me

−iω2mt
}

. [A.31]

With these definitions for the Hamiltonian and the electric and magnetic fields, we use the Schrödinger

equation and adiabatic elimination of the excited state amplitudes to derive the simplified rate equa-

tions:

ċg =
i

2
Acg +

i

2
B1e

−iδω1tc1 +
i

2
B2e

−iδω2tc2 +
i

2
Ωgme

−iδωBtcm ,

ċ1 =
i

2
B∗

1e
iδω1tcg +

i

2
F1c1 − γ1c1 ,

ċ2 =
i

2
B∗

2e
iδω2tcg +

i

2
F2c2 +

i

2
Ω2me

−iδωΩtcm − γ2c2 ,

ċm =
i

2
Ω∗

gme
iδωBtcg +

i

2
Ω∗

2me
iδωΩtcm − γmcm , [A.32]

where we have introduced the detunings,

δω1 = (ω1 − ωg)− (ωC1 − ωp) ,

δω2 = (ω2 − ωg)− (ωp − ωC2) ,

δωB = (ωm − ωg)− ωp ,

δωΩ = (ωm − ω2)− ω2m , [A.33]

and the magnetic transition Rabi frequencies, Ωgm = µgmB∗
p/h̄ and Ω2m = µ2mB∗

2m/h̄.

To suppress the oscillating terms of these equations, we apply a unitary transform to a rotating

frame by the substitution:

cg = c̃ge
i(

Re(A)
2

)t ,

c1 = c̃1e
i(δω1+

Re(A)
2

)t ,

c2 = c̃2e
i(δω2+

Re(A)
2

)t ,

cm = c̃me
i(δωB+

Re(A)
2

)t , [A.34]

which re-expresses the rate equations as:

˙̃cg +
Im(A)

2
c̃g =

i

2
B1c̃1 +

i

2
B2c̃2 +

i

2
Ωgmc̃m ,
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˙̃c1 + i

[

δω1 −
Re(F1 − A)

2

]

c̃1 +

[

γ1 +
Im(F1)

2

]

c̃1 =
i

2
B∗

1 c̃g ,

˙̃c2 + i

[

δω2 −
Re(F2 − A)

2

]

c̃2 +

[

γ2 +
Im(F2)

2

]

c̃2 =
i

2
B∗

2 c̃g +
i

2
Ω2me

i(δωB−δωΩ−δω2)tc̃m ,

˙̃cm + i

[

δωB +
Re(A)

2

]

c̃m + γmc̃m =
i

2
Ω∗

gmc̃g +
i

2
Ω∗

2me
−i(δωB−δωΩ−δω2)tc̃2 .

[A.35]

For simplicity we impose the condition,

δωB = δω2 + δωΩ , [A.36]

to eliminate rotation of the magnetic resonance of the coupling beam, Ω2m.

We find the steady-state values for the probability amplitudes in terms of c̃g by setting deriva-

tives equal to zero and algebraically solving for:

c̃1 =

{

B∗
1

2
[

δω1 − Re(F1−A)
2

− i
(

γ1 +
Im(F1)

2

)]

}

c̃g ,

c̃2 =

{

2B∗
2

[

δωB + Re(A)
2

− iγm
]

+ Ω2mΩ
∗
gm

4



δω2 −
Re(F2−A)−i

(

γ2+
Im(F2)

2

)

2





[

δωB + Re(A)
2

− iγm
]

− |Ω2m|2

}

c̃g ,

c̃m =

{

Ω∗
gm

2
[

δωB + Re(A)
2

− iγm
]

+
B∗

2Ω
∗
2m

4
[

δωB + Re(A)
2

− iγm
]

[

δω2 − Re(F2−A)
2

− |Ω2m|2

4(δωB+
Re(A)

2
−iγm)

− i
(

γ2 +
Im(F2)

2

)

]

+
|Ω2m|2 Ω∗

gm

8
[

δωB + Re(A)
2

− iγm
]2
[

δω2 − Re(F2−A)
2

− |Ω2m|2

4(δωB+
Re(A)

2
−iγm)

− i
(

γ2 +
Im(F2)

2

)

]

}

c̃g .

[A.37]

The polarization and magnetization of the system are given by the quantum expectation values,

P (t) = N
〈

ψ|d̂|ψ
〉

,

M(t) = N 〈ψ|µ̂|ψ〉 . [A.38]
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Following the method used in the above, the adiabatically eliminated probability amplitudes of

the excited electronic states are used to simplify the polarization and magnetization expressions

resulting from Eqs.(A.38). The probe beam Fourier components of the polarization and magne-

tization, Pp and Mp, respectively, are found by truncating these expressions to include only the

terms oscillating near the probe frequency. These reduced expressions for the Fourier components

in the rotating frame are given by,

Pp = 2Nh̄
[

|c̃g|2 apEp + c̃g c̃∗1b
∗
1EC1 + c̃2c̃∗gb2EC2 + |c̃1|2 f1,pEp + |c̃2|2 f2,pEp

]

,

Mp = 2N
[

c̃mc̃∗gµgm + c̃mc̃∗2µ
∗
gme

−iωC2t
]

. [A.39]

Again, we assume the majority of the population remains in the ground state and there is negligible

population in the other states, such that

cgc
∗
g ≈ 1 ,

c1c
∗
1 ≪ 1 ,

c2c
∗
2 ≪ 1 ,

cmc
∗
m ≪ 1 . [A.40]

We then neglect the small terms in the Pp and Mp and equate them to the definitions of the polar-

ization and magnetization in terms of the polarizability coefficients giving,

Pp = 2h̄N
(

ap |c̃g|2 Ep + b∗1c̃g c̃
∗
1EC1 + b2c̃

∗
g c̃2EC2

)

≡ N (αEEEp + αEBBp) ,

Mp = 2Nc̃∗g c̃mµgm ≡ N (αBEEp + αBBBp) . [A.41]

The cross-coupled polarizability coefficients can be found by plugging in the steady-state prob-

ability amplitudes of Eqs. (A.37) into Eqs. (A.41) and then appropriately factoring out the probe

electric and magnetic field amplitudes, Ep and Bp. Thus the coefficients are given by:

αEE = 2h̄ap +
h̄ |b1|2 |EC1|2

[

˜δω1 + i
(

γ1 +
Im(F1)

2

)] +
h̄ |b2|2 |EC2|2

[

˜δω2 − |Ω2m|2

4( ˜δωB−iγm)
− i

(

γ2 +
Im(F2)

2

)

] ,

αBB =
|µgm|2

h̄





(

˜δωB − iγm
)

− |Ω2m|2

4

(

˜δω2−i

(

γ2+
Im(F2)

2

))





,
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αEB =
b2µ

∗
gmEC2Ω2m

2
(

˜δωB +−iγm
)

[

˜δω2 − |Ω2m|2

4( ˜δωB−iγm)
− i

(

γ2 +
Im(F2)

2

)

] ,

αBE =
b∗2µgmE∗

C2Ω
∗
2m

2
(

˜δωB − iγm
)

[

˜δω2 − |Ω2m|2

4( ˜δωB−iγm)
− i

(

γ2 +
Im(F2)

2

)

] , [A.42]

where we have introduced a simplified notation for the detunings that includes the AC Stark shifts,

˜δωB = δωB +
Re(A)

2
,

˜δω1 = δω1 −
Re(F1 − A)

2
,

˜δω2 = δω2 −
Re(F2 − A)

2
. [A.43]



113

Appendix B: Index of refraction in a magnetoelectric cross cou-
pled system

B.1 General wave equation in cross coupled media

In most materials polarization occurs in response to an applied electric field and similarly

magnetization in the presence of a magnetic field. However, cross-coupled materials do exist that

become polarized in a magnetic field and magnetized in an electric field. Materials such as these

are related to aspects in physics and chemistry such as optical activity or rotation, where linear

polarized light experiences a rotation as it propagates through the material. To account for these

cross-coupled behaviors the constitutive relations of bianisotropic media given by,

~P = ǫ0χ̄E
~E +

1

c
ξ̄EB ~H , [B.1]

~M =
1

cµ0

ξ̄BE ~E + χ̄B
~H , [B.2]

present a more general treatment where the polarization includes a magnetic field term and the

magnetization includes an electric field term. χ̄E and χ̄B are the electric and magnetic susceptibility

tensors and ξ̄EB and ξ̄BE are the magnetoelectric coupling (chirality) coefficient tensors.

The index of refraction of a medium is defined by the ratio of an electromagnetic wave’s phase

velocity to the speed of light in a vacuum,

n =
c

v
. [B.3]

To determine the phase velocity of a wave propagating in a material we consider a plane E-M wave,

~E(t) = ~E0ei(
~k·~r−ωt) , ~E0 = E0êE ,

~H(t) = ~H0e
i(~k·~r−ωt) , ~H0 = H0êH , [B.4]

and use Maxwell’s equations in matter for the curl of the fields,

∇× ~E = − ∂

∂t
~B ,

∇× ~H =
∂

∂t
~D . [B.5]
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The material fields include the polarization and magnetization terms according to the constitutive

relations

~D = ǫ0~E + ~P = ǫ0~E + ǫ0χ̄E
~E +

1

c
ξ̄EB ~H ,

~B = µ0

(

~H + ~M
)

= µ0
~H +

1

c
ξ̄BE ~E + µ0χ̄B

~H . [B.6]

After introducing the relative permittivity tensor, ǭ = 1 + χ̄E , and relative permeability tensor,

µ̄ = 1 + χ̄B, the material fields may be factored as,

~D = ǫ0ǭ~E +
1

c
ξ̄EB ~H ,

~B = µ0µ̄ ~H +
1

c
ξ̄BE ~E . [B.7]

Then we plug these material field expressions into Maxwell’s curl relations from Eq. (B.5), giving

∇× ~E = − ∂

∂t

(

µ0µ̄ ~H +
1

c
ξ̄BE ~E

)

,

∇× ~H =
∂

∂t

(

ǫ0ǭ~E +
1

c
ξ̄EB ~H

)

. [B.8]

The space and time derivatives of the curl relations can be performed for the plane E-M, we defined

in Eqs. (B.4), by the transformations ∇× → i~k× and ∂
∂t

→ −iω, which give

i~k × ~E0 = iω
(

µ0µ̄ ~H0 +
1

c
ξ̄BE ~E0

)

, [B.9]

i~k × ~H0 = −iω
(

ǫ0ǭ~E0 +
1

c
ξ̄EB ~H0

)

. [B.10]

These expressions can be rearranged to group the common field terms as

ωµ0µ̄ ~H0 =
(

~k × 1̄− ω

c
ξ̄BE

)

~E0 , [B.11]

−ωǫ0ǭ~E0 =
(

~k × 1̄ +
ω

c
ξ̄EB

)

~H0 . [B.12]

Using Eq. (B.11) we solve for the magnetic field term,

~H0 =
1

ωµ0

µ̄−1
(

~k × 1̄− ω

c
ξ̄BE

)

~E0 , [B.13]
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and then plug this into Eq. (B.12) to find the expression

ǭ~E0 = − 1

ω2ǫ0µ0

(

~k × 1̄ +
ω

c
ξ̄EB

)

µ̄−1
(

~k × 1̄− ω

c
ξ̄BE

)

~E0 , [B.14]

solely in terms of the electric field term. Thus we now have the final wave equation governing

propagation in a magnetoelectric cross-coupled material, given by

{

ǭ+
(

c

ω
~k × 1̄ + ξ̄EB

)

µ̄−1
(

c

ω
~k × 1̄− ξ̄BE

)}

~E0 = 0 . [B.15]

In order to determine the refractive index of the material we must find a wave vector, ~k, which

satisfies this propagation equation for a given field polarization vector, êE . Finding a general

solution for ~k presents a difficult task.

B.2 Circular polarization solution in cross coupled media

Following the suggestion of Fleischhauer et al. [62], we consider the case of a circularly

polarized light wave propagating in a material with magnetoelectric cross coupling. For simplicity

we take the permittivity and permeability tensors to be isotropic, ǭ = ǫ1̄, µ̄ = µ1̄, and we consider

a wave propagating in the +z direction with wave vector,

~k = kz êz =















0

0

kz















. [B.16]

If we assume the cross-coupling tensors ξ̄EB and ξ̄BE are diagonal in a circular polarization basis,

{ê+, ê−, êz}, where ê± = (êx ± iêy) /
√
2, then

ξ̄EB =















(

ξ+EB + ξ−EB
)

/2 −i
(

ξ+EB − ξ−EB
)

/2 0

i
(

ξ+EB − ξ−EB
)

/2
(

ξ+EB + ξ−EB
)

/2 0

0 0 ξzEB















, [B.17]

and similarly for ξ̄BE .
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We consider a right circularly polarized wave given by

~E0 = E0ê− =
E0√
2















1

−i
0















, [B.18]

and plug the wave vector of Eq. (B.16) into the propagation equation of Eq. (B.15). This gives


























ǫµ1̄ +















c

ω















0

0

kz















× 1̄ + ξ̄EB





























c

ω















0

0

kz















× 1̄− ξ̄BE









































E0√
2















1

−i
0















= 0 . [B.19]

After performing the appropriate vector operations this expression reduces to

{

ǫµ+
(

i
c

ω
k−z + ξ−EB

)(

i
c

ω
k−z − ξ−BE

)}















1

−i
0















= 0 , [B.20]

from this we can extract the scalar expression,

ǫµ+
(

i
c

ω
k−z + ξ−EB

)(

i
c

ω
k−z − ξ−BE

)

= 0 . [B.21]

With the reduction of the wave vector, ~k, to a scalar, k−z , we can determine the wave’s phase

velocity v− = ω
k−z

. Thus the refractive index for a right circular polarization is given by,

n− = k−z
c

ω
, [B.22]

which we substitute into Eq. (B.21). This results in the expression,

ǫµ+
(

in− + ξ−EB
) (

in− − ξ−BE
)

= 0 . [B.23]

We now arrive at the formula,

n− =

√

√

√

√

ǫµ−
(

ξ−EB + ξ−BE
)2

4
+
i

2

(

ξ−EB − ξ−BE
)

, [B.24]
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for the refractive index in a magnetoelectric cross coupled material for a right circular polarization.

A similar analysis for a left circular polarization will result in the expression,

n+ =

√

√

√

√

ǫµ−
(

ξ+EB + ξ+BE
)2

4
− i

2

(

ξ+EB − ξ+BE
)

. [B.25]

These refractive indices are some times referred to as chiral indices because the refractive index

depends on the “handedness” of the circular polarization.
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Appendix C: Density matrix of Raman negative index system

C.1 Density matrix equations

In order to numerically time evolution of coherences we consider a density matrix formalism

for the system. We express the quantum state of the system as a pure state vector:

|ψ〉 =
[

cg c1 c2 cm ca cb

]T

, [C.1]

with
∑

i |ci|2 = 1. Noting that a coherence is defined as ρij = cicj
∗, the density matrix ρ is given

by

ρ = |ψ〉〈ψ| =



































ρgg ρg1 ρg2 ρgm ρga ρgb

ρ1g ρ11 ρ12 ρ1m ρ1a ρ1b

ρ2g ρ21 ρ22 ρ2m ρ2a ρ2b

ρmg ρm1 ρm2 ρmm ρma ρmb

ρag ρa1 ρa2 ρam ρaa ρab

ρbg ρb1 ρb2 ρbm ρba ρbb



































. [C.2]

The time evolution of the density matrix is given by

ρ̇ = − i

h̄
[H, ρ]− 1

2
{Γ, ρ} , [C.3]

where H = H0 +Hint is the Hamiltonian matrix and Γ is the decay matrix of the system given by

Γ =



































γg 0 0 0 0 0

0 γ1 0 0 0 0

0 0 γ2 0 0 0

0 0 0 γm 0 0

0 0 0 0 Γa 0

0 0 0 0 0 Γb



































. [C.4]
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The unperturbed Hamiltonian is

H0 =



































h̄ωg 0 0 0 0 0

0 h̄ω1 0 0 0 0

0 0 h̄ω2 0 0 0

0 0 0 h̄ωm 0 0

0 0 0 0 h̄ωa 0

0 0 0 0 0 h̄ωb



































, [C.5]

and the interaction Hamiltonian is Hint = −dE − µB, where d and µ are the electric and magnetic

dipole transition matrices, respectively, given by

d =



































0 0 0 0 dga dgb

0 0 0 0 d1a 0

0 0 0 0 0 d2b

0 0 0 0 0 0

d∗ga d∗1a 0 0 0 0

d∗gb 0 d∗2b 0 0 0



































, [C.6]

µ =



































0 0 0 µgm 0 0

0 0 0 µ1m 0 0

0 0 0 µ2m 0 0

µ∗
gm µ∗

1m µ∗
2m 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



































. [C.7]

A general expression for Hint is tediously long when the E and B are expanded in Fourier compo-

nents,

E = Re
{

Epe−iωpt + EC1e−iωC1t + EC2e−iωC2t
}

,

B = Re
{

Bpe
−iωpt + B2me

−iω2mt
}

. [C.8]
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We use the rotating wave approximation to reduce Hint such that only the relevant field terms

remain and introduce the Rabi frequencies,

Ωga =
dgaE∗

C1

h̄
, Ωgb =

dgbE∗
p

h̄
, Ω1a =

d1aE∗
p

h̄
, Ω2b =

d2bE∗
C2

h̄
,

Ωgm =
µgmB∗

p

h̄
, Ω1m =

µ1mB∗
2m

h̄
, Ω2m =

µ2mB∗
2m

h̄
, [C.9]

and express the interaction Hamiltonian matrix:

Hint = − h̄
2



































0 0 0 Ωgme
iωpt Ωgae

iωC1t Ωgbe
iωpt

0 0 0 Ω1me
iω2mt Ω1ae

iωpt 0

0 0 0 Ω2me
iω2mt 0 Ω2be

iωC2t

Ω∗
gme

−iωpt Ω∗
1me

−iω2mt Ω∗
2me

−iω2mt 0 0 0

Ω∗
gae

−iωC1t Ω∗
1ae

−iωpt 0 0 0 0

Ω∗
gbe

−iωpt 0 Ω∗
2be

−iωC2t 0 0 0



































.[C.10]

We transform the Hamiltonian to a rotating reference frame by using a suitable unitary trans-

formation matrix,

U =



































eiωgt 0 0 0 0 0

0 ei(ωC1−ωp+ωg)t 0 0 0 0

0 0 ei(ωp−ωC2+ωg)t 0 0 0

0 0 0 ei(ωp+ωg)t 0 0

0 0 0 0 ei(ωC1+ωg)t 0

0 0 0 0 0 ei(ωp+ωg)t



































. [C.11]

With this transformation to a rotating frame, we suppresses oscillations in the time evolution of

the system and improve stability of numerical integration. In this rotating frame, the state vector is

given by,

|ψ̃〉 = U |ψ〉 =
[

c̃g c̃1 c̃2 c̃m c̃a c̃b

]T

, [C.12]

and we have the transformed Hamiltonian given by,

H̃ = U (H0 +Hint)U
† − ih̄U

∂U †

∂t
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= − h̄
2



































0 0 0 Ωgm Ωga Ωgb

0 −2δω1 0 Ω1m Ω1a 0

0 0 −2δω2 Ω2m 0 Ω2b

Ω∗
gm Ω∗

1m Ω∗
2m −2δωB 0 0

Ω∗
ga Ω∗

1a 0 0 −2δωa 0

Ω∗
gb 0 Ω∗

2b 0 0 −2δωb



































, [C.13]

where the detunings are defined as:

δω1 ≡ (ω1 − ωg)− (ωC1 − ωp) ,

δω2 ≡ (ω2 − ωg)− (ωp − ωC2) ,

δωB ≡ (ωm − ωg)− ωp ,

δωa ≡ (ωa − ωg)− ωC1 ,

δωb ≡ (ωb − ωg)− ωp . [C.14]

We solve for the time evolution of the system by plugging the Hamiltonian from Eq. (C.13)

into Eq. (C.3), resulting in the matrix ˙̃ρ, where each element is the rate equation of a coherence.

For our 6 level system this results in a set of 36 coupled differential equations, which are:

˙̃ρgg = −γgρ̃gg +
Γa

3
ρ̃aa +

Γb

3
ρ̃bb + γ1ρ̃11 + γ2ρ̃22 + γmρ̃mm

+
i

2

[

ρ̃∗gmΩgm + ρ̃∗gaΩga + ρ̃∗gbΩgb − h.c.
]

,

˙̃ρg1 =
i2δω1 − (γ1 + γg)

2
ρ̃g1 +

i

2
[−ρ̃gmΩ∗

1m − ρ̃gaΩ
∗
1a + ρ̃∗1mΩgm + ρ̃∗1aΩga + ρ̃∗1bΩgb] ,

˙̃ρg2 =
i2δω2 − (γ2 + γg)

2
ρ̃g2 +

i

2
[−ρ̃gmΩ∗

2m − ρ̃gbΩ
∗
2b + ρ̃∗2mΩgm + ρ̃∗2aΩga + ρ̃∗2bΩgb] ,

˙̃ρgm =
i2δωB − (γm + γg)

2
ρ̃gm

+
i

2
[−ρ̃g1Ω1m − ρ̃g2Ω2m + (ρ̃mm − ρ̃gg) Ωgm + ρ̃∗maΩga + ρ̃∗mbΩgb] ,

˙̃ρga =
i2δωa − (Γa + γg)

2
ρ̃ga +

i

2
[−ρ̃g1Ω1a + ρ̃maΩgm + (ρ̃aa − ρ̃gg) Ωga + ρ̃∗abΩgb] ,

˙̃ρgb =
i2δωb − (Γb + γg)

2
ρ̃gb +

i

2
[−ρ̃g2Ω2b + ρ̃mbΩgm + (ρ̃bb − ρ̃gg) Ωgb + ρ̃abΩga] ,
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˙̃ρ11 = −γ1ρ̃11 +
Γa

3
ρ̃aa +

Γb

3
ρ̃bb +

i

2
[ρ̃∗1mΩ1m + ρ̃∗1aΩ1a − h.c.] ,

˙̃ρ12 =
i2 (δω2 − δω1)− (γ1 + γ2)

2
ρ̃12 −

i

2
[−ρ̃∗2mΩ1m − ρ̃∗2aΩ1a + ρ̃1mΩ

∗
2m + ρ̃1bΩ

∗
2b] ,

˙̃ρ1m =
i2 (δωB − δω1)− (γ1 + γm)

2
ρ̃1m

+
i

2

[

(ρ̃mm − ρ̃11) Ω1m + ρ̃∗maΩ1a − ρ̃12Ω2m − ρ̃∗g1Ωgm

]

,

˙̃ρ1a =
i2 (δωa − δω1)− (γ1 + Γa)

2
ρ̃1a +

i

2

[

(ρ̃aa − ρ̃11) Ω1a + ρ̃maΩ1m − ρ̃∗g1Ωga

]

,

˙̃ρ1b =
i2 (δωb − δω1)− (γ1 + Γb)

2
ρ̃1b +

i

2

[

ρ̃mbΩ1m + ρ̃abΩ1a − ρ̃12Ω2b − ρ̃∗g1Ωgb

]

,

˙̃ρ22 = −γ2ρ̃22 +
Γa

3
ρ̃aa +

Γb

3
ρ̃bb +

i

2
[ρ̃∗2mΩ2m + ρ̃∗2bΩ2b − h.c.] ,

˙̃ρ2m =
i2 (δωB − δω2)− (γ2 + γm)

2
ρ̃2m

+
i

2

[

(ρ̃mm − ρ̃22) Ω2m − ρ̃∗12Ω1m + ρ̃∗mbΩ2b − ρ̃∗g2Ωgm

]

,

˙̃ρ2a =
i2 (δωa − δω2)− (γ2 + Γa)

2
ρ̃2a +

i

2

[

−ρ̃∗12Ω1a + ρ̃maΩ2m + ρ̃∗abΩ2b − ρ̃∗g2Ωga

]

,

˙̃ρ2b =
i2 (δωb − δω2)− (γ2 + Γb)

2
ρ̃2b +

i

2

[

(ρ̃bb − ρ̃22) Ω2b + ρ̃mbΩ2m − ρ̃∗g2Ωgb

]

,

˙̃ρmm = −γmρ̃mm +
i

2

[

ρ̃1mΩ
∗
1m + ρ̃2mΩ

∗
2m + ρ̃gmΩ

∗
gm − h.c.

]

,

˙̃ρma =
i2 (δωa − δωB)− (γm + Γa)

2
ρ̃ma

− i

2

[

−ρ̃1aΩ∗
1m + ρ̃∗1mΩ1a − ρ̃2aΩ

∗
2m − ρ̃gaΩ

∗
gm + ρ̃∗gmΩga

]

,

˙̃ρmb =
i2 (δωb − δωB)− (γm + Γb)

2
ρ̃mb

− i

2

[

−ρ̃1bΩ∗
1m + ρ̃∗2mΩ2b − ρ̃2bΩ

∗
2m − ρ̃gbΩ

∗
gm + ρ̃∗gmΩgb

]

,

˙̃ρaa = −Γaρ̃aa +
i

2

[

ρ̃1aΩ
∗
1a + ρ̃gaΩ

∗
ga − h.c.

]

,

˙̃ρab =
i2 (δωb − δωa)− (Γa + Γb)

2
ρ̃ab −

i

2

[

−ρ̃1bΩ∗
1a + ρ̃∗2aΩ2b − ρ̃gbΩ

∗
ga + ρ̃∗gaΩgb

]

,

˙̃ρbb = −Γbρ̃bb +
i

2

[

ρ̃2bΩ
∗
2b + ρ̃gbΩ

∗
gb − h.c.

]

. [C.15]

The remaining elements of the 6× 6 density matrix can be found using ρ̃ij = ρ̃∗ji.

To ensure a closed system with population conservation, we have assumed equal branching

ratios for decays from the excited electric states |a〉 and |b〉 to the states |g〉, |1〉, and |2〉 and
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included the appropriate population transfer terms in Eqs. (C.15). This is verified by,

∂

∂t
(ρ̃gg + ρ̃11 + ρ̃22 + ρ̃mm + ρ̃aa + ρ̃bb) = −γgρ̃gg , [C.16]

where decay of ground state is the only mechanism for population to leave the system, which we

will assume to be zero.

For a given set of system parameters, we numerically integrate the coupled system of Eqs. (C.15)

with the initial condition that the atoms start in the ground state, ρ̃gg = 1, and the lasers fields are

off and gradually turned on to full power. We use fourth-order Runge-Kutta as our numerical

integration algorithm and integrate in time until steady state values are reached for the coherences.

We proceed to solve for the various polarizabilities of the system by determining the polariza-

tion and magnetization, respectively, as

P (t) = N 〈ψ|d|ψ〉 = N
〈

ψ̃|d̃|ψ̃
〉

,

M (t) = N 〈ψ|µ|ψ〉 = N
〈

ψ̃|µ̃|ψ̃
〉

. [C.17]

In the rotating frame the dipole transition matrix are given as,

d̃ = UdU † =



































0 0 0 0 dgae
−iωC1t dgbe

−iωpt

0 0 0 0 d1ae
−iωpt 0

0 0 0 0 0 d2be
−iωC2t

0 0 0 0 0 0

d∗gae
iωC1t d∗1ae

iωpt 0 0 0 0

d∗gbe
iωpt 0 d∗2be

iωC2t 0 0 0



































, [C.18]

µ̃ = UµU † =



































0 0 0 µgme
−iωpt 0 0

0 0 0 µ1me
−i(2ωp−ωC1)t 0 0

0 0 0 µ2me
−iωC2t 0 0

µ∗
gme

iωpt µ∗
1me

i(2ωp−ωC1)t µ∗
2me

iωC2t 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 .



































[C.19]
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In general the polarization and magnetization are long expressions with many terms, however

we are only interested in the probe beam frequency Fourier components, Pp and Mp. By noting

that

2P (t) =
∑

n

Pne
−iωnt + P ∗

ne
iωnt ,

2M(t) =
∑

n

Mne
−iωnt +M∗

ne
iωnt , [C.20]

we can solve for Pp and Mp by extracting all the terms of 2P (t) and 2M(t), respectively, that

include the oscillation e−iωpt.

We take the polarization and magnetization in the rotating frame by plugging Eqs. (C.18-C.19)

into Eq. (C.17) to find the probe Fourier components in terms of the system coherences:

Pp = 2N
(

ρ̃∗1ad1a + ρ̃∗gbdgb
)

,

Mp = 2N
(

ρ̃∗gmµgm

)

. [C.21]

Using the definition of the polarization and the magnetization in a cross-coupled medium:

Pp ≡ N (αEEEp + αEBBp) ,

Mp ≡ N (αBEEp + αBBBp) , [C.22]

we wish to solve for the polarizabilities, αEE , αBB, αEB, and αBE in terms of the numerically

computed steady state coherence values. By relating Eqs. (C.21) with Eqs. (C.22) we have the

relations:

2
(

ρ̃∗1ad1a + ρ̃∗gbdgb
)

= αEEEp + αEBBp ,

2ρ̃∗gmµgm = αBEEp + αBBBp . [C.23]

C.2 Isolating electric and magnetic dependencies of coherences

To numerically determine the polarizabilities we follow the method used by Fleischhauer et al.

[62]. In general the coherences of the LHS of Eqs. (C.23) are functions of both the probe electric
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and magnetic field amplitudes,

ρ̃∗1a = k (Ep,Bp) ,

ρ̃∗gb = l (Ep,Bp) ,

ρ̃∗gm = m (Ep,Bp) , [C.24]

and the polarizability coefficients, αij , are functions of both field amplitudes as well. Examining

the relations of Eqs. (C.23), it appears difficult to uniquely separate the electric and magnetic

field dependencies of the numerical LHS, such that we may equate these to the corresponding

polarizability factors of the RHS. A unique separation of the dependices of the numerical LHS can

performed as follows by first expanding the functions k, l, and m in a power series of the field

amplitudes:

k (Ep,Bp) =
∑

i,j

kijE i
pBj

p ,

l (Ep,Bp) =
∑

i,j

lijE i
pBj

p ,

m (Ep,Bp) =
∑

i,j

mijE i
pBj

p . [C.25]

We note that because we are only considering the polarization and magnetization oscillating at the

probe frequency, e−iωpt, there must physically be only terms in the power series that feature an odd

number of field amplitudes, e.g. i + j is an odd integer. This is because in the dynamics of the

coherences, each appearance of a probe field term includes an oscillation factor of either e−iωpt or

eiωpt, which result in odd numbers of field terms oscillating at the probe frequency, ωp, and even

numbers of field terms being static. Since an odd number of field amplitudes can only result from

an odd power of Ep with even power of Bp and vice versa, we can split the power expansions of

Eqs. (C.25) as:

k (Ep,Bp) =
∑

i,j

kEij |Ep|2i |Bp|2j Ep +
∑

i,j

kBij |Ep|2i |Bp|2j Bp ,

l (Ep,Bp) =
∑

i,j

lEij |Ep|2i |Bp|2j Ep +
∑

i,j

lBij |Ep|2i |Bp|2j Bp ,

m (Ep,Bp) =
∑

i,j

mE
ij |Ep|2i |Bp|2j Ep +

∑

i,j

mB
ij |Ep|2i |Bp|2j Bp . [C.26]
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After plugging the split behavior Eqs. (C.26) into relations of Eqs. (C.23), we can uniquely separate

the electric and magnetic dependices to solve for the polarizability coefficients:

αEE = 2



d1a





∑

i,j

kEij |Ep|2i |Bp|2j


+ dgb





∑

i,j

lEij |Ep|2i |Bp|2j






 ,

αEB = 2



d1a





∑

i,j

kBij |Ep|2i |Bp|2j


+ dgb





∑

i,j

lBij |Ep|2i |Bp|2j






 ,

αBE = 2



µgm





∑

i,j

mE
ij |Ep|2i |Bp|2j







 ,

αBB = 2



µgm





∑

i,j

mB
ij |Ep|2i |Bp|2j







 . [C.27]

To solve for the split power series terms we make use of the symmetry properties of the odd

functions in Eqs. (C.26), and note that by changing the sign of the field amplitudes we have:

∑

i,j

kEij |Ep|2i |Bp|2j =
1

2Ep
[k (Ep,Bp) + k (Ep,−Bp)] ,

∑

i,j

kBij |Ep|2i |Bp|2j =
1

2Bp

[k (Ep,Bp) + k (−Ep,Bp)] , [C.28]

and similarly for the expansions of l and m. To compute the functions k, l, and m with negative

field amplitudes we are required to numerically solve the density matrix dynamics of Eqs. (C.15),

but change the sign of the corresponding probe electric or magnetic field amplitude parameters in

the computation. Thus we have to numerically solve the system evolution for three cases: (Ep,Bp),

(−Ep,Bp), and (Ep,−Bp), in order to separate the electric and magnetic dependices and hence

numerically compute the polarizability coefficients:

αEE =
dgb [l (Ep,Bp) + l (Ep,−Bp)] + d1a [k (Ep,Bp) + k (Ep,−Bp)]

Ep
,

αEB =
dgb [l (Ep,Bp) + l (−Ep,Bp)] + d1a [k (Ep,Bp) + k (−Ep,Bp)]

Bp

,

αBE =
µgm [m (Ep,Bp) +m (Ep,−Bp)]

Ep
,

αBB =
µgm [m (Ep,Bp) +m (−Ep,Bp)]

Bp

. [C.29]
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Appendix D: Distributed Bragg reflector via refractive index en-
hancement

D.1 Periodically varying refractive index

In our suggestion for an all-optical mirror, we create a periodically varying refractive index

for the probe beam in a could of atoms by exploiting the intensity dependence of non-linear sus-

ceptibility, χ(3)|EC|2. Two counter-propagating control beams on the z-axis form a standing wave

spatial interference pattern:

E tot
C (z, t) = ECei(kCz−ωCt) + ECei(−kCz−ωCt)

= ECe−iωCt (2 cos (kCz)) . [D.1]

The time averaged intensity of the control beam fields is a periodic spatially varying function,

IC (z) =
1

2η

〈

∣

∣

∣E tot
C

∣

∣

∣

2
〉

=
2 |EC|2
η

cos2 (kCz)

=
|EC|2
η

+
|EC|2
η

cos (2kCz) . [D.2]

Thus there is a periodic variation of the refractive index according to the

n (z) = n1 + n2IC (z)

= n1 +
n2I

max
C

2
+
n2I

max
C

2
cos

(

2π

Λ
z
)

, [D.3]

where we have introduced the periodicity, Λ = 1
2
λC by plugging the wave number kC = 2π

λC

into

Eq. (D.2) and Imax
C = 2|EC |

2

η
. We separate the static and varying parts of the refractive index as

n (z) = n0 +∆n (z), where

n0 = n1 +
n2I

max
C

2
,

∆n (z) =
n2I

max
C

2
cos

(

2π

Λ
z
)

. [D.4]

The refractive index of the probe beam is related to the permittivity by

n =
√

ǫ+∆ǫ (z) =
√

1 + χ(1) + χ(3) |E tot
C (z)|2 . [D.5]
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By using Eqs. (D.4-D5) and assuming χ≪ 1, we have

n0 ≈ 1 +
1

2
χ(1) ,

∆n (z) ≈ 1

2
χ(3)

∣

∣

∣E tot
C (z)

∣

∣

∣

2
. [D.6]

By noting in Eqn. (D.5) that ∆ǫ (z) = χ(3) |E tot
C (z)|2 and the relations for ∆n (z) in Eqs. (D.4) and

(D.6), we find that

∆ǫ (z) ≈ 2∆n (z)

≈ n2I
max
C cos

(

2π

Λ
z
)

, [D.7]

giving us the spatial variation of the permittivity in the medium.

D.2 Coupled mode theory

The translational symmetry periodicity of the permittivity, ǫ (z) = ǫ (z + Λ), resulting from

the periodic intensity pattern, allows us to use the coupled mode theory of Yariv and Yeh [164].

The permittivity can be written as a Fourier expansion,

∆ǫ (z) =
∑

m 6=0

ǫm exp
(

−im2π

Λ
z
)

, [D.8]

where ǫm is the coefficient of the m-th mode. For the system we are considering, the periodic

perturbation of the permittivity given in Eqn. (D.7) can be expressed as

∆ǫ (z) ≈ n2I
max
C cos

(

2π

Λ
z
)

=
n2I

max
C

2

[

exp
(

−i2π
Λ
z
)

+ exp
(

i
2π

Λ
z
)]

, [D.9]

where we find the coefficients ǫ−1 = ǫ1 =
n2Imax

C

2
and take all other coefficients to be zero.

The interference of the multiple reflections and refractions of light due to the periodic varia-

tion of the permittivity cause the medium to behave as a distributed Bragg reflector. The power

reflection coefficient of a distributed Bragg reflector is given by [164]:

R =
κ∗κ sinh2 (sL)

s2 cosh2 (sL) +
(

∆β
2

)2
sinh2 (sL)

, [D.10]
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where L is the length of the medium. The parameters given by

∆β = 2kp cos θ −
2π

Λ
,

κ =
ω2
pµ0µǫ0

2k0 cos θ
ǫm ,

k0 =
n0ωp

c
,

s =

√

√

√

√κ∗κ−
(

∆β

2

)2

, [D.11]

contain the angular dependence, θ, the periodicity, Λ, and the magnitude of the variation, ǫm.
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[99] C. Ottaviani, S. Rebić, D. Vitali, and P. Tombesi. Quantum phase-gate operation based on
nonlinear optics: Full quantum analysis. Phys. Rev. A, 73:010301, Jan 2006.

[100] C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi. Polarization qubit phase
gate in driven atomic media. Phys. Rev. Lett., 90:197902, May 2003.

[101] P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar. Negative refrac-
tion and left-handed electromagnetism in microwave photonic crystals. Phys. Rev. Lett.,
92:127401, Mar 2004.

[102] P. S. Peijzel, A. Meijerink, R. T. Wegh, M. F. Reid, and G. W. Burdick. A complete energy
level diagram for all trivalent lanthanide ions. Journal of Solid State Chemistry, 178(2):448
– 453, 2005.



137

[103] N. Pelletier-Allard and R. Pelletier. Magnetic-dipole and electric-quadrupole effects in
lacl3:tb

3+. Phys. Rev. B, 31:2661–2666, Mar 1985.

[104] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85:3966–3969, Oct
2000.

[105] J. B. Pendry. A chiral route to negative refraction. Science, 306(5700):1353–1355, 2004.

[106] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs. Extremely low frequency plasmons
in metallic mesostructures. Phys. Rev. Lett., 76:4773–4776, Jun 1996.

[107] J. B. Pendry, D. Schurig, and D. R. Smith. Controlling electromagnetic fields. Science,
312(5781):1780–1782, 2006.

[108] J. B. Pendry and D. R. Smith. Reversing light with negative refraction. Physics Today,
57(6):37–43, 2004.

[109] J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart. Magnetism from conductors and
enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech., 47:2075–2084, Nov
1999.

[110] D. Petrosyan and G. Kurizki. Symmetric photon-photon coupling by atoms with zeeman-
split sublevels. Phys. Rev. A, 65:033833, Mar 2002.

[111] D. Petrosyan and Y. P. Malakyan. Magneto-optical rotation and cross-phase modulation via
coherently driven four-level atomsin a tripod configuration. Phys. Rev. A, 70:023822, Aug
2004.

[112] T. Peyronel, Y. V. Rostovtsev, O. Firstenberg, Q. Liang, S. Hofferberth, A. V. Gorshkov,
T. Pohl, M. D. Lukin, and V. Vuletic. Quantum nonlinear optics with single photons enabled
by strongly interacting atoms. Nature, 488:57, Aug 2012.

[113] N. A. Proite, B. E. Unks, J. T. Green, and D. D. Yavuz. Refractive index enhancement with
vanishing absorption in an atomic vapor. Phys. Rev. Lett., 101:147401, Sep 2008.

[114] R. M. Rajapakse, T. Bragdon, A. M. Rey, T. Calarco, and S. F. Yelin. Single-photon nonlin-
earities using arrays of cold polar molecules. Phys. Rev. A, 80:013810, Jul 2009.

[115] U. Rathe, M. Fleischhauer, Shi-Yao Zhu, T. W. Hänsch, and M. O. Scully. Nonlinear theory
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